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Abstract 
Microprocessors have been used in wide-ranged 

applications. During the execution of instructions, instruction 
decoding is a major task for identifying instructions and 
generating control signals for data-paths. By exploiting program 
behaviors, we propose a novel instruction-decoding approach for 
power minimization. Using the proposed instruction-decoding 
structure, we present a partitioning method that decomposes the 
instruction-decoding circuit into two sub-circuits according to 
the execution frequencies of instructions. Using our proposed 
decoding structure, only one sub-circuit will be activated when 
executing an instruction. Experimental results have demonstrated 
that our proposed approach achieves on an average of 26.71% 
and 15.69% power reductions for the instruction decoder and the 
control unit, respectively. 
1. Introduction 

Figure 1 illustrates the profiling result of the instruction 
execution-frequency by executing the benchmark set of 
Motorola’s Powerstone that contains a set of benchmark 
programs targeted to various applications. Figure 1 shows that 
the three instructions in the MOV class have been executed very 
frequently (22%), while some instructions have never been 
executed. This observation shows that active instructions occur 
only within a sub-set of all instructions. Intuitively, we can 
partition the instruction-decoding circuit into two sub-circuits, 
one for the three MOV instructions and the other for the rest of 
the instructions. In this case, we can turn off one 
instruction-decoding sub-circuit while executing the other one 
and hence reduce the overall power dissipation.  

Figure 1: An instruction execution-frequency example. 
2. The Decomposed-Decoder Model 

In this section, we present our proposed 
decomposed-decoder model. In section 2.1, we describe the 
instruction-decoding method. In section 2.2, we present the 
low-power decoding architecture. 
2.1. Insertion of Intermediate Code 

One approach to decode instructions is to decode 
instructions just in time. That is, the control signals are decoded 
only when they are needed in the next pipeline stage. Instead of 
decoding all the control signals and propagating them along the 
pipeline, the instruction information is carried along. However, 
the instruction opcodes are not in the same position for different 
instruction class of processors. Take the ARM7tdmi instruction 
set as an example, we need to store 16 bits to identify the whole 
set. Since there are only 142 instructions, we need only 8 bits to 
represent all instruction types. Therefore, at decoding stage, 
when an instruction type is identified, an intermediate code is 

introduced to represent the specific instruction. Figure 2(a) shows 
the block diagram at the decoding stage, where an instruction is 
decoded by the Instr-Decoder (ID) and the output is an 
intermediate code. The generated intermediate code is used to 
generate control signals for the decoding stage and the next 
execution stages. The intermediate code is stored in the 
Instruction State Registers (ISR), which will be used to control 
the rest of pipelined stages.  

Figure 2: The block diagram of a control path (a) decoder at 
decoding stages (b) decoder at other execution stages. 
2.2. Decomposition Model for Low Power 

 
Figure 3: The decomposed-decoder model. 

As discussed in Section 1, active instructions occur only 
within a subset of all instructions. Based on this observation, we 
propose a decomposed-decoding method that decomposes an 
instruction decoder into a number of coupled sub-decoders. 
Figure 3 shows that the decoder is decomposed into two coupled 
sub-decoders where the Instr-Decoder is decomposed into 
I-Decoder0 and I-Decoder1. At any moment, only one 
sub-decoder is active. The control logic to turn on/off 
sub-decoders consists of Activate-Control, input AND-ORs, and 
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output ORs. I-Activate-Control determines which sub-decoder is 
activated by decoding the input instruction. There are two output 
signals, I-Control0 and I-Control1. When I-Control0 = 0, 
I-Decoder0 is on and I-Decoder1 is off; when I-Control1 = 0, 
I-Decoder1 is on and I-Decoder0 is off. 

The next question is how to construct AND-OR gates in 
front of the sub I-Decoders to inhibit the propagation of inputs. It 
is constructed by selecting a minterm that is don’t care to the 
sub-circuit. For example, for a four-input sub-circuit with 1101 as 
don’t care, we construct OR-OR-AND-OR gates in front of the 
sub-circuit. For this input combination 1101, we assign the 
output of the sub-circuit all 0’s. We can decompose the 
Signal-Decoder in the same way. 

