
Functional Level Power Analysis: An Efficient Approach for Modeling the
Power Consumption of Complex Processors

Johann Laurent, Nathalie Julien, Eric Senn, Eric Martin
LESTER Laboratory

South Brittany University, France
firstname.name@univ-ubs.fr

Abstract
 A high-level consumption estimation methodology and its
associated tool, SoftExplorer, are presented. The estimation
methodology uses a functional modeling of the processor
combined with a parametric model to allow the designer to
estimate the power consumption when the embedded software
is executed on the target. SoftExplorer uses as input the
assembly code generated by the compiler; its efficiency is
compared to SimplePower’s approach. Results for different
processors (TI C62, C67, C55 and ARM7) and for several
DSP applications provide an average error less than 5%.

1. Introduction

The Systems-On-Chip must respect critical constraints in
time, area and consumption; therefore the designer need to
validate his choices early in the flow, and has to characterize
the system improvements through accurate estimates. As the
software part is growing in the applications, its impact on the
consumption is also becoming more important. Although many
researches have developed methodologies to estimate the
software consumption, few of these are associated with an
estimation tool. Some tools use a fine-grain representation of
the processor to obtain a cycle-accurate estimation: for
example SimplePower [1] need a RTL representation of the
architecture to allow the power characterization. This low-
level modeling often implies that the time required to
characterize a processor and to estimate an application
becomes too important to give an efficient feedback in system
design. Another method, the Instruction Level Power Analysis
(ILPA) consists in estimating the cost of each instruction of
the assembly code [2]; the estimation time is strongly reduced
but elaborating the processor model can be very time
consuming for complex processors. JouleTrack is the only
known tool based on this approach [3]. We propose here to
increase the abstraction level, by combining a functional level
model of the processor requiring only a coarse-grain
knowledge on its architecture and a parametrical model of the
code; the aim is to obtain a good tradeoff between the
estimation accuracy and the model complexity.

2. Functional Level Power Analysis

To estimate the power/energy consumption of an
application executed on a processor, we first need to realize
the power characterization of the target. The Functional Level
Power Analysis (FLPA) methodology can be started from only
a simple block diagram of the architecture. As sketched on Fig.
1, the first step consists in dividing the processor architecture
into different functional blocks and sub-blocks, to cluster the
components that are concurrently activated when a code is
running.

Figure 1. Processor Modeling Methodology

Then, the relevant consumption parameters are selected
as the significant links between these blocks. There are two
types of parameter: algorithmic parameter values depend on
the executed algorithm (typically the cache miss rate) and
architectural parameter values depend on the processor
configuration settled by the designer (typically the clock
frequency).

P ?

Algorithmic
parameters
Architectural
parameters

P = f(parameters)

1. Functional Level Power Analysis

Block 1 Block 2

Block 3

2. Characterization

ITOTAL

3. Consumption laws determination

Algorithmic
parameters

Architectural
parameters

Scenario:
α = 0 … 1

Configuration:
F = 20 … 200 MHz

α

α

ITOTAL
F1 F2

F3

Processor Model

Processor

Block 1 Block 2

Block 3

Processor

Block 1 stimulated

1530-1591/04 $20.00 (c) 2004 IEEE

The second step is the characterization of the
processor power consumption when the parameters vary.
These variations are obtained by using some elementary
assembly programs (called scenario) elaborated to stimulate
each block or sub-block separately. Characterization can be
performed either by measurements or by simulation; for our
part, the supply current is measured on evaluation boards.
Finally, a curve fitting of the graphical representation
allows determining the consumption laws by regression.
More information about our methode can be found in [4].
Table 1 presents the SoftExplorer power estimation results
in Watt and the associated error between the physical
measures and the estimates. For more details, this tool will
be in demonstration at the DATE’04 University Booth.

Table 1. SoftExplorer power estimation results

PROCESSORS

C55 C62 C67 ARM7

P (W) 0.39 3.83 0.9 0.22
DWT

Error +2.3% +2% +6% +7%

P (W) 0.43 2.62 0.95 0.22
EFR

Error +2.1% -0.6% -1% +3%

P (W) 0.4 5.59 0.93 0.22
MPEG-1

Error -1.6% -4% 2.4% +8%

Maximum Error 2.3% -4% 6% +8%

3. SoftExplorer/SimplePower Comparison

We will compare the efficiency of our method with the
SimplePower’s approach on the SPEC-95 benchmarks
(provided with SimplePower) and on other signal-processing
applications.

SimplePower has been executed on a Ultra Sparc III+
(900MHz, 1Go of RAM) and SoftExplorer on a PC (Athlon
1GHz, 256Mo of RAM); a first computer benchmarking has
been achieved to confirm that the workstation is always faster
than the PC for every type of application.

Afterwards, power estimation has been performed on
SPEC-95 benchmarks and typical signal and image processing
applications (DSP) with both SimplePower and SoftExplorer.
As the modeled processors are different (a modified MIPS-IV
for SimplePower and TI C62, C67, C55 and ARM7 for
SoftExplorer), it is not relevant to compare the estimates.
Nevertheless, another indicator of the tool efficiency is the
estimation time, corresponding to the total time necessary to
compile, to profile and to estimate the benchmark
consumption; results are proposed in Table 2.

SoftExplorer realizes a static trace of the application
whereas SimplePower realizes a dynamic trace, increasing the
estimation time when the execution time is high. Furthermore,
it provides to the designer a more detailed information, cycle
by cycle, allowing fine-grain code optimizations. Therefore,
SoftExplorer is a power estimation tool intended to the system

design assistance; it realizes the suitable tradeoff between the
estimation accuracy and time in order to ensure a rapid and
reliable feedback to the designer.

Table 2. SimplePower/SoftExplorer estimation time

SimplePower SoftExplorer

Bubble 35s 4s

Matmult 1s 2s

Perm 67s 4s

SP
E

C
-9

5

Quick 6s 3s

FFT 1024 17s 3s

LMS 1024 24728s 4s

DWT 512x512 142267s 10sD
S

P

MPEG-1 10s 8s

4. Conclusion

A high-level estimation methodology and the associated
tool SoftExplorer have been presented. The processor is
modeled through a functional analysis and the software model
is parametric: algorithmic parameters, depending on the code
execution, are determined by the estimation process. The
average error of the SoftExplorer results against the physical
measurements is about 2.4% (except for the ARM7 with 5%).
The accuracy and the rapidity of the tool make it convenient to
give metrics in the Co-Design step, to choose both the target
and the suitable algorithm and to return to the designer a
reliable indication about algorithm optimizations. Future
works will add other processor models to our library and
further comparisons will be performed with existing tools and
methods.

5. References

[1]W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin “The
Design and Use of SimplePower: A Cycle Accurate Energy
Estimation Tool,” in Proc. Design Automation Conf., June
2000, pp. 340-345.

 [2] V. Tiwari, S. Malik, A. Wolfe “Power analysis of
embedded software: afirst step towards software power
minimization.” IEEE Trans. on VLSI Systems, vol.2, N°4, Dec
1994, pp. 591-593.

 [3] A. Sinha, A. P. Chandrakasan "JouleTrack - A Web Based
Tool for Software Energy Profiling", in Proc. DAC, June
2001, p220

 [4] N. Julien, J. Laurent, E. Senn, E. Martin “Power Consumption
Modeling and Characterization of the TI C6201”, in IEEE
Micro Sept/Oct 2003, p40.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

