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Abstract 
 

Conventional synthesis algorithms schedule multiple 
precision specifications by balancing the number of 
operations of every different type and width executed per 
cycle. However, totally balanced schedules are not always 
possible and therefore some hardware waste appears. In 
this paper a heuristic scheduling algorithm to minimize 
this hardware waste is presented. It successively 
transforms specification operations into sets of smaller 
ones until the most uniform distribution of the 
computational effort of operations among cycles is 
reached. In the schedules proposed some operations are 
executed during a set of non- consecutive cycles. 
 

1. Introduction 
In order to reduce the datapath area, conventional 

scheduling algorithms try to balance the number of 
operations of every different type executed per cycle [1], 
and allocation ones try to maximize the reuse of datapath 
hardware (HW) resources. When synthesizing mono 
precision specifications (those formed by operations of 
equal width), sometimes it is not possible to schedule the 
same number of operations of every different type per 
cycle. Thus, conventional allocation algorithms produce 
implementations in which some functional units (FUs) are 
unused during some cycles.  

This HW waste is dramatically incremented when 
multiple precision specifications (those formed by 
operations of different widths) are synthesized using 
conventional allocation algorithms [2-4]. In this case, 
some datapath FUs are partially wasted due to the 
allocation of some operations to wider FUs.  

The scheduling algorithm in [6] transforms every 
specification operation into additions, and afterwards 
performs jointly their scheduling. In combination with bit-
level allocation algorithms [5], it produces datapaths with 
a unique FU type (adders), and where all complex 
operations have been fragmented into a set of simpler 
ones. Thus unnecessary fragmentation occurs in most 
cases. The proposed algorithm overcomes these 

disadvantages by performing a selective transformation of 
the specification operations. It minimizes HW waste by 
balancing the computational effort of operations executed 
per cycle, and produces substantial area reductions in 
comparison to other known approaches. 

2. Scheduling algorithm 
In order to minimize the HW waste of the synthesized 

circuits, the proposed algorithm assigns operations to 
cycles trying to balance the computational effort of the 
operations executed in every cycle. With this aim, it 
successively transforms specification operations into sets 
of simpler ones. The type and width of the new operations 
may be different from those of the original one, and are 
scheduled independently. In consequence, one 
specification operation may be executed during a set of 
non-consecutive cycles.  

The algorithm is divided in the next three phases:  
1) Kernel extraction.  

To increase the number of operations which may share 
one FU, the specification multiplicative and additive 
operations are transformed into multiplications, additions, 
and some glue logic [6].  And also, signed operations are 
transformed into unsigned ones.  
2) Multiplication scheduling 

The algorithm selects for every multiplication a set of 
cycles included in its mobility (set of cycles in which an 
operation may start its execution). And it also fixes, for 
those operations scheduled in several cycles, the exact 
portion of every multiplication executed in each cycle.  
3) Addition scheduling 

The addition scheduling is performed using the 
algorithm presented in [6]. It produces schedules with the 
most uniform addition bits distribution among cycles 
reachable in every case.  

In order to produce implementations with smaller area 
than those obtained by conventional synthesis algorithms, 
the schedules proposed by our approach must be allocated 
using bit-level allocation algorithms like [5]. They allow 
the execution of one operation over several linked FUs, 
whose types and widths may be different from the 
specification operation. 
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2.1.  Multiplication scheduling 
This scheduling algorithm is a variant of the classical 

force-directed algorithm [1]. It takes into account 
operations widths in order to reduce the datapath area due 
to FUs either partially used, or unused during some cycles. 

In every step of the algorithm, one multiplication and 
one of its mobility cycles are selected, in accordance to a 
redefinition of the force measure. The operation is then 
scheduled if the assignment does not unbalance the most 
uniform multiplication bits to cycles distribution reachable 
at the moment. Otherwise, it is fragmented to obtain one 
multiplication fragment of a certain size which will be 
scheduled in the selected cycle. The width k×p of this 
fragment must satisfy the next equation: 
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being m×n (m≥n) the original multiplication width 

To avoid the high cost of solving this equation, our 
algorithm tries first the width of the already scheduled 
multiplications. If none of these operations widths solves 
the above equation, then it tries those fragmentations of 
the multiplication that produce two multiplication 
fragments (being one of the desired size) and one addition. 
Finally, if no solution is found, the algorithm transforms 
the selected operation to obtain two multiplication 
fragments whose sum of widths equals the desired 
fragment size. This is performed even when a possible 
fragmentation to obtain a fragment of the desired size 
exists.  In this case, the widths k×n and r×1 of the 
multiplications fragments are calculated using the next 
equation: 
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Once the width of the multiplication fragment is 

selected, among all the different ways of fragmenting the 
rest of the operation, only those which produce the 
minimum number of operation fragments are considered. 
The algorithm selects among them, the one which requires 
the least cost in adders and produces the maximum 
number of operations of the same width as other 
specification operations.  

After scheduling one multiplication fragment, some of 
the successors and predecessors of the scheduled 
operation must also be fragmented to avoid reductions in 
their mobilities. 

3. Experimental results 
The implementations obtained by our algorithm have 

been compared to those proposed by both Synopsys 
Behavioral Compiler, and the approach presented in [6].  

We have synthesized a wide collection of synthetic 
specifications formed by multiplications and additive 
operations. Specifications sizes range from 10 to 100 
operations (about 40% are multiplications), and latencies 
from 4 to 30 cycles. Circuit areas in the three cases are 
measured in number of equivalent gates (including FUs, 
storage and routing units, and controller). 

Our approach saves up to 70% in area compared to 
Synopsys and up to 40% compared to [6]. Figure 1 shows 
the average area of the implementations obtained by the 
three algorithms grouped by the number of specification 
operations. The amount of area saved by the algorithm 
grows, in general, with the number of different operation 
widths and types present in the specification.  

4. Conclusion 
This paper presents a heuristic scheduling algorithm to 

perform the high level synthesis of behavioural 
specifications. Big datapath area reductions are achieved 
by distributing uniformly the operation computational cost 
among cycles. In order to increase the FUs reuse the 
algorithm extracts the common operative kernel of 
specification operations.  

Experimental results show that the implementations 
obtained by our algorithm in combination with [5] have 
considerably smaller area than those proposed by other 
known approaches.  
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Fig.1. Average area of some implementations 
proposed by Synopsys, our approach, and [6]. 
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