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Abstract— This paper presents a new test data compression
technique based on a compression code that uses exactly nine code-
words. In spite of its simplicity, it provides significant reduction in
test data volume and test application time. In addition, the de-
compression logic is very small and independent of the precom-
puted test data set. Our technique leaves many don’t-care bits
unchanged in the compressed test set, and these bits can be filled
randomly to detect non-modeled faults. The proposed technique
can be efficiently adopted for single- or multiple-scan chain de-
signs to reduce test application time and pin requirement. Exper-
imental results for ISCAS’89 benchmarks illustrate the flexibility
and efficiency of the proposed technique.

I. INTRODUCTION

Testing today’s system-on-chip (SoC) circuits is difficult due
to large test data volume, long test application time, high power
consumption during test, and limited bandwidth of automatic
test equipment (ATE). New techniques are needed to test em-
bedded cores in an SoC without exceeding limits power, ATE
memory and bandwidth. These techniques are often based on
test resource partitioning (TRP) to reduce ATE memory and test
power and tackle ATE bandwidth limitation.

There are several techniques to reduce SoC test data volume
and test application time. Built-in self-test (BIST) method-
ology reduces the need for an expensive ATE [1]. In BIST,
on-chip pseudo-random pattern generators and signature com-
paction are used. In practice, BIST cannot replace other test
methods especially for large chips due to the long time needed
to detect random pattern resistant faults. To overcome these dif-
ficulties, deterministic test patterns need to be transferred from
the ATE to the SoC under test to shorten overall test time and
improve fault coverage. While the fault coverage in BIST can
be improved using techniques such as reseeding [2], bit flipping
[3] and bit-fixing [4], these techniques need structural informa-
tion for fault simulation and test generation.

Test data compression techniques are used to speed up the
ATE-SoC interaction during test. These techniques are used
to compress the precomputed test data set TD provided by core
vendor to a smaller test set TE ( � TE ����� TD � ) which is then stored
in the ATE’s memory. An on-chip decoder decompresses TE

to TD to be applied to the core under test. Many compression
techniques have been proposed in recent years, however none
has become standardized or is universally applicable. Many of
the proposed solutions in the past few years are proprietary, this
reduces flexibility and interoperability among tools.

Compression methods such as statistical coding [5] [6], se-
lective Huffman coding [7], Golomb coding [8], FDR coding

[9], alternating run-length coding using FDR [10], EFDR cod-
ing [11], MTC coding [12] and VIHC coding [13] have been
proposed to reduce test data volume. These techniques com-
press TD without requiring any structural information for the
test application from the core vendor. There are some struc-
tural methods for reducing test volume and time which requires
design modification. The proposed Illinois scan architecture
(ILS) [14] needs fault simulation and test generation as post-
processing steps to get high fault coverage.

Other techniques are based on on-chip pattern decompres-
sion, such as scan-chain concealment [15], geometric-primitive
based compression [16], mutation encoding [17], deterministic
embedded test (reusing the scan chain of one core in a SoC to
compress the patterns for another core) [18], packet-based com-
pression [19] and LFSR reseeding [2] [20] [21]. An embedded
deterministic test technology for low cost test to reduce the scan
test data volume and scan test time is presented in [22].

Several dictionary-based compression methods have recently
been proposed to reduce test data volume. In [6], frequently
occurring blocks are encoded into variable-length indices us-
ing Huffman coding. A dictionary with fixed-length indices is
used to generate all the distinct output vectors in [23]. Test data
compression techniques based on LZ77 and LZW methods are
proposed in [24] and [25], respectively. The former uses a dy-
namic dictionary and the latter uses a memory in the on-chip
decoder. The method proposed in [26] is a compression tech-
nique using dictionary with fixed-length indices.

There are usually a large number of don’t-care bits in a pre-
computed test data set TD . These don’t-cares are used to help
compression techniques achieve higher compression. Gener-
ally, ATPG fills don’t-cares randomly to have more chance of
detecting non-modeled faults to increase defect coverage. Some
of the above proposed techniques replace existing don’t-cares in
TD with 0 or 1 to generate a smaller TE and the on-chip decoder
generates TD without don’t-care. Such compression may ad-
versely affect the fault coverage of non-modeled faults. There-
fore, new techniques are required to leave at least a portion of
don’t-cares unchanged, such that they can be replaced randomly
to help detect non-modeled faults.