The questions remained to be solved are (1) how to 
decompose the decoder so that the instruction decoding has a 
high probability to be executed in a sub-circuit? (2) How to take 
the overhead of I-Activate Control for Instr-Decoder (decoder 
that determines the active sub I-Decoders) into consideration 
when performing the decomposition? 
3. Decomposition of Decoder 
In this section we present the decoder-decomposition method. In 
Section 3.1, we discuss how to decompose the Instr-Decoder. In 
Section 3.2, we present the decomposition method for the 
Signal-Decoder. 
3.1. Decomposition of Instr-Decoder 

We propose a method to use only one bit to partition all 
instructions. First, for the first bit of the instruction opcode, we 
sum up the execution frequencies of instructions with 0 and 1 
value of the bit, respectively. We repeat the computations for all 
bits in the instruction opcode. Then, we select the bit that has the 
most un-even summation of instruction-execution frequency for 
0 and 1 value. For example, we consider to partition instruction 
using two bits, bit 27 or bit 26. If bit 27 is selected to partition 
instructions, instructions with bit 27 = 0 are assigned to group0 
and the others to group1. By summing each execution probability 
in each group, Figure 4(a) shows the result of selecting bit 27 as 
the partition bit. The bit 27 will be assigned to 0 and 1 for the 
instructions with the execution probabilities of 80% and 20%, 
respectively.  On the other hand, if bit 26 is used, the bit will be 
assigned to 0 and 1 for the instructions with the execution 
probabilities of 90% and 10%, as shown in Figure 4(b). We can 
implement this instruction partitioning approach simply using an 
inverter in the I-Activate Control circuit.  

 
Figure 4: An example of partitioning-bit selection. 

3.2. Decomposition of Signal-Decoder 
In this section, we present the Signal-Decoder decomposition 
method that consists of two steps: (1) initial partitioning and (2) 
iterative improvement. In the first step, based on the instruction 
execution frequency, we partition instructions into two groups. 
Instructions with execution frequency higher than a probability 
are assigned to group0 (highly active sub-circuit) and instructions 
with execution frequency lower than the probability to group1. 

In the second step, we iteratively move instructions 
between groups to improve the execution probabilities. We first 

define the dominance relations of two instructions. We define 
that instruction I1 dominates instruction I2, if for all output 
signals Oi, Oi of I2 is 1 if Oi of I1 is 1. Our iterative improvement 
procedure performs as follows. For each instruction in group0, 
we check whether there is an instruction in group1 that can be 
dominated by it. If there is one, we move this instruction form 
group1 to group0. 
4. Experimental Results 
We compared the power dissipation using the original control 
circuit and our proposed control circuit targeted to Powerstone 
benchmark set. The circuits are described in Verilog. The final 
circuits were generated by the Synopsys Design Compiler using 
the TSMC 0.25um cell library. The area data of control circuits 
were reported by Design Compiler with report_area. 

Table 2 shows the area comparison on the program set 
when selecting 0.01 as partitioning probability.. The area of 
partitioned circuit is the sum of the areas of activated controls, 
turn-on/off control logics and sub-decoders. The areas of the 
partitioned decoding circuits are 11.7% larger than the original 
decoding circuit. Let the area of the rest of control unit be α. 
C_Original and C_Partitioned are computed as α + D_Original 
and α + D_Partitioned, respectively. Our decoding structure can 
also improve the critical path timing of instruction decoding and 
control-signal generation with small area overheads. 
Table 1: Area overhead of partitioned decoder (in decoding circuit 
control unit) compared to the original processor. (OH presents 
overhead.) 

D_OriginalC_OriginalD_Partitioned OH C_Partitioned OH
Area 30387 65975 33942 11.7% 70138 6.31%

We evaluated the effectiveness of power reduction on the 
Powerstone benchmarking set using our proposed instruction 
decoding method. We used Synopsys PrimePower to compute the 
power dissipation (both dynamic and leakage power dissipation). 
These programs are simulated with our ARM Verilog code at the 
speed of 20MHz. Then the switching activities are fed into 
PrimePower to calculate power consumption. Table 3 shows the 
average results on the program set when selecting 0.01 as 
partitioning probability. The results show that our proposed 
instruction-decoding method achieves on an average of 26.71% 
in power reduction compared to the original instruction decoder 
and 15.69% improvement on the control unit after applying our 
decoding structure. 
Table 2: Power comparisons on the Powerstone set. (In the table, ID 
denotes the instruction decoder, CU the control unit and Imp the 
improvement.) 

Original After partitioned Bench
ID(W) CU(W) ID(W) Imp(%) CU(W) Imp(%)

average 4.15E-4 1.03E-3 3.04E-4 26.71 8.69E-4 15.69
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