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Abstract* 
 

In this paper, we propose a novel time-domain based 
method, Discrete Singular Convolution algorithm, for 
computing steady-state response in nonlinear circuit. 
Properties and advantages of Discrete Singular 
Convolution method are discussed, compared with some 
other approaches.  The accuracy and efficiency of this 
method are tested by the numerical experiments.   

  

1 Introduction 
 

A main difficulty to get the steady-state response in 
nonlinear circuit simulation is that the transient response 
may take a very long time before the circuit reach the 
steady state. The traditional simulation method to get the 
steady-state response has to take an extraordinary 
computing time throughout the transient regime. 

A lot of time-domain and frequency-domain methods 
have been proposed to solve the periodic steady-state 
problem [1]-[7]. Time-domain based method that have 
been proposed include shooting methods [2], [3] and 
wavelet-balance method [7]. Frequency-domain based 
methods that have been proposed include harmonic 
methods and their modifications [1], [6]. The shooting 
methods iteratively simulate the circuit over one period 
intervals in order to find initial conditions, which makes the 
signals at the end of the period exactly match those at the 
beginning, i.e., let the circuit start directly in steady state. 
However, the shooting methods require to integrate the 

                                                                 
* This research is supported by NSF CCR-0098275, CCR-0306298, NSFC 

90307017, 60176017, 90207002, Synopsys Inc., Cross-Century 
Outstanding Scholar’s fund of Ministry of Education of China, National 
863 plan projects 2002AA1Z1340 and 2002AA1Z1460, doctoral 
program foundation of Ministry of Education of China 2000024628, 
Science & Technology key project of Ministry of Education of China 
02095, Shanghai Science and Technology committee project 01JC14014 
and Shanghai AM R&D fund 0107. 

equations repeatedly, which costs substantial computation 
time. The harmonic balance methods expand the unknown 
variables in the circuits by Fourier series. In order to 
achieve an accurate solution, it needs many harmonic 
components. During the implementation of harmonic 
method, it has to execute DFT and IDFT repeatedly. So 
they also consume a lot computing time. [4], [5] present 
approaches that based on harmonic method, but formulate 
the system equations in the time domain, which avoid 
repeatedly executing DFT and IDFT.   The wavelet balance 
method assumes the solutions in terms of wavelet series 
instead of Fourier series. 

Recently, A discrete singular convolution (DSC) 
method [9], [10], [11] has been proposed and considered as 
potential method to solve partial differential equations. It 
has been applied to many scientific and engineering 
problems, such as electromagnetic problems [11] and 
quantum eigenvalue problems [10]. However, using DSC 
method to find the steady state response in nonlinear circuit 
has not been explored. In this paper, we propose a time-
domain DSC method to solve the steady state response 
problem in nonlinear circuit. A regularized Shannon’s 
kernel is used during the implementation of DSC method, 
which dramatically decreases the truncation error. 
Comparing with other approaches, DSC method has several 
advantages, such as controllable accuracy and 
computational bandwidths for numerical computations by 
choosing the different computational parameters. 

The rest of the paper is organized as follows. Section 
II introduces discrete singular convolution method and how 
to find the steady state response using DSC. Section III 
shows the numerical experiment and results. Section IV 
draws the conclusions. 

2 Steady-State Analysis With DSC Method 
 

2.1 Principle of Steady-State Analysis Using DSC 
Method 
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Consider the nonlinear system that is described by an 
ordinary differential equation as following: 
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where )),(( ttxf  is the given nonlinear vector function 
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T]  which are L 

unknown variables. 

According to Shannon’s sampling theorem, a 2L  
continuous function with maximum frequency 
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Note that )( kih tt −δ = 0 when ki ≠  and equals 1 when 

ki = . The interpolative property makes the computation 
simple and accurate. 

Truncating the infinite series in (2) to a finite series of 
M terms, a function and its nth derivatives can be 
approximated: 
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In our DSC method, we use a regularized Shannon’s kernel 
instead of normal Shannon’s kernel (3): 
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The regularized kernel is a more compactly supported 
kernel, where [ h  = NT / ] is the grid spacing, T is the 
total simulation domain, which is also the steady state 
response period. N  is the total number of collocation 
sample points, which is another parameter that can be 
chosen according to accuracy requirement.  h should be set 

small enough so that Bh >)/(π , where B  is the highest 
frequency that can be reached in the Fourier representation 
among all the observed variables in computational domain. 
2 M  + 1 is the computational bandwidth, M  can be 
chosen accordingly, which depends on the accuracy 
requirement. rh=σ , where r  is another parameter in 
computation, which normally can be chosen by practical 
experiments. kt = kh .  The truncation error can be 
dramatically reduced by using regularized Shannon’s kernel. 
Estimation of the truncation error is given in [8], which 
provides a guide of how to choose M , σ  and h . For n = 
0 in the equation (4), if 2L norm error is set to λ−10 , the 
following equations are deduced: 

λπ 61.4)( >− Bhr         (7a) 

λ61.4)/( >rM    (7b) 

Note that the regularized Shannon’s kernel retains the 
interpolation property, which also simplifies the 
computation. 

