
Phase Coupled Code Generation for DSPs
Using a Genetic Algorithm

Markus Lorenz, Peter Marwedel
University of Dortmund, Dept. of Computer Science 12, Germany

email:{Markus.Lorenz, Peter.Marwedel}@uni-dortmund.de

Abstract
The growing use of digital signal processors (DSPs) in em-
bedded systems necessitates the use of optimizing compilers
supporting special hardware features. Due to the irregular ar-
chitectures present in today’s DSPs there is a need of compil-
ers which are capable of performing a phase coupling of the
highly interdependent code generation subtasks and a graph
based code selection. In this paper we present a code gener-
ator which performs a graph based code selection and a com-
plete phase coupling of code selection, instruction scheduling
(including compaction) and register allocation. In addition,
our code generator takes into account effects of the subsequent
address code generation phase. In order to solve the phase
coupling problem and to handle the problem complexity, our
code generator is based on a genetic algorithm. Experimen-
tal results for several benchmarks and an MP3 application for
two DSPs show the effectiveness and the retargetability of our
approach. Using the presented techniques, the number of ex-
ecution cycles is reduced by 51% on average for the M3-DSP
and by 38% on average for the ADSP2100 compared to stan-
dard techniques1.

I Introduction
Digital signal processors(DSPs) are frequently used in em-
bedded systems to flexibly account for specification modi-
fications in late design phases. Embedded processor based
systems often have to meet real-time constraints while mini-
mizing area and energy consumption. Thus, designers try to
meet the given timing constraints by adding instruction level
parallelism to processors. Unfortunately, the use of hetero-
geneous register files for reducing chip area and power con-
sumption leads to irregular processor architectures which can
rarely be handled by traditional compilers. In order to meet
given constraints with respect to execution time, code size and
energy consumption, many programs are still written in as-
sembly code. However, this is a very time consuming process
which potentially leads to incorrect and hardly portable code.
For this reason, there is an increased demand for optimizing
compilers which are adapted to special architectures and thus
are capable of exploiting the irregular architecture features of
DSPs.

The task of code generation can be divided into the sub-
taskscode selection(CS),instruction scheduling(IS), register

1This work has been sponsored by the German Research Foundation
(DFG).

allocation(RA) andaddress code generation(ACG). Finding
an optimal solution for each subtask usually means solving
an NP-hard optimization problem. Due to the strong interde-
pendencies among these subtasks, it is important for efficient
code generation (particularly for DSPs) to perform all sub-
tasks simultaneously by means of a completephase coupling.
For instance, finding an optimal instruction schedule does not
necessarily result in optimal code with respect to all sub-
tasks together. Most traditional code generation techniques
are based ontree basedcode selection algorithms [1]. These
are runtime-efficient, but the main disadvantages are that us-
ing a tree based technique allows only a restricted phase cou-
pling which usually results in superfluous memory accesses
and potentially leads to inefficient assembly code.

In this paper we present a DSP code generator based on a
genetic algorithm capable of performing a graph based code
selection and a complete phase coupling of the subtasks CS,
IS (including compaction) and RA. Effects of the subsequent
address code generation phase are taken into account, too.

The remainder of this paper is organized as follows: The
next section gives an overview of the related work in this
area. In section III, the considered target architectures are ex-
plained. After that our genetic algorithm driven code genera-
tor is presented. Finally, we demonstrate the effectiveness of
our code generator and conclude the paper with a summary.

II Related Work
Most traditional compilers perform a tree based code selec-
tion technique by using atree pattern matcher. The tree
based code selection techniques decompose data flow graphs
(DFGs) into trees and perform a separate code selection for
each tree. Graphs are often split atcommon subexpressions
(CSEs)2 to form trees. On general-purpose processors with
large homogeneous register files, CSEs are normally kept in
registers, and the register allocation phase in the compiler
aims at avoiding register spills and reloads. However, this
approach usually does not work for DSPs with an irregular,
special-purpose register architecture. The reason is that DSP
register files show a very small storage capacity (frequently
only a single value), so that temporary values cannot be kept
in registers during several instruction cycles. Sometimes DSP
registers even cannot be spilled at all, so that from a com-
piler point of view, memory is the only ”safe” resource for
storing CSEs. Therefore, it is very common in DSP compil-
ers that CSEs are stored in memory right from the beginning

2These are values which are used in more than one expression.

