
Behavioural Bitwise Scheduling Based on Computational Effort Balancing∗∗∗∗

M.C. Molina, R. Ruiz-Sautua, J.M. Mendías, R. Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
{cmolinap, mendias, rhermida}@dacya.ucm.es, rsautua@fdi.ucm.es

∗ This work has been supported by the Spanish Government under research grant CICYT TIC-2002/750

Abstract

Conventional synthesis algorithms schedule multiple
precision specifications by balancing the number of
operations of every different type and width executed per
cycle. However, totally balanced schedules are not always
possible and therefore some hardware waste appears. In
this paper a heuristic scheduling algorithm to minimize
this hardware waste is presented. It successively
transforms specification operations into sets of smaller
ones until the most uniform distribution of the
computational effort of operations among cycles is
reached. In the schedules proposed some operations are
executed during a set of non- consecutive cycles.

1. Introduction
In order to reduce the datapath area, conventional

scheduling algorithms try to balance the number of
operations of every different type executed per cycle [1],
and allocation ones try to maximize the reuse of datapath
hardware (HW) resources. When synthesizing mono
precision specifications (those formed by operations of
equal width), sometimes it is not possible to schedule the
same number of operations of every different type per
cycle. Thus, conventional allocation algorithms produce
implementations in which some functional units (FUs) are
unused during some cycles.

This HW waste is dramatically incremented when
multiple precision specifications (those formed by
operations of different widths) are synthesized using
conventional allocation algorithms [2-4]. In this case,
some datapath FUs are partially wasted due to the
allocation of some operations to wider FUs.

The scheduling algorithm in [6] transforms every
specification operation into additions, and afterwards
performs jointly their scheduling. In combination with bit-
level allocation algorithms [5], it produces datapaths with
a unique FU type (adders), and where all complex
operations have been fragmented into a set of simpler
ones. Thus unnecessary fragmentation occurs in most
cases. The proposed algorithm overcomes these

disadvantages by performing a selective transformation of
the specification operations. It minimizes HW waste by
balancing the computational effort of operations executed
per cycle, and produces substantial area reductions in
comparison to other known approaches.

2. Scheduling algorithm
In order to minimize the HW waste of the synthesized

circuits, the proposed algorithm assigns operations to
cycles trying to balance the computational effort of the
operations executed in every cycle. With this aim, it
successively transforms specification operations into sets
of simpler ones. The type and width of the new operations
may be different from those of the original one, and are
scheduled independently. In consequence, one
specification operation may be executed during a set of
non-consecutive cycles.

The algorithm is divided in the next three phases:
1) Kernel extraction.

To increase the number of operations which may share
one FU, the specification multiplicative and additive
operations are transformed into multiplications, additions,
and some glue logic [6]. And also, signed operations are
transformed into unsigned ones.
2) Multiplication scheduling

The algorithm selects for every multiplication a set of
cycles included in its mobility (set of cycles in which an
operation may start its execution). And it also fixes, for
those operations scheduled in several cycles, the exact
portion of every multiplication executed in each cycle.
3) Addition scheduling

The addition scheduling is performed using the
algorithm presented in [6]. It produces schedules with the
most uniform addition bits distribution among cycles
reachable in every case.

In order to produce implementations with smaller area
than those obtained by conventional synthesis algorithms,
the schedules proposed by our approach must be allocated
using bit-level allocation algorithms like [5]. They allow
the execution of one operation over several linked FUs,
whose types and widths may be different from the
specification operation.

1530-1591/04 $20.00 (c) 2004 IEEE

2.1. Multiplication scheduling
This scheduling algorithm is a variant of the classical

force-directed algorithm [1]. It takes into account
operations widths in order to reduce the datapath area due
to FUs either partially used, or unused during some cycles.