In this paper, we present a new compression technique based
on a compression code with only nine codewords. Our method
achieves significant compression for precomputed test set, re-
duces test application time, and requires a very small decoder.
Since we use fixed-length blocks, the proposed method offers
ease of synchronization between the decoder and ATE. The
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technique is quite flexible in reducing test time and ATE’s test-
pin requirement for single- and multiple-scan chain designs, re-
spectively. Another advantage of the proposed technique is hav-
ing leftover don’t-care bits in TE , which can be filled randomly
to detect non-modeled faults.

The rest of this paper is organized as follows. Section II de-
scribes the proposed test data compression technique. Section
III discusses the single- and multiple-scan chain decoder archi-
tectures, and provide test time analysis. The experimental re-
sults are shown in Section IV. Finally, the paper presents the
concluding remarks in Section V.

II. 9C COMPRESSION TECHNIQUE

The proposed technique is based on fixed-length-input test
data compression. Assume that K is the size of the fixed-length
input blocks. The input test vectors are partitioned into groups
of K bits and encoding is performed on each K-bit block. Table
I shows the proposed coding for K=8. As shown in the table,
each K-bit block is divided into two K � 2 halves. As shown,
there are overall nine codewords. For the rows 1 to 4, each
half K-bit is matched with all 0’s or 1’s. Rows 5-8 show the
mismatched bits, which have to be sent along with the codeword
(UUUU is called a mismatch meaning this half has mix of 0
and 1 and perhaps don’t-care X). Row 9 shows that each half is
a mismatch and the entire K-bit block has to be sent along with
the codeword. The third column shows a symbol for each case.
The sixth column shows the decoder input which can be only a
codeword (in the first four rows) or codeword plus the mismatch
portion (in the last five rows). Finally, the last column shows the
final code size for each case.

In this technique, regardless of K, we use only nine unique
codewords shown in the fifth column in Table I. Hence, we call
our method nine-coded compression, or 9C for short. In the 9C
technique, the input test vectors are divided into K-bit blocks
and each K-bit block is divided into two parts. The various
cases that can arise are matched with one of the above symbols.
For example, assuming X represents don’t-cares in one half of
a block, blocks of 00, 0X, X0 and XX are all matched with
symbol 00. Blocks of 11, 1X and X1 are matched with symbol
11. Blocks of XU, 0U and UX, U0 are matched with symbols
0U and U0, respectively.

We acknowledge that more number of uniform K-bit blocks
(e.g. 00110011, 11001100, etc.) can be added to Table I. How-
ever, a systematic coding in such cases requires 24 � 1 � 17
codewords. This may slightly improve the compression ratio
but results in a more complicated and expensive decoder. In this
paper we focus on having nine codes since our experimentation
indicates that it provides the best tradeoff between compression
and decoder cost.

III. 9C DECOMPRESSION ARCHITECTURE

The 9C technique is flexible to be used for compressing input
test data for single-scan chain or multiple-scan chain designs.
Here, we propose a small and flexible decompression architec-
ture for each case.

A. Single-Scan Chain Decoder

Figure 1 shows the decoder architecture for a single-scan
chain. Decoder decodes only nine prefix-free codeword inde-
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Figure 1. 9C decoder architecture for single-scan chain.
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Figure 2. FSM diagram of 9C decoder.

pendent of K value and precomputed test data set. The de-
coder consists of a finite-state machine (FSM), a log2 � K � 2 � -
bit counter and an K � 2-bit shifter. The FSM takes data from
Data in to find out which codeword has been entered. If the
input codeword is C1, C2, C3 or C4, all K bits are generated
only with 0’s or 1’s accordingly. When the FSM receives the
codewords C5, C6, C7, C8 or C9, it expects to receive K � 2-bit or
K-bit exact data from Data in.

As shown in this figure, MUX has three inputs 0, 1 and
Data in which is shifted through K � 2-bit shifter. Two bits se-
lect (Sel) come from FSM to MUX. The log2 � K � 2 � -bit counter
is used to control sending K � 2-bit into scan chain. The FSM
sends signals Cnt en and Inc to activate and increment the
counter, respectively. At the same time, it activates signal SC en
to enable the scan chain, hence D out is shifted into the scan
chain (SC). When counter finishes counting, it sends signal
Done to the FSM to send the next Sel and Cnt en. After sending
the second signal Done by counter, FSM sends Ack signal to the
ATE to send the next codeword and deactivates signal SC en.