1530-1591/04 $20.00 (c) 2004 IEEE

and are reloaded into registers only at the time of further CSE
uses [2, 3].

In order to apply the traditional tree pattern matching
technique to graphs, [3] proposes extensions which make
this technique applicable to a strongly restricted class of
architectures with heterogeneous register files. Since tree
pattern matchers for architectures with heterogeneous register
files usually store CSEs in memory locations and load this
value for every use, in [4] a technique based on a simulated
annealing algorithm is proposed which is capable of keeping
(at least some) CSEs in special-purpose registers. However,
there is still a demand for techniques supporting phase
coupling and instruction covering of different tree nodes.
Phase coupling techniques for homogeneous VLIW-
architectures (VLIW = very long instruction word) are
presented in [5, 6]. But only one architecture considered
in [5] shows a slight irregularity.
In order to take into account the phase coupling problem, code
generation techniques have been proposed based oninteger
linear programming(e.g. [7, 8]). However, the complexity
of the solver allows the computation of optimal solutions
only for small benchmarks or only for some code generation
subtasks.
A phase coupling technique for irregular architectures based
on constraint logic programmingis proposed in [9]. Re-
strictions w.r.t. the use of resources or the execution order
of instructions are taken into account by the formulation of
constraints. In addition, optimal graph based code selection
and instruction scheduling are applied independently of each
other. Phase coupling between the different code generation
tasks is achieved by passing alternative solutions to subse-
quent optimization phases.
Genetic algorithms have been proven to be very effective
in finding optimal or near optimal solutions in huge search
spaces. For this reason, we are using a special list-scheduling
algorithm in combination with a genetic algorithm as pro-
posed in [10]. In contrast to earlier work using genetic
algorithms for scheduling problems (e.g. [10, 11, 12]),
we perform a graph based code selection in conjunction
with a complete phase coupling of CS, IS and RA under
consideration of the effects of the subsequent address code
generation phase. In contrast to the genetic algorithm driven
code generator presented in [13] we perform a stronger phase
coupling by also integrating the code compaction phase and
considering the effects of address code generation. Our chro-
mosomal representation also allows the representation of data
transfers and enables the representation of alternative machine
programs which is essential for a complete phase coupling.
Another contribution of this paper concerns a technique
for merging different data paths (e.g. starting from CSEs)
by bypassingand a new crossover operator (CS-crossover)
which takes into account the tree/graph structure of the given
optimization problem. Due to the generic specification of the
target architecture, main parts of the code generator can be
reused without modifications for other processors.

III Target Architectures
A M3-DSP
The M3-DSP is an instance of a scalable DSP platform for
mobile communication applications [14]. The platform per-

mits a fast design of DSPs adapted to special applications. In
order to meet constraints with respect to performance, chip
area, and energy dissipation, the platform supports among oth-
ers, the following features: There is a scalable number of data
paths that enables processing either on a single data path or
on all data paths in parallel according to the SIMD principle.
In the case of the M3-DSP, there are 16 data paths containing
special-purpose register files.

The M3-DSP is organized as a VLIW architecture which
permits independent control e.g. for data manipulation, data
transfer, program control, and the address generation unit.
The address generation unit (AGU) contains four address
pointer registers which allow auto-increment addressing with
a specific offset. If there is a need for larger offsets, the ad-
dress pointer registers can be used orthogonally with one of
four modify registers in auto-modify operations. In addition,
page pointer relative addressing is possible. In order to reduce
the loop overhead, support for executing up to 256 processor
instructions in zero-overhead hardware-loops is available.

B ADSP
The ADSP2100 of the ADSP210X-family [15] contains three
functional units (ALU, MAC and shifter) with special-purpose
register files. A parallel execution of data transfers, memory
accesses and data manipulations is only possible in a restricted
manner. The memory is partitioned into two memory banks
which allows accesses of two data words in parallel by us-
ing two AGUs. Like in the M3-DSP, support for execution
of processor instructions in a zero-overhead hardware-loop is
incorporated.

