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1. Introduction

It is essential to formally ascertain whether the RTL val-
idation effort effectively guarantees the correctness with re-
spect to the design’s architectural intent. The design’s archi-
tectural intent can be expressed in formal properties. How-
ever, due to the capacity limitation of formal verification,
these architectural-properties cannot be directly verified on
the RTL. As a result, a set of lower level RTL-properties
are developed and verified against the RTL. In this paper
we present: (1) a method for checking whether the RTL-
properties are covering the architectural-properties, that is,
whether verifying the RTL-properties guarantee the correct-
ness of the design’s architectural intent, and (2) a method
to identify the coverage holes in terms of the architectural-
properties (or their sub-properties) that are not covered.

2. The notion of coverage

In our framework of reasoning, we assume that the archi-
tectural intent of a design, �, is given as a set of high level
temporal properties over a set of architectural level signals,
������. We shall denote the conjunction of these prop-
erties by �� (for a design �), and call them the architec-
ture spec or ASpec. We are also given a set of temporal RTL
module properties over the signals,�� ����, of the compo-
nent modules of the design �. These properties will collec-
tively be called the implementation spec or ISpec and will be
denoted by �� . In this paper we address the problem of de-
termining whether the ISpec covers the ASpec, and if not,
finding the coverage gaps.

Example 1 Let us consider the design of an arbiter that ar-
bitrates between two request lines �� and ��. Let the corre-
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sponding grant lines be �� and ��. Let one of the high level
design requirements be that the waiting time for any request
to be served should not exceed 2 cycles. We can express this
requirement as the following two properties in Linear Tem-
poral Logic (LTL) [1]:

��: �� ��� � ���� � ��� � ���� �
��: �� ��� � ���� � ��� � ���� �

The first property states that whenever �� is asserted in
two successive cycles (say �� and ����), �� must be asserted
in ���� or ����. The second property expresses a similar in-
tent for ��. The properties �� and �� belong to the ASpec.
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Figure 1. Sample design

Let us now consider an implementation of the arbiter
with an existing arbiter module ARB as shown in Fig 1.
The module ARB is known to satisfy the following proper-
ties:

��: �� �� � ��� �
��: �� ��� � ���� � ��� �

In other words, the module ARB gives �� higher priority
than ��. When �� is the sole request, then �� is asserted (in
the next cycle). The properties �� and �� belong to the IS-
pec. We also have the properties that map the ASpec to the
ISpec, namely:

��: �� ��� � ��� � ��� � ���
� ��� � ��� � ��� � ��� �
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Our primary coverage problem is to determine whether
��� � �� � ��� � ��� � ��� is a tautology. In this case, the
answer is negative. Consider the counter-example scenario
where both �� and �� are asserted for 2 consecutive cycles
(say �� and ����). The module ARB will assert only �� (and
hence, ��) in both ���� and ����, which will refute ��.

If the answer to our primary coverage problem is neg-
ative, then our secondary task is to identify the coverage
holes. There are two main challenges in this task. The first
is to find the coverage holes. The second is to present the
coverage holes to the designer in a meaningful and legible
way.

In this example, we can show by deduction that ��� �
��� � ��. Therefore the uncovered ASpec lies in ��. At
this point we can present �� to the designer and indicate
that the implementation fails to cover this property. How-
ever, we can do better. For example, consider the following
decomposition of ��:

���: �� ���� � ���� � ��� � ����� � ��� � ���� �
���: �� ���� � ���� � ���� � ����� � ��� � ���� �

It can be shown (by deduction) that ��� is covered by
��� � ���. Therefore the uncovered ASpec is in ���. Pre-
senting ��� to the designer indicates the uncovered ASpec
more accurately than presenting ��.

Since a temporal property can be decomposed in many
ways, the task of determining the weakest set of architec-
tural sub-properties that can accurately characterize the cov-
erage gap in a meaningful way is a non-trivial task. We have
solved the problem for a restricted, but rich fragment of
LTL. More detailed examples involving more than one com-
ponent modules has been presented in [2].

3. Formalization

The primary coverage question is to determine whether
the ISpec covers the ASpec. Not surprisingly, the answer to
this question follows from testing an appropriate logical im-
plication. The formal proofs of all results presented in this
paper are given in [2].

Theorem 1 The ISpec of a device D covers the ASpec iff
�� � �� is a tautology, where �� denotes the ISpec of D
and�� denotes the ASpec of D.

Definition 1 [Strong and weak properties]
A property �� is stronger than a property �� iff �� � ��
and �� �� ��. We also say that �� is weaker than ��.

Definition 2 [Uncovered ASpec]
An uncovered ASpec is a property 	� over ������, such
that ��� � 	�� � ��, and there exists no property
	�

�
over ������ such that 	�

�
is weaker than 	� and

��� �	�

�
� � ��. In other words, we find the weakest AS-

pec property that suffices to close the coverage hole.

4. Finding the Uncovered ASpec

Let us consider the following fragment of Linear Tem-
poral Logic [1]. The syntax of the logic is defined over a set
of atomic propositions �� . The proposed fragment is de-
fined by the following grammar:

Q: G( 
 )

: True � False � � 	 ��

� 

 � 
 � 
 � 
 � 
 � 
� 
 � X 


The semantics of these operators are standard [1]. We
have found that the AMBA AHB protocol and the PCI Bus
protocol properties can be modeled in this fragment of LTL,
which shows that the above fragment is in fact quite rich in
practice.

Theorem 2 If the ASpec and ISpec consists of Boolean
formulas, then the uncovered ASpec, 	� , is unique and
given by �	���� � ��, where �� is �� � 
�� , � �
������ � ������, and �	���� � �� is the universal
abstraction of �� with the set of propositions in Z, where Z
contains the set of atomic propositions that appear in the IS-
pec but not in the ASpec.

Lemma 1 If the ASpec, �� , consists of Boolean proper-
ties only, and 	� is the uncovered ASpec with respect to
the ISPec, ��, then the uncovered ASpec of ���� � with re-
spect to ���� � is unique and given by ��	� �.

Theorem 2 and Lemma 1 solve the coverage problem
for the above fragment of LTL without the X operator. For
properties having the X operator, we translate the property
into the following normal form.

Definition 3 [X-Normal form]
A property specified using the proposed fragment of LTL
is in X-normal form iff each � operator encloses a single
proposition from ��.

Lemma 2 Every property in the proposed fragment of LTL
can be specified in X-normal form.

We have developed a methodology of transforming this
logic to it’s Boolean equivalent and then returning the
Boolean coverage hole into the uncovered ASpec in our
logic. The details of this methodology is given in [2].
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