Figure 2 shows the state diagram of the 9C decoder. Note
carefully that it is totally independent of K. It starts by checking
Dec en. When Dec en is active, it receives the Data in which is
the codeword from ATE. Maximum of five cycles are required
for the longest codeword. Since a K-bit block is divided into
two halves, the FSM sends one Sel for each half. After de-
tecting a codeword the required signals are sent to the counter,
MUX and scan chain. When the job is done for one received
codeword, the state controller starts again from state S0. This is
done when Ack signal becomes active, then ATE sends the next
codeword.

B. Multiple-Scan Chain Decoder

Let m denote the number of scan chains in a circuit under test.
The 9C technique can be used to compress the input test data



TABLE I
9C CODING FOR K=8.

Case (i) Input Block Symbol Description Codeword (Ci) Decoder Input Size (bits)
1 0000 0000 00 All 0’s 0 0 1
2 1111 1111 11 All 1’s 10 10 2
3 0000 1111 01 Left half 0, right half 1 11000 11000 5
4 1111 0000 10 Left half 1, right half 0 11001 11001 5
5 1111 UUUU 1U Left half 1, right half mismatch 11010 11010UUUU 5+K/2=9
6 UUUU 1111 U1 Left half mismatch, right half 1 11011 11011UUUU 5+K/2=9
7 0000 UUUU 0U Left half 0, right half mismatch 11100 11100UUUU 5+K/2=9
8 UUUU 0000 U0 Left half mismatch, right half 0 11101 11101UUUU 5+K/2=9
9 UUUU UUUU UU All mismatch 1111 1111UUUUUUUU 4+K=12

vertically i.e., with respect to chain. In this case, the m-bit data
are divided into groups of K-bit blocks. The decoder is shown
in Figure 3. The FSM sends Cnt en to enable the log2 � K � 2 � and
log2 � 2m � K � counters and Shi f t en to let the D out to be shifted
into the m-bit shifter. The FSM used in multiple-scan chain de-
coder is the same as the one used for single-scan chain decoder.
A log2 � 2m � K � counter is used to control shifting m bits into the
m-bit shifter. Any time that log2 � K � 2 � counter sends K � 2 bit
into the m-bit shifter, signal Done is sent to the FSM to send the
next Sel and Cnt en and log2 � 2m � K � counter to be incremented
by one. When the log2 � 2m � K � counter is equal to 2m � K, mean-
ing m bits have been shifted into m-bit shifter, it sends the signal
Load to m-bit shifter to load its content into the scan chains SC1

to SCm. This architecture reduces the input test pins which only
one input test pin is required. In this case, only one decoder is
used for m scan chains.

Assume that the length of scan chain is l. Figure 4(a) shows
the single-scan chain decoder, used to decode and send the test
patterns into a l-bit scan chain. In this case, l clock cycles are
required to shift l bits into the scan chain. Assume that the l
bit scan chain is rearranged into groups of m-bit scan chains.
In this case, the length of each scan chain is l � m. Figure 4(b)
shows a multiple-scan chain decoder with one input pin and
one decoder. The ATE sends codewords through Data in and
the decoder drives the detected bits into the m-bit shifter. This
case does not increase test time compared to single-scan chain,
because each detected K-bit is shifted into the m-bit shifter and
after completing m-bit, the content of m-bit shifter is sent into m
scan chains which uses l clock cycles. This architecture reduces
test pins to 1 while keeping the test application time unchanged.

Note that the multiple-scan chain architecture can be ex-
tended to reduce the ATE pin count requirement to any desired
fraction of m as shown in Figure 4(c). For example, assume
that we use one decoder for each K-bit. Instead of having m-
bit shifter as shown in Figure 3, we need K-bit shifter such that
for each K number of scan chains only one input pin is required.
Therefore, for m number of scan chains, m � K input pins and de-
coders are needed which increases hardware overhead but de-
creases the test time by a factor of m � K compared to having
only one input test pin (see Figure 4(c)) because m � K decoders
work in parallel. In this case, Kl � m clock cycles are required.