IV Phase Coupled Code Generation
Before presenting details of our genetic algorithm driven code
generator, an overview of the code generation process is given.
Code generation is started after the source program is trans-
formed into our low-level intermediate representation (LIR),
which serves as an exchange format for all succeeding trans-
formations and optimizations. In order to propagate optimiza-
tion results to other phases, it allows storing machine depen-
dent program and target architecture information like number
and type of available registers, functional units, parallel execu-
tion possibilities and valid resource combinations of processor
instructions. In order to represent the resource alternatives for
a specific graph node of the LIR or abstract operation of the
source program (e.g. load or add), it is possible to associate
alternative resource combinations with such a graph node. At
this level of abstraction the source program is represented by
a set of DFGs which are then separately mapped to assembly
code by performing the following steps:

1. Preprocessing
The main task of this step is the generation of alternative
machine programs (or solutions) of the source program.
This is done by inserting the maximum number of data
transfers between two specific graph nodes which can po-
tentially occur and generating an initial covering of the
graph nodes with processor resources. Note that this task
represents the only difference in generating the code for

the M3-DSP and the ADSP. Following this phase, it is
possible to prune the set of resource alternatives by per-
forming constraint propagationwhich is a basic tech-
nique in constraint logic programming. Applying the
constraint propagation algorithm, thenodeandedge con-
sistencyof all graph nodes is ensured. Node consistency
means that for each graph node it is made sure that only
valid resource combinations according to the given oper-
ation specification can be chosen. In addition, edge con-
sistency assures a valid data transfer path between two
data dependent graph nodes.

2. Code generation (CS, IS, RA)
In this step, the process of code generation aims at re-
stricting the set of resource alternatives by optimizing
according to a specified cost function. In addition, every
graph node has to be assigned to a specific control step
(or execution cycle). Unfortunately, the generation of
optimal assembly code means solving an NP-hard opti-
mization problem. Thus, there is a need for an optimiza-
tion algorithm capable of finding optimal or near optimal
solutions in polynomial time. For this reason, we are
using an optimization algorithm based on a genetic algo-
rithm which is described in more detail in section A. The
result is a DFG with scheduled (and compacted) graph
nodes covered by processor resources.

3. Address code generation (ACG)
In this step, the address code for the given memory ac-
cess sequence of a specific basic block is generated. The
resulting sequential address code is inserted into the LIR-
code and is then compacted by reusing the genetic algo-
rithm driven code generator.

After these steps, the current graph based LIR representa-
tion is mapped to assembly code.

Due to the generic implementation of the code generation
techniques, the code for steps 2 and 3 can be applied without
modifications for the ADSP and the M3-DSP. The difference
between the code generators is confined to the specification of
the different target architectures in the first step.

A Overview of the Genetic Code Generator
In order to handle the problem complexity there is need for
an efficient optimization technique which is capable of gen-
erating optimal or near optimal solutions according to a spec-
ified cost function. Genetic algorithms (GA) have proven to
solve complex optimization problems by imitating the natural
evolution process (see e.g. [16] for an overview). A popu-
lation of a GA consists of several individuals, each of them
representing a potential solution of the optimization problem.
The representation of an individual is given by achromosome
which is subdivided intogenes. The genes are used to encode
the variables of the optimization problem. This means that
finding a suitable combination ofalleles(concrete values) for
the genes is the same as finding good solutions for the opti-
mization problem. By applying genetic operators likeselec-
tion, mutation, andcrossoverto the members of the population
the fitness of the individuals will increase in the course of the

generations. An overview of the main steps of the optimiza-
tion process of our genetic algorithm driven code generator is
given in fig. 1.

1. Initialization 2. Evaluation 3. Selection

5. Mutation

4. Crossover

6. Evaluation

best individual

phase
coupling

- Code selection
- Instruction scheduling
- Register allocation

- Addresscode generation

Fig. 1: Overview of the genetic code generator

At first all individuals of the population are initialized (1)
by performing the tasks of code generation (CS, IS and RA)
and afterwards evaluated according to a specified cost func-
tion (2). Individuals which should inherit their genes to the
next generation are selected probabilistically in the following
step (3). The crossover operator (4) performs a recombination
of the genetic information by choosing two individuals and
swapping genes between these individuals. Afterwards, mu-
tation (5) creates new gene material by changing alleles. The
resulting individuals are evaluated (6) again. The optimization
process is iterated until a termination condition (here: maxi-
mum number of generations) is met. It is a very important
characteristic of genetic algorithms that suitable gene material
is passed to the subsequent generations. This permits one to
revise unfavorable decisions made in a previous optimization
phase. For this reason, genetic algorithms are adequate for
solving non-linear optimization problems like phase-coupled
code generation. However, one of the main problems using
genetic algorithms is finding a suitable representation of the
underlying optimization problem and using genetic operators
which can be executed very quickly (because they are used
many times).