In every step of the algorithm, one multiplication and
one of its mobility cycles are selected, in accordance to a
redefinition of the force measure. The operation is then
scheduled if the assignment does not unbalance the most
uniform multiplication bits to cycles distribution reachable
at the moment. Otherwise, it is fragmented to obtain one
multiplication fragment of a certain size which will be
scheduled in the selected cycle. The width k×p of this
fragment must satisfy the next equation:

)()()(pksizenpmk ×=∧≤∧≤
being m×n (m≥n) the original multiplication width

To avoid the high cost of solving this equation, our
algorithm tries first the width of the already scheduled
multiplications. If none of these operations widths solves
the above equation, then it tries those fragmentations of
the multiplication that produce two multiplication
fragments (being one of the desired size) and one addition.
Finally, if no solution is found, the algorithm transforms
the selected operation to obtain two multiplication
fragments whose sum of widths equals the desired
fragment size. This is performed even when a possible
fragmentation to obtain a fragment of the desired size
exists. In this case, the widths k×n and r×1 of the
multiplications fragments are calculated using the next
equation:

() ()  () ()rnksizensizeknrmk +×=∧=∧≤∧≤)(/
Once the width of the multiplication fragment is

selected, among all the different ways of fragmenting the
rest of the operation, only those which produce the
minimum number of operation fragments are considered.
The algorithm selects among them, the one which requires
the least cost in adders and produces the maximum
number of operations of the same width as other
specification operations.

After scheduling one multiplication fragment, some of
the successors and predecessors of the scheduled
operation must also be fragmented to avoid reductions in
their mobilities.

3. Experimental results
The implementations obtained by our algorithm have

been compared to those proposed by both Synopsys
Behavioral Compiler, and the approach presented in [6].

We have synthesized a wide collection of synthetic
specifications formed by multiplications and additive
operations. Specifications sizes range from 10 to 100
operations (about 40% are multiplications), and latencies
from 4 to 30 cycles. Circuit areas in the three cases are
measured in number of equivalent gates (including FUs,
storage and routing units, and controller).

Our approach saves up to 70% in area compared to
Synopsys and up to 40% compared to [6]. Figure 1 shows
the average area of the implementations obtained by the
three algorithms grouped by the number of specification
operations. The amount of area saved by the algorithm
grows, in general, with the number of different operation
widths and types present in the specification.

4. Conclusion
This paper presents a heuristic scheduling algorithm to

perform the high level synthesis of behavioural
specifications. Big datapath area reductions are achieved
by distributing uniformly the operation computational cost
among cycles. In order to increase the FUs reuse the
algorithm extracts the common operative kernel of
specification operations.

Experimental results show that the implementations
obtained by our algorithm in combination with [5] have
considerably smaller area than those proposed by other
known approaches.

References

[1] P.G. Paulin, and J.P. Knight. “Force-Directed Scheduling for

the Behavioral Synthesis of ASICS”. IEEE Transactions on
CAD, 1989.

[2] G.A. Constantinides, P.Y.K. Cheung, and W.Luk, “Heuristic
datapath allocation for multiple wordlength systems”. In
Proceedings of DATE, 2001.

[3] M. Ercegovac, D. Kirovski, and M. Potkonjak, “Low-power
behavioural synthesis optimization using multiple precision
arithmetic”. In Proceedings of DAC, 1999.

[4] B. Landwehr, P. Marwedel, and R. Dömer, “OSCAR:
Optimum simultaneous scheduling, allocation and resource
binding based on integer programming”. In Proceedings of
EDAC, 1994.

[5] M.C. Molina, J.M. Mendías, and R. Hermida, “High-level
Allocation to Minimize Internal Hardware Wastage”. In
Proceedings of DATE, 2003.

[6] M.C. Molina, J.M. Mendías, and R. Hermida, “Bit-level
Scheduling of Heterogeneous Behavioural Specifications”.
In Proceedings of ICCAD, 2002.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Operations

A
re

a

Synopsys Our approach [6]

Fig.1. Average area of some implementations
proposed by Synopsys, our approach, and [6].

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