C. Test Application Time Reduction

Reducing the overall test application time is one of the im-
portant goals of any test data compression method. In general,
the amount of time reduction depends on the compression ra-
tio and decompression method. In this section, we estimate the
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overall test application time reduction ratio (TAT) for single-
scan chain. Since 9C is a fixed-block compression technique,
the test time analysis is simpler compared to the variable-block
compression techniques. Suppose the ATE and SoC scan fre-
quencies are fate and fscan ( fate � fscan), respectively. TAT is
given by

TAT % � tno comp � tcomp

tno comp

� 100

where tno comp and tcomp are the test application times for apply-
ing uncompressed and compressed test data, respectively. As-
sume that the scan clock frequency of the system under test is
p times that of the ATE’s clock frequency.

fate

fscan
� 1

p

The test application time for the case of no compression
(tno comp) depends on the total number of input bits (TD) and
ATE’s working frequency.

tno comp � TD

fate
� p � TD

fscan

After compressing the test data, the test application time
tcomp depends on the occurrence frequency (repetitions) of each



codeword Ci. Let Ni denote occurrence frequency of Ci. There-
fore, in our method tcomp is given by:

tcomp � t1 � t2 � t3 � 4
� t5 � 8

� t9

where t1, t2, t3 � 4 , t5 � 8 and t9 are the application time of code-
words

�
C1 � ,

�
C2 � ,

�
C3, C4 � ,

�
C5, C6, C7, C8 � and

�
C9 � , re-

spectively. Note that t3 � 4=t3+t4 and t5 � 8=t5+t6+t7+t8. When
codeword C1 is entered into the FSM, only one ATE’s clock is
required (because C1 is one bit), K system’s clocks are needed
for applying K 0s into the scan chain. Hence, t1= 1

fate
+ K

fscan
,

where fscan=p � fate. Due to the lack of space, the details of the
estimation approach for all t’s are not discussed here. However,
the time parameters will be:������������� ������������

t1 = K ���C1 � � p
fscan

� N1

t2 = K ���C2 � � p
fscan

� N2

t3 � 4 = K ���C3 � � p
fscan

� N3 � 4

t5 � 8 = K �
	 K � 2 ���C5 � �
� p
fscan

� N5 � 8

t9 = K �
	 K ���C9 � ��� p
fscan

� N9

where N1 , N2, N3 � 4, N5 � 8 and N9 are the occurrence frequency
of codewords

�
C1 � ,

�
C2 � ,

�
C3, C4 � ,

�
C5, C6, C7, C8 � and

�
C9 � ,

respectively. Note that N3 � 4=N3+N4 and N5 � 8=N5+N6+N7+N8.
�Ci � is the size of codeword Ci, that are �C1 � =1, �C2 � =2,
�C3 � = �C4 � = �C5 � = �C6 � = �C7 � = �C8 � =5 and �C9 � =4.

IV. EXPERIMENTAL RESULTS

Table II shows the compression results of ISCAS89’s bench-
marks for different K’s using 9C technique for single-scan
chain. The compression ratio (CR) is computed by:���� ���

CR% = TD � TE
TD

� 100

TE = �C1 � � N1
� �C2 � � N2

� �C3 � � N3 � 4
�

� K � 2 � �C5 � � � N5 � 8
� � K � �C9 � � � N9

As seen in Table II, the maximum compression ratio for these
benchmarks happens in K=8, 12 or 16. When K increases the
compression ratio increases to reach a peak at K=8, 12, or 16
and then it starts to decrease in most of the cases. As shown,
K=32 generates less compression ratio compared to other K’s.
The last row shows the average compression ratio for each K on
all benchmarks and it indicates that K=8 shows more average
compression ratio compared to other K’s for these benchmarks.
It means that having K=8 for all these benchmarks, the decoder
gives very high compression ratio which is independent of the
benchmarks and precomputed test sets. The FSM has been im-
plemented by Synopsys Design Compiler [27] and it includes
140 gates.

Table III shows the leftover don’t-care (LX) percentage for
each benchmark for different K’s. These don’t-care bits can be
replaced randomly to detect some of the non-modeled faults.
The second column in the table shows the existing don’t-care
percentage (X%) of each benchmark. As shown, when K in-
creases the LX increase in which the maximum LXs for all
benchmark happen in K=32. Note that for K � 4 each half is a

very small 2-bit block where all don’t-cares need to be replaced
according to our technique. The last row shows the average LX
for all benchmarks for each K. Of course, the leftover don’t-
care bits can be also used to reduce the total scan-in power.
Some researchers replace the don’t-cares with 0 or 1 to mini-
mize the transitions between the consecutive bits. Power issue
is beyond the scope of this paper.

Based on Tables II and III, we are able to tradeoff between
the leftover don’t-cares (LX) and compression ratio. If user
asks for a specific amount of don’t-cares to possibly detect
some of the non-modeled faults. K is obtained from Table III
and the compression ratio is obtained from Table II.