Notice in (4) that in order to find out the value of 
)(tx near the boundary of the computational domain, we 

have to fake points )( ktx  which are outside of the domain. 

The values of )( ktx are determined according to the 
boundary conditions. For example, in a computational 
domain ],[ ba , if )(tx  at boundary point )(ax and )(bx  

are known, the )( ktx located on the left of point a  can be 

considered as )(ax  and )( ktx  located on the right of the 

point b  can be considered as )(bx . For the periodic 

boundary condition, the )( ktx  can be generated by 
expanding the correspondent points inside the 
computational domain. 

Now plug the equation (4) into the equation (1) and 
use the regularized kernel to replace Shannon’s kernel and 
let 1=n , for each variable )(txl : 
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At each point it , the equation (8a) should be satisfied, then 
we have:  
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and equals 0 when ki = . So the equation (8b) become 
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In a non-autonomous circuit, the steady state response 
period T is known, the total unknown variables )( kl tx  are 

LN × , the total independent algebraic equations in (10) 
are also LN × , so (10) can be solved using Newton’s 
method. 

For an autonomous circuit, the steady state response 
period T is an unknown variable, which make the total 
number of unknown variables in (10) equal LN × + 1. 
Since the total independent algebraic equations in (10) are 

LN × , we add the following equation into (10), which 
also enhance the periodic boundary condition in DSC 
method. 
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Therefore, the total number of variables and independent 
algebraic equations are all LN × + 1, and we can also use 
Newton’s method to solve it. After the coefficients )( kl tx  
are found, computation is end because they are exactly the 
values of variables we want to solve. 

2.2 Advantages Of DSC 
 

First, the DSC method works at time domain, it can 
efficiently handle some problems, such as nonlinearity, 
which is difficult to deal with by using frequency domain 
based approaches. 

Second, truncation errors in DSC method can be 
estimated by choosing different values of M, r,σ  and h  
[8], so it has a controllable accuracy and computational 

bandwidth. For a high accuracy requirement computation, a 
bigger M can be chosen while for a fast requirement 
computation, a smaller M can be chosen. 

Third, according to the interpolation property of the 
kernel used in DSC, the expansion coefficients are the 
values of solutions we want, therefore, no additional 
computation is needed after we get the coefficients. 

Fourth, for non-autonomous nonlinear circuit steady 
state response, the periodic boundary condition is 
automatically included in the computation by expanding 
the correspondent points inside the simulation domain. 
Therefore, no additional computation is needed to deal with 
the boundary condition. 

Fifth, A regularized Shannon’s kernel is used in DSC 
method, which dramatically lessen the truncation error, i.e., 
A smaller M can be used to reach the same accuracy by 
using regularized Shannon’s kernel compare to using 
normal Shannon’s kernel.   

3 Numerical Results 
 

In this section, we use two nonlinear circuits as 
examples to show the effectiveness of DSC method. The 
examples are simulated on AMD-900M PC with 128M 
memory. 

 
3.1 Van Der Pol Oscillator 
 

 
  Figure1. Schematic of Van der Pol oscillator, where F(x2) = 
5(x2-x2

3/3). 

 
Figure 1. shows a nonlinear Van der Pol oscillator, 

which is a simple nonlinear circuit, yet services well to test 
different algorithms [3], [4], [5], [7] for autonomous 
circuits. 2x  is the voltage across capacitor and 1x is the 
current across the inductor. The Van der Pol equations are: 
 21 / xdtdx =      (12a) 

 1
3

222 )3/(5/ xxxdtdx −−=    (12b) 
Simulations are conducted with different combinations of 
computation parameters: M, the parameter controlling the 
computation depth and accuracy; N, total sampling points 
and r.  



 
Figure. 2 Waveform of x2 using 13 points, where M = 6, N = 13, 
r = 1.5 and T = 11.222s 
 
Figure 2 shows the experiment result with M = 6, N = 13 
and r = 1.5. The steady state response period T = 11.222s. 
The accuracy of T is much better than that generated with 
15 points in [5]. Figure 3 shows the result with M = 25, N 
= 51 and r = 10. We get the T equals 11.589 seconds. The 
result is also much better than what was presented in [5] 
with 60 sample points. Taking advantage of the 
convenience of DSC method, we can increase M to get 
more accuracy result without adding more sample points, 
we get T = 11.619s with M = 30, N = 25 and r = 10. This 
result is almost same as the result presented with 240 
sample points in [5], and is better than the result presented 
in [7] with 63 basis functions. We can say that, with much 
fewer sampling points, results produced by using DSC 
method with regularized Shannon’s kernel are the same as 
or better than the results presented in [7].  With the same 
parameters M and N, the DSC method reaches a significant 
better result by using regularized Shannon’s kernel 
compare to by using the normal Shannon’s kernel. Table 1. 
shows the simulation results by using different approaches. 

