
Decomposition of Instruction Decoder for Low Power Design
Wu-An Kuo, TingTing Hwang, and Allen C.-H. Wu

Computer Science Department, Tsing Hua University, Hsin-Chu, Taiwan 30043

Abstract
Microprocessors have been used in wide-ranged

applications. During the execution of instructions, instruction
decoding is a major task for identifying instructions and
generating control signals for data-paths. By exploiting program
behaviors, we propose a novel instruction-decoding approach for
power minimization. Using the proposed instruction-decoding
structure, we present a partitioning method that decomposes the
instruction-decoding circuit into two sub-circuits according to
the execution frequencies of instructions. Using our proposed
decoding structure, only one sub-circuit will be activated when
executing an instruction. Experimental results have demonstrated
that our proposed approach achieves on an average of 26.71%
and 15.69% power reductions for the instruction decoder and the
control unit, respectively.
1. Introduction

Figure 1 illustrates the profiling result of the instruction
execution-frequency by executing the benchmark set of
Motorola’s Powerstone that contains a set of benchmark
programs targeted to various applications. Figure 1 shows that
the three instructions in the MOV class have been executed very
frequently (22%), while some instructions have never been
executed. This observation shows that active instructions occur
only within a sub-set of all instructions. Intuitively, we can
partition the instruction-decoding circuit into two sub-circuits,
one for the three MOV instructions and the other for the rest of
the instructions. In this case, we can turn off one
instruction-decoding sub-circuit while executing the other one
and hence reduce the overall power dissipation.

Figure 1: An instruction execution-frequency example.
2. The Decomposed-Decoder Model

In this section, we present our proposed
decomposed-decoder model. In section 2.1, we describe the
instruction-decoding method. In section 2.2, we present the
low-power decoding architecture.
2.1. Insertion of Intermediate Code

One approach to decode instructions is to decode
instructions just in time. That is, the control signals are decoded
only when they are needed in the next pipeline stage. Instead of
decoding all the control signals and propagating them along the
pipeline, the instruction information is carried along. However,
the instruction opcodes are not in the same position for different
instruction class of processors. Take the ARM7tdmi instruction
set as an example, we need to store 16 bits to identify the whole
set. Since there are only 142 instructions, we need only 8 bits to
represent all instruction types. Therefore, at decoding stage,
when an instruction type is identified, an intermediate code is

introduced to represent the specific instruction. Figure 2(a) shows
the block diagram at the decoding stage, where an instruction is
decoded by the Instr-Decoder (ID) and the output is an
intermediate code. The generated intermediate code is used to
generate control signals for the decoding stage and the next
execution stages. The intermediate code is stored in the
Instruction State Registers (ISR), which will be used to control
the rest of pipelined stages.

Figure 2: The block diagram of a control path (a) decoder at
decoding stages (b) decoder at other execution stages.
2.2. Decomposition Model for Low Power

Figure 3: The decomposed-decoder model.

As discussed in Section 1, active instructions occur only
within a subset of all instructions. Based on this observation, we
propose a decomposed-decoding method that decomposes an
instruction decoder into a number of coupled sub-decoders.
Figure 3 shows that the decoder is decomposed into two coupled
sub-decoders where the Instr-Decoder is decomposed into
I-Decoder0 and I-Decoder1. At any moment, only one
sub-decoder is active. The control logic to turn on/off
sub-decoders consists of Activate-Control, input AND-ORs, and

1530-1591/04 $20.00 (c) 2004 IEEE

output ORs. I-Activate-Control determines which sub-decoder is
activated by decoding the input instruction. There are two output
signals, I-Control0 and I-Control1. When I-Control0 = 0,
I-Decoder0 is on and I-Decoder1 is off; when I-Control1 = 0,
I-Decoder1 is on and I-Decoder0 is off.

The next question is how to construct AND-OR gates in
front of the sub I-Decoders to inhibit the propagation of inputs. It
is constructed by selecting a minterm that is don’t care to the
sub-circuit. For example, for a four-input sub-circuit with 1101 as
don’t care, we construct OR-OR-AND-OR gates in front of the
sub-circuit. For this input combination 1101, we assign the
output of the sub-circuit all 0’s. We can decompose the
Signal-Decoder in the same way.