Comparing the 9C technique with the other techniques (FDR
[10], VIHC [13], MTC [12] and Selective Huffman [7]) is
shown in Table IV. As the last row shows the average com-
pression ratio of the 9C technique is more than others.

Table V shows the test application time reduction for IS-
CAS89 benchmarks for different working frequencies of the
system under test. The next three columns show the result
for p=8, p=6 and p=4, respectively. TAT is bounded by
CR, meaning as p � fscan � fate increases, the test application
time approaches compression ratio. For example, assume that
fate=20MHz (a very slow ATE) and SoC frequency to shift
test data into scan chain fscan=160MHz (p=8). The average
TAT %=50.59%, indicates good reduction in test application
time for such a low speed ATE.

Table VI shows the statistics of occurrence frequencies of
each codeword (Ni) in the benchmarks. As the last row in the
table shows, codeword C1 always happens more frequently than
the other codewords which it has the minimum codeword size
(one bit). C2 is the second frequent codeword which has the sec-
ond minimum codeword length (two bits). And C9 is in third
place with codeword size four bits. The other codeword (C3,
C4, C5, C6, C7 and C8) have the same codeword size (five bits)
which occur less frequently compared to C1, C2 and C9. This
statistics show that the proposed coding is the best for these
benchmarks and indicates the coding efficiency for these bench-
marks and we expect it to be the same specially for large cir-
cuits. When the occurrences are different, the 9C technique can
be employed using a frequency-directed strategy. Such statis-
tics for a circuit can be obtained a priori. And for a special
architecture, codewords can be rearranged according to the real
occurrence frequencies of codewords in the test pattern set. Al-
though for majority of circuits we expect the order proposed in
Table I be the best.

As shown in Table VI, some benchmarks (e.g. s5378, s9234
and s15850) do not comply with the order of occurrence fre-
quencies shown in the last row. For example, for the bench-
marks s9234 and s15850 some other codewords like C8 (in
s9234) and C7 (in s15850) have more occurrence frequency
than codeword C9. To get the best compression ratio for these
two benchmarks, we change the order of codewords as C8 in
s9234 and C7 in s15850 to have four bit codeword size, re-
spectively. Table VII shows the new compression results based
on re-assigned codewords (frequency-directed assignment) ac-
cording to the occurrence frequencies in these three bench-
marks. As shown, there are slight improvements for each K
compared to the original results shown in Table II.



TABLE II
COMPRESSION RATIO FOR DIFFERENT K’S.

Circuit TD CR%
K=4 K=8 K=12 K=16 K=20 K=24 K=28 K=32

s5378 23754 43.98 50.69 51.64 49.41 46.61 44.77 42.18 39.37
s9234 39273 48.87 50.91 46.53 41.92 37.38 33.27 28.97 26.44
s13207 165200 69.63 79.81 81.86 82.31 80.65 80.93 79.80 78.96
s15850 76986 60.14 66.38 65.11 62.95 60.73 58.51 56.55 55.13
s38417 164736 52.63 60.63 59.37 57.54 54.40 51.78 49.31 47.44
s38584 199104 58.82 65.53 64.43 62.39 59.79 56.98 54.66 52.13
Avg. – 55.68 62.32 61.49 59.42 56.60 54.37 51.91 49.91

TABLE III
LEFTOVER DON’T-CARES (LX) FOR DIFFERENT K’S.

Circuit X% LX%
K=4 K=8 K=12 K=16 K=20 K=24 K=28 K=32

s5378 71 0.00 3.02 6.80 10.54 14.57 17.87 20.80 24.38
s9234 72 0.00 5.36 12.71 19.31 25.35 30.68 35.56 38.95
s13207 92 0.00 1.03 2.65 4.15 6.44 7.30 8.99 10.12
s15850 83 0.00 3.21 7.41 11.60 15.04 18.19 20.66 22.69
s38417 68 0.00 2.71 6.09 9.01 11.87 14.45 16.96 18.92
s38584 82 0.00 2.95 7.09 10.92 14.64 18.12 21.24 24.33
Avg. 78 0.00 3.05 7.13 10.92 22.38 17.77 20.70 23.23

TABLE IV
COMPARISON BETWEEN DIFFERENT TECHNIQUES.

