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Abstract

Todays integrated circuits with increasing complexity
cause the well known state space explosion problem in ver-
ification tools. In order to handle this problem a much sim-
pler abstract model of the design has to be created for verifi-
cation. We introduce the polynomial abstraction technique,
which efficiently simplifies the verification task of sequen-
tial design blocks whose functionality can be expressed as
a polynomial. Through our technique, the domains of possi-
ble values of data input signals can be reduced. This is done
in such a way that the abstract model is still valid for model
checking of the design functionality in terms of the system’s
control and data properties. We incorporate polynomial ab-
straction into the ForSyDe methodology, for the verification
of clock domain design refinements.

1. Introduction

Due to the increasing capacity of integrated circuits the
complexity of the embedded system design process is con-
tinuously growing. In order to ensure a guaranteed function-
ality of these systems the design process has to be based on
a formal basis and allow for the application of formal meth-
ods, in particular formal verification, since simulation alone
is not sufficient.

The main formal verification techniques are theorem
proving and model checking. Though theorem proving al-
lows infinite data types and an infinite state space, its prac-
tical use is restricted, since it demands good knowledge and
ingenuity of the designer to construct a mathematical proof.
The use of model checking is more practical, since the de-
sign is represented as a finite state machine and the proper-
ties to verify are specified in temporal logic. Unfortunately

∗ This research was supported by the Swedish Foundation for Strategic
Research within the INTELECT program.

model checking can only be applied to systems with a fi-
nite state space and suffers from the state space explosion
problem. These problems are addressed by abstraction tech-
niques.

This paper introduces thepolynomial abstractiontech-
nique that is a modification ofspatial abstraction[1]. Spa-
tial abstraction separates the control part from the data path
of a design and based on the assumption about the correct-
ness of the data path, it allows to reduce the data path so
that the behaviors of the control part are preserved. This re-
duces the state space and allows to verify the correctness of
the control part and data path predicates.

In comparison to spatial abstraction, our method based
on polynomial abstraction allows to verify the system func-
tionality as a mix of data and control properties, i.e. it can be
verified that a system output is a function of the system in-
puts.

The polynomial abstraction will be incorporated into
ForSyDe [2], which is a design methodology for embedded
systems using formal design transformations. The abstrac-
tion is applied for verification of design transformations.

2. The ForSyDe Methodology

The ForSyDe design process starts with the development
of a synchronous, formal, abstract and functionalspecifica-
tion modelthat can be executed using the functional lan-
guage Haskell. This model is then refined by a stepwise ap-
plication of well defined design transformations into anim-
plementation model. As the implementation model is a re-
fined version of the specification model, the same valida-
tion and verification methods can be applied to both mod-
els. The implementation model is partitioned into hardware
and software blocks, which are mapped on architectural
components. The verification of design transformations in
ForSyDe is introduced in [3].

The specification model is based on a synchronous com-
putational model and uses ideal data types such as real num-
bers and infinite buffers. It abstracts from implementation
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details, such as low-level communication mechanisms and
enables the designer to focus on the functional behavior of
the system rather than structure and architecture.

The implementation model is the result of the refine-
ment process. In contrast to the specification model, which
is a network of concurrent synchronous processes, it may
also include synchronous sub-domains with a different sig-
nal rate. In order to connect clock domains with different
clock rates, domain interfaces are settled between domains.
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Figure 1. (a) Specification, (b) Intermediate
Model and (c) Implementation

An example of clock domain refinement is shown in Fig-
ure 1, which transforms a combinational function in the
specification model into an implementation as a circuit with
data path and control part. The FSM in the control part is
configured so that in the first cycle the registers are initial-
ized with constant values 0 and 1 from the multiplexers.
In the following cycles the sum of the valuesxn multiplied
with coefficientsa,b,c,d ande is calculated. The implemen-
tation runs on a higher clock rate compared with the inter-
mediate model and thus does not change the functionality
of the model.

3. Polynomial Abstraction

Polynomial abstraction targets the verification of sys-
tems where a sequential design implementation is function-
ally equivalent to a combinational circuit. For instance it is
obligatory to verify that the sequential circuit in Figure 1.(c)
calculates the degree four polynomial.

One possibility to verify this kind of designs is to exe-
cute the implementation with symbolic variables on the sys-
tem inputs and formally find the output function presented

as a polynomial in symbolic variables. Through equivalence
checking of the corresponding specification and implemen-
tation polynomials we can decide over the correctness of the
refinement.

Unfortunately the implementation polynomial does not
contain all the information about the control part of the cir-
cuit. We can only decide over the correctness of the first
calculation, since the polynomial does not express how the
controller behaves after emitting the first result.

We address the latter problem by introducingpolynomial
abstraction. The technique is based onthe fundamental the-
orem of algebra[4]. Using this theorem we can prove a
lemma, which states the following: two degreek univari-
able polynomials are equivalent if they evaluate to pairwise
the same values fork+ 1 different input assignments. We
can extend the lemma for multi-variable polynomials and
prove the corresponding theorem. This theorem allows us
to decide over equivalence of two multi-variable polynomi-
als through assigning only a small set of values to every in-
put signal instead of all the values of the input domains.

Instead of the exact output polynomial of the implemen-
tation we only need to know the degrees of the input vari-
ables in the polynomial. According to the degrees we re-
strict the domains of input variables and use model check-
ing to verify the implementation against specification. Con-
sidering the fundamental theorem of algebra, the verifica-
tion result is valid for any data domain.

The polynomial abstraction is applicable for verification
at a high abstraction level, where a system is described in
the sense of ideal data types abstracting from lower level de-
tails, such as saturating or floating point arithmetic, and bit-
widths. We target designs, which contain integers, booleans
and scalar variables, the arithmetic operations+ , - , *, /, and
logic operations. The design may contain feedback loops
with delay and finite state machines. The proposed tech-
nique is prospective for the verification of DSP applications
and VLSI implementations of cryptological algorithms.
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