The questions remained to be solved are (1) how to
decompose the decoder so that the instruction decoding has a
high probability to be executed in a sub-circuit? (2) How to take
the overhead of I-Activate Control for Instr-Decoder (decoder
that determines the active sub I-Decoders) into consideration
when performing the decomposition?
3. Decomposition of Decoder
In this section we present the decoder-decomposition method. In
Section 3.1, we discuss how to decompose the Instr-Decoder. In
Section 3.2, we present the decomposition method for the
Signal-Decoder.
3.1. Decomposition of Instr-Decoder

We propose a method to use only one bit to partition all
instructions. First, for the first bit of the instruction opcode, we
sum up the execution frequencies of instructions with 0 and 1
value of the bit, respectively. We repeat the computations for all
bits in the instruction opcode. Then, we select the bit that has the
most un-even summation of instruction-execution frequency for
0 and 1 value. For example, we consider to partition instruction
using two bits, bit 27 or bit 26. If bit 27 is selected to partition
instructions, instructions with bit 27 = 0 are assigned to group0
and the others to group1. By summing each execution probability
in each group, Figure 4(a) shows the result of selecting bit 27 as
the partition bit. The bit 27 will be assigned to 0 and 1 for the
instructions with the execution probabilities of 80% and 20%,
respectively. On the other hand, if bit 26 is used, the bit will be
assigned to 0 and 1 for the instructions with the execution
probabilities of 90% and 10%, as shown in Figure 4(b). We can
implement this instruction partitioning approach simply using an
inverter in the I-Activate Control circuit.

Figure 4: An example of partitioning-bit selection.

3.2. Decomposition of Signal-Decoder
In this section, we present the Signal-Decoder decomposition
method that consists of two steps: (1) initial partitioning and (2)
iterative improvement. In the first step, based on the instruction
execution frequency, we partition instructions into two groups.
Instructions with execution frequency higher than a probability
are assigned to group0 (highly active sub-circuit) and instructions
with execution frequency lower than the probability to group1.

In the second step, we iteratively move instructions
between groups to improve the execution probabilities. We first

define the dominance relations of two instructions. We define
that instruction I1 dominates instruction I2, if for all output
signals Oi, Oi of I2 is 1 if Oi of I1 is 1. Our iterative improvement
procedure performs as follows. For each instruction in group0,
we check whether there is an instruction in group1 that can be
dominated by it. If there is one, we move this instruction form
group1 to group0.
4. Experimental Results
We compared the power dissipation using the original control
circuit and our proposed control circuit targeted to Powerstone
benchmark set. The circuits are described in Verilog. The final
circuits were generated by the Synopsys Design Compiler using
the TSMC 0.25um cell library. The area data of control circuits
were reported by Design Compiler with report_area.

Table 2 shows the area comparison on the program set
when selecting 0.01 as partitioning probability.. The area of
partitioned circuit is the sum of the areas of activated controls,
turn-on/off control logics and sub-decoders. The areas of the
partitioned decoding circuits are 11.7% larger than the original
decoding circuit. Let the area of the rest of control unit be α.
C_Original and C_Partitioned are computed as α + D_Original
and α + D_Partitioned, respectively. Our decoding structure can
also improve the critical path timing of instruction decoding and
control-signal generation with small area overheads.
Table 1: Area overhead of partitioned decoder (in decoding circuit
control unit) compared to the original processor. (OH presents
overhead.)

D_OriginalC_OriginalD_Partitioned OH C_Partitioned OH
Area 30387 65975 33942 11.7% 70138 6.31%

We evaluated the effectiveness of power reduction on the
Powerstone benchmarking set using our proposed instruction
decoding method. We used Synopsys PrimePower to compute the
power dissipation (both dynamic and leakage power dissipation).
These programs are simulated with our ARM Verilog code at the
speed of 20MHz. Then the switching activities are fed into
PrimePower to calculate power consumption. Table 3 shows the
average results on the program set when selecting 0.01 as
partitioning probability. The results show that our proposed
instruction-decoding method achieves on an average of 26.71%
in power reduction compared to the original instruction decoder
and 15.69% improvement on the control unit after applying our
decoding structure.
Table 2: Power comparisons on the Powerstone set. (In the table, ID
denotes the instruction decoder, CU the control unit and Imp the
improvement.)

Original After partitioned Bench
ID(W) CU(W) ID(W) Imp(%) CU(W) Imp(%)

average 4.15E-4 1.03E-3 3.04E-4 26.71 8.69E-4 15.69
References
[1] Kalambur, A. and M. J. Irwin, “An Extended Addressing

Mode for Low Power”, Int. Symp. On Low Power
Electronics and Design, 1997.

[2] Alidina, M., Monteiro, J., Devadas, S., Ghosh, A., and
Papaefthymiou, M., “Precomputation-based sequential
Logic Optimization for Low Power”, Proceedings of
ICCAD-94, pp. 74-81, 1994.

[3] R. S. Bajwa, M. Hiraki, G. Kojima, D. J. Gorny, K. Nitta,
A. Shridhar, K. Seki, and K. Sasaki, “Instruction buffering
to reduce power in processors for signal processing”, IEEE
Transactions on VLSI, vol.5 no.4, pp. 417-424, 1997.

[4] Intel, ”PentiumPro Family Developer’s Manual Volume 2:
Programmer’s Reference Manual”, December 1995.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