Circuit K 9C FDR [10] V IHC [13] MTC [12] Selec. Huff. [7]

s5378 12 51.64 50.77 51.52 38.49 55.10
s9234 8 50.91 44.96 54.84 39.06 54.20
s13207 16 82.31 80.23 83.21 77.00 77.00
s15850 8 66.38 65.83 60.68 59.32 66.00
s38417 8 60.63 60.55 54.51 55.42 59.00
s38584 8 65.53 61.13 56.97 56.63 64.10

Avg. – 62.90 60.57 60.28 54.32 62.57

TABLE V
TEST APPLICATION TIME REDUCTION (TAT%) USING 9C TECHNIQUE.

Circuit K CR% TAT%
fate
fscan �

1
8

fate
fscan �

1
6

fate
fscan �

1
4

s5378 12 51.64 39.00 34.84 26.51
s9234 8 50.91 38.99 34.82 26.49

s13207 16 82.31 69.61 66.12 57.79
s15850 8 66.38 54.24 49.78 41.74
s38417 8 60.63 48.27 43.90 35.77
s38584 8 65.53 53.40 49.23 40.90

Avg. – 62.90 50.59 46.45 38.20

TABLE VI
CODEWORD STATISTICS OF THE BENCHMARKS.

Circuit K N1 N2 N3 N4 N5 N6 N7 N8 N9

s5378 12 929 220 24 38 73 81 144 144 326
s9234 8 1952 1143 243 249 164 159 355 366 279
s13207 16 7624 1158 209 138 114 100 298 279 406
s15850 8 6425 1067 294 278 178 158 471 450 303
s38417 8 11454 3779 500 506 816 797 832 895 1014
s38584 8 15473 3946 753 724 487 451 1017 976 1062

Avg. – 7309 1885 337 322 305 291 519 518 565

TABLE VII
COMPRESSION RATIO FOR THREE BENCHMARKS AFTER RE-ASSIGNING THE CODEWORDS BASED ON OCCURRENCE FREQUENCIES.

Circuit CR%
K=4 K=8 K=12 K=16 K=20 K=24 K=28 K=32

s5378 44.12 50.69 51.79 50.46 47.78 45.77 43.68 41.17
s9234 49.48 51.09 46.53 41.94 38.95 35.72 32.28 29.81
s15850 60.58 66.52 66.45 63.32 61.47 59.60 57.73 56.21



TABLE VIII
COMPRESSION RESULTS FOR TWO LARGE CIRCUITS FROM IBM.

Circuit X% TD K
8 12 16 32 48 64

CKT1 99.36 11613472 87.06 91.11 93.07 95.68 96.21 96.18
CKT2 97.90 4124288 85.81 89.69 91.43 93.30 93.19 92.57

We also evaluated the compression efficiency of the 9C tech-
nique for very large test sets from IBM previously reported in
[26]. Circuit CKT1 contains 3.6 million gates, 726000 flip flops
and requires about 11.6 Mbit test data. Circuit CKT2 has 1.2
million gates, 32200 flip flops and needs 4.1 Mbit test data.
Table VIII shows the compression ratio for different K’s. As
shown, K=48 and K=32 show the maximum compression for
CKT1 and CKT2, respectively.

The style, cost and flexibility of on-chip decompresser have
become important factors in practicality of compression tech-
niques. Specifically, some decoders such as those proposed in
[5] [6] [7] [13] [23] are dependent on the precomputed test set
and thus are customized for the circuit under test. The decom-
pression logics in [9] [10] are independent of the precomputed
test set. However, since the methods are based on variable-
length coding, the number of codewords required to be decoded
for the large circuits can be huge. Therefore, for having an in-
dependent decoder, they have to consider a possible maximum
length happening in the test set. But, the 9C technique’s de-
coder is totally independent of the circuit under test and pre-
computed test set. In other words, for the circuits using the
same K, the decoder remains the same, no matter what the pre-
computed test data set is. This feature makes our 9C technique
superior in terms of cost, flexibility and design reuse.

V. CONCLUSION

A new compression technique using only nine codewords
called 9C has been proposed in this paper. It significantly re-
duces the test data volume and application time. The leftover
don’t-care bits form 10-50% of data volume and can be utilized
for detecting some of the non-modeled faults. Using the 9C
technique, it is possible to tradeoff between test volume-time,
pin-count requirement and leftover don’t-cares. Implementa-
tion of 9C technique on ISCAS benchmarks has shown up to
83% compression. The decompression logic is very small and
flexible and independent of the precomputed test data set.
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