 
Fig. 3. Waveform of x2 using 51 points, where M = 25, N = 51, 
r = 10 and T = 11.589s 
 
 

Table 1. Simulation results comparison  

Method Number of Sample 
points/Basic functions T(second) 

15 10.1028 
30 11.067 

Relaxation 
Algorithm 
(Bilinear 
Mapping) 240 11.6171 

23 11.51 
43 11.57 

Wavelet 
Balance 

Algorithm  63 11.61 
13 12.110 DSC with 

Shannon 
kernel 51 with M = 25 11.364 

13 with M = 6, r = 1.5 11.222 
51 with M = 25, r = 10 11.589 

DSC with 
regularized 

kernel 51 with M = 30, r = 10 11.619 

 
3.2 Three-inverter-oscillator 
 

 
Figure4. Schematic of three-inverter-oscillator 

 
 

 
Figure. 5 Schematic of  inverter 
 

Currently simulation of PLL (Phase Lock Loop) is a 
challenging work in Analog Circuit design. VCO (Voltage 
Controlled Oscillator) is part of PLL circuit and three-
inverter-oscillator is one of the simplest circuits to 
implement VCO. Figure 4. shows a three-inverter-oscillator 
circuit. 2x , 3x  and 1x  are the output voltages of three 



inverters, respectively. Figure 5. shows the schematic of 
one inverter. Following equation describes the circuit 
behavior for one inverter: 
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Where dsI  is determined by following equations: 
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where λ,,,,,, thdsgs vvvLWK  are the parameters of 

NMOS and PMOS. Combination of equation (13) and  (14) 
is the nonlinear equations for one inverter. 
Figure 6. shows the simulation result of 1x by using DSC 

method, where M = 25, N = 31, r = 3. The period of 1x  is 
about 3.8ns. A same result is got by implementing the 
fourth-order Runge-Kutta algorithm. In order to keep the 
waveform not to drift away quickly, we have to 
dramatically increase the number of points one period in 
Runge-Kutta algorithm, which is, in our case, at least 
15,000 points per period. DSC algorithm only needs 31 
points one period to get the same result and doesn’t have 
the error accumulation problem. 

 
Figure6. Waveform of X1 

 

4 Conclusion 
 

A novel time-domain based approach, discrete 
singular convolution method, is presented in this paper for 
getting the steady state response in nonlinear circuit. By 
expanding variables into DSC regularized Shannon’s 
kernel series in time domain, the differential equations 
become a set of algebraic equations. Exploiting the 
superior computational properties of DSC method and it δ  
type kernel, the proposed method shows a great efficiency 

and accuracy. Some comparisons to other approaches have 
been made through the numerical results. 

5 Acknowledgments 
 

Li,Xin of Carnegie Mellon University gave us a lot of 
help during the course of this work. Prof. Bao,Gang of 
Michigan State University is also gratefully acknowledged. 

6 References 
 

[1] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation 
of nonlinear circuits in the frequency domain”, IEEE Trans. 
Computer-Aided Design, vol. 5, pp. 521-535, Oct. 1986 

[2] T. J. Aprille and T. N. Trick, “steady state analysis of 
nonlinear circuits with periodic inputs”, Proc. IEEE, vol. 60, 
no. 1, pp. 108-114, Jan. 1972 

[3] J. R. Parkuhurst and L. L. Ogborn, “Determining the steady 
state output of nonlinear oscillatory circuits using multiple 
shooting”, IEEE Trans. Computer-Aided Design, vol. 14, pp. 
882-889, July 1995 

[4] D. Frey and O. Norman, “An integral equation approach to 
the steady state problem in nonlinear circuits”, IEEE Trans. 
Circuits Syst. I, vol.39, pp. 744-755, Sept. 1992 

[5] D. R. Frey, “A class of relaxation algorithms for finding the 
periodic steady state solution in nonlinear system”, IEEE 
Trans. CASI, vol. 45, pp. 659-663, Jun. 1998 

[6] A. Ushida and L. O. Chua, “Frequency-domain analysis of 
nonlinear circuits driven by multi-tone signals”, IEEE Trans. 
CAS, vol. 31, pp. 766-779. Sept. 1984 

[7] Xin Lin, Bo Hu, Xieting Ling and Xuan Zeng, “A wavelet-
balance approach for steady-state analysis of nonlinear 
circuits”, IEEE Trans. Circuits Syst. I, vol. 49, pp. 689-694. 
May 2002 

[8] L. W. Qian and G.W. Wei, “A note on regularized Shannon’s 
sampling formulae”, Preprint arXiv:math. SC/0005003, 
2000 

[9] G. W. Wei, Y .B. Zhao and Y. Xiang, “ Discrete singular 
convolution and its application to the analysis of plates with 
internal supports”, Int. J. Numer. Meth. Engng, 55:913-971, 
2002 

[10] G.W.Wei, “Solving quantum eigenvalue problems by 
discrete singular convolution kernels”, J. Phys. B 33:343-352, 
2000 

[11] Gang Bao, G. W. Wei and Shan Zhao, “Local spectral 
time-domain method for electromagnetic wave 
propagation”, Optics Letters, vol. 28, 7: 513-515, April 
2003 


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