In the next section we describe the coding mechanism and
the initialization, evaluation, crossover, and mutation steps of
our code generator in more detail.

B Chromosomal Representation
A specific individual represents the machine code sequence of
one basic block (BB). For this purpose, the graph nodes of the
source program are mapped to genes (s. fig. 2).

This means that every individual of a population has the
same number of genes (in this case 23). The given graph
node numbers represent the corresponding gene of the chro-
mosome. Data transfers which can potentially occur are rep-
resented as CP-nodes (CP = copy). The available alternative
resources (e.g. registersA, B, C, . . .) are stored along whith
each gene.

C Initialization
The initialization is performed for each individual separately
with the goal of generating a population of different solutions
(machine code sequences). Obviously, it is necessary to solve

16

15

22

23

21

19

17

18

14

13

12

11

10

9

7

8 6

3

4

5
2

1

+

*

2 LD

ST

&a

+

&b

&c

LD

CPCP

CP
CP

CP

CP

CP

CP

CP

CP

CP

CP

CP

Gene 2:
Op ={CP,LDImmed}
FU ={DTU}
IT ={1}
Def ={A,B,C,’cnst2’}
Arg1={-}
Arg2={ }’cnst2’,’cnst_int9’

Gene 1:
Def ={’cnst2’,’cnst_int9’}

Gene 6:
Op ={MUL}
FU ={DMU}
IT ={1}
Def ={ACCU,’*’}
Arg1={A,B,C,’cnst2’}
Arg2={A,B,C,D}

Gene 20:
Op ={ADD}
FU ={DMU}
IT ={1}
Def ={ACCU}
Arg1={A,B,C,ACCU}
Arg2={A,B,C,ACCU}

Gene 17:
Op ={CP,ST,ElDT,MV}
FU ={AGU,DTU,LMU}
IT ={1,2}
Def ={MEM,A,B,C,D,ACCU,’*’}
Arg1={'addr'}
Arg2={ACCU,’*’}

20

…

…

…

…

ChromosomeDFG

3

Fig. 2: Chromosomal DFG representation

the tasks of code generation CS, IS and RA. The main initial-
ization procedure can be sketched as follows:

WHILE readyset 6= emptyDO
// Perform constraint propagation after steps (2) to (5)
(1) gene = InstructionScheduling(ind) ;
(2) opgene = CodeSelection(gene) ;
(3) fu gene = SelectFunctionalUnit(gene) ;
(4) it gene = SelectInstructionType(gene) ;
(5) def gene = RegisterAllocation(gene) ;
(6) cs gene = Compaction(gene) ;
(7) Update(ready set)

END;

The algorithm is based on a variant of the well-knownlist-
schedulingalgorithm [17]. While theready set is not
empty, the steps (1) to (7) are performed in a loop. In the
first step (1), the next gene to be scheduled fromready set
is chosen. After that, the processor operationopgene , the
functional unitfu gene , the instruction type3 it gene , and the
destination register resourcedef gene is determined proba-
bilistically. Choosing one specific resource alternative means
erasing all other resources of the corresponding set. In order
to avoid the selection of invalid resource combinations and in-
valid data transfer paths, constraint propagation is performed
after steps (2) to (5) respectively.

In order to assign the current gene to a control step, the set
of alternatives is determined: Ifcsmax is the highest assigned
control step, the gene can potentially be assigned to the fol-
lowing control steps:

3Assigning different instruction types for two specific genes means that
these graph nodes must be scheduled to different execution cycles.

• Next control stepcsmax + 1.

• Parallel execution with an operation (which is assigned
to a control step≤ csmax). This is only possible under
the assumption of no resource conflicts.

• In the presence of CSEs it is possible that the result of
an operation is already computed and is still available in
a register resource. If the current operation can define
(write) the same resource, an execution of this operation
can be avoided. This is calledbypassand is described in
more detail below.

Finally, theready set is updated in step (7). Let|V | and
|E| be the number of graph nodes and edges respectively. The
complexity of this step isO|V 3|.

