
Co-processor Synthesis: A New Methodology for Embedded Software
Acceleration

Dr Ben Hounsell, Co-founder; Richard Taylor, CTO

Critical Blue Ltd, SMC, West Mains Road Edinburgh EH9 3JF, UK
ben.hounsell@criticalblue.com; richard.taylor@criticalblue.com

Abstract

This paper introduces co-processor synthesis – a
methodology that provides design benefits by implementing
hardware co-processors directly from embedded software.
The paper examines the design benefits in this new approach
vs behavioral synthesis and configurable processor
methodologies.

1. Introduction

Embedded microprocessors form the heart of today’s
electronic products, but frequently lack the processing
performance to support many of the functions design
engineers need to implement in software. As a result design
teams resort to implementing key functions as hardwired
accelerators, at the cost of discarding the inherent flexibility
afforded by a software implementation.

By incorporating the co-processor synthesis design
methodology (Figure 1) into the EDA tool flow, dedicated
co-processors can be synthesized to accelerate software tasks
that might otherwise require manual hardware design.

Figure 1. Cascade's Design Flow.

To ensure seamless integration with current EDA tools
and file formats, co-processor synthesis is implemented as a
point tool, Cascade, that sits above the current EDA flow.
Cascade is not bound to a particular design language or set of
third party tools as it operates on compiled executable code

targeted at the main processor. By extracting parallelism
from compiled object code Cascade leverages standard
embedded software languages such as C and C++, enabling
users to develop dedicated co-processors using their existing
software development environments.

2. Automatically Customized Co-processor
The Cascade methodology starts with the premise that

the execution time of an application is dominated by the
execution of a few key functions or loop kernels that
represent only a small percentage of the total application
code. The main processor is designed for general purpose
code execution and its hardware is not specialised for any
particular type of code. Typically, key functions and loops
will contain significant instruction level parallelism that can
be exploited by a processor with appropriate execution
resources. Even superscalar and VLIW based general purpose
processors can typically only exploit a limited quantity of the
parallelism available to the architecture.

The philosophy of co-processor synthesis is to analyse
compiled executable code, along with a detailed instruction
level trace captured by the tool, and map the software onto a
co-processor with the execution and connectivity resources
that reflect the code requirements. Whilst providing
significant instruction level parallelism, the co-processor is
relatively lightweight in its control logic overhead. The
Cascade tool is able to balance temporal and spatial
computation in the architecture depending on the inherent
code parallelism available and user constraints. Extracting
parallelism from code, either at an object or source level, but
the co-processor contains low overhead speculation
mechanisms to reduce the impact of serialisation caused by
memory address aliasing considerations.

The methodology does not attempt to replace the main
processor, thus minimising system design disruption and
allowing the co-processor to avoid much of the infrastructure
overhead of general purpose processors. Instead, the co-
processor is dedicated to a particular task, but with much of
the flexibility implied by a software implementation.

3. Co-processor synthesis design methodology
We implement the methodology in four steps. In the

first step the compiled application software is analyzed using
standard profiling tools. This process aids designers in

1530-1591/04 $20.00 (c) 2004 IEEE

identifying software functions that would benefit from
acceleration.

 Once the software functions are identified, Cascade
analyses their instruction code and automatically maps the
chosen functions onto a dedicated co-processor that has been
architected to extract the maximum parallelism. Analysis is
performed to extract both the control and data dependencies
between instructions. At the end of this second step
information is provided to the user about the estimated
performance of the co-processor. This includes estimations
of communication overhead with the main processor.

In the third step Cascade produces a cycle and bit
accurate C model of the co-processor designed in step 2. By
using the model in the context of a system level design
environment, the user is able to understand the implications
of offloading selected software functions within the context
of the overall design. Users are able to perform rapid “what
if” analysis with very quick turnaround.

Once satisfied with the co-processor’s performance, an
RTL form of the co-processor can be generated for
simulation and synthesis using standard EDA tools. In this
fourth and final step the co-processor microcode is generated.
Microcode can be generated independently of the co-
processor hardware, allowing new microcode to be targeted
at an existing co-processor design. The original executable is
modified automatically so that calls to the offloaded
functions are automatically vectored to a communications
library. This causes automatic handoff to the co-processor,
passing parameters and results automatically between the
processor systems.

4. Comparing design methodologies

Co-processor synthesis is based on the premise that
software targeted at the main processor will form the starting
point of any co-processor implementation; e.g. the less
modification of this software, the lower the design risk. This
is a divergence from the two most popular methodologies for
implementing acceleration blocks at a high level of
abstraction.

Behavioural Synthesis facilitates more rapid
development of dedicated hardware by using a higher level of
abstraction than RTL. Unfortunately, certain restrictions limit
the expressiveness of behavioural constructs relative to
mainstream software languages.

Behavioral synthesis tools generate hardware that is a
mapping of the designer’s description. As such the resulting
hardware is fixed and non-programmable. In many of today’s
products it is important that software reprogrammability is
provided within as many system functions as possible to
provide end product flexibility. This is vital in broadening the
chip’s potential application domains and extending the life of
the design.
 Configurable Processors provide an effective
design methodology that enables designers to add specific
instructions to meet the needs of demanding operations in a
given application. However, providing this flexibility

introduces new tools and hardware implementation languages
into the design process.

When used in the context of a co-processor, the
configurable processor methodology forces the developer to
deal with the complexities of multiple software development
environments and explicit communication between
independent processors. The alternative is to port the entire
software application from the original processor onto the
configurable microprocessor – a significant overhead when
only a small set of software functions require acceleration.

5. Interfacing with the main processor

Hardware developed through co-processor synthesis is
architected to communicate directly with the bus interface of
the main processor; for example AMBA or CoreConnect.
Issues of cache coherency between the processors are
handled within the communications libraries, supported by
specialized hardware within the co-processor. Thus the
communication between the main processor and the co-
processor is seamless to the user.

6. Derivative design

When looking to develop derivative products, processor
reuse is vital. This is especially true for design teams wishing
to add functionality to existing products where the main
microprocessor is already heavily loaded and does not have
sufficient remaining execution cycles to support new tasks.
In this context co-processor synthesis provides designers with
the opportunity to develop new functionality in software on
the main processor, with the knowledge that is can be
subsequently offloaded and accelerated through co-processor
synthesis.

7. Conclusion

The co-processor synthesis methodology presented
represents a step change in the ability for designers to
efficiently identify, offload and accelerate key software
functions within an application which requires software
flexibility, but also greater performance than can be provided
by the main processor. The approach is not bound to a
particular implementation language or set of third party
design tools. Instead, by statically extracting parallelism from
executable code existing software development environments
can be utilised and co-processor integration is seamless from
a software perspective. These benefits are unique to co-
processor synthesis, but remain limitations of the behavioural
synthesis and configurable processor design methodologies.
The benefits of co-processor synthesis have already been
demonstrated through a pilot project undertaken with ST
Microelectronics.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