11

17

18 11

19

17

18 11

19

17

18 11

19

2013

12

10

6

MUL

CP

CP

DT

ST

CP

LD

+ +

ACCU

A

ACCU MEM

M

2013

12

10

6

MUL

CP

CP

DT

ST

LD

+ +

ACCU

A

ACCU MEM

M

A

2013

12

10

6

MUL

CP

CP

DT

ST

LD

+ +

ACCU

A

ACCU MEM

M

A

DT DT

2013

12

10

6

MUL

CP

CP

DT

+ +

ACCU

A

ACCU

a) b) c) d)

19

17

18

ST

LD

CU

MEM

M

A

DT

Fig. 3: Example for bypassing

The principle of bypassing
As mentioned before, the execution of a graph based code se-
lection instead of a tree based approach bears an immense op-
timization potential. Thus, besides a more effective realization
of an instruction covering, storing of CSEs can be potentially
avoided. But, after insertion of all potential data transfer paths
between two graph nodes, the result of a CSE (s. multiplica-
tion node in fig. 2) is transported on different data paths to
succeeding nodes. As we will demonstrate using the exam-
ple in fig. 3, bypassing helps to make multiple use of CSEs.
All genes which already have been processed are shaded and
are marked by the assigned operation and by the destination
register resource (s. genes 6, 10, 11, 17 and 18 in fig. 3 a)).
Gene 10 performs avirtual copy function which just trans-
fers the data (fromACCU) without consuming a real proces-
sor instruction (toACCU). Gene 11 performs a concrete data
transfer (DT) from register resourceACCUto registerA. In the
right part, the CSE is stored into the memory (s. gene 17) and
is then loaded from memory (gene 18). Part b) of the figure
shows that gene 19 is assigned to a data transfer and the reg-
ister resourceA. Since the corresponding data resides already
in registerA (s. gene 11) the execution of this operation can
be avoided. For this reason, a bypass is set from gene 11 to
gene 20 (s. fig. 3 c)). This means that the memory accesses of
gene 17 and 18 can also be avoided. This is dead code and can
be eliminated (s. fig. 3 d)). In this way it is possible to elimi-
nate data transfers and also memory accesses. The determina-
tion of whether specific genes define the same value is decided

with the help ofvalue numbers(s. e.g. [18]) which are com-
puted once before starting the code generation process. Thus,
two genes get the same value number if they define the same
value.

D Evaluation
The evaluation of the individuals of a population is required to
differentiate the solutions. Without loss of generality, we as-
sume that individuals causing less costs represent better solu-
tions than individuals with higher costs. The evaluation func-
tion has an essential impact on the optimization progress of
the genetic algorithm because these values serve as a basis
for the subsequent selection step. For example minimization
of execution time is possible by counting the number of ex-
ecution cycles. A high number of cycles corresponds to a
low fitness. Effects of the subsequent address code generation
phase can be taken into account by extending the evaluation
function. Since execution of the address code generation for
each individual would be a very time consuming process an
approximation is needed. In our case we consider the num-
ber of necessary memory accesses as an approximation of the
required address code. For this reason, among the solutions
with minimal number of execution cycles those are preferred
which cause the smallest number of memory accesses. The
evaluation step can be done inO(1).

E Crossover and Mutation
The crossoveroperator deals with generating new individu-
als by probabilistically swapping genes between two selected
individuals. Unfortunately, standard crossover operators like
one pointor uniform crossover do not consider the special
graph/tree structure of our optimization problem. For this
reason, we have developed a special crossover operatorCS-
crossoverwhich takes into account the execution order of the
genes. Experimental results have shown a much faster con-
vergence using the CS-crossover operator than standard oper-
ators. The basic idea is that all genes of a specific individ-
ual which are assigned before a specific control stepcscross
are left unchanged. This leads to valid partial solutions up to
this control step. Only those genes are swapped which are as-
signed to a greater control step thancscross. The parameter
cscrossis determined for each individual again. In fig. 4 this
is demonstrated forcscross= 2.

1 2 3 4 5 6 7 8 9

0 1 3 0 2 1 0 4 5

0 2 4 3 1 0 4 3 5

1 2 3 4 5 6 7 8 9

Parent1

Parent2

0 1 4 0 2 1 0 3 5

0 2 3 0 1 0 0 4 5

Child1

Child2

cs
cross

= 2

Fig. 4: CS-crossover

This step depends only on the number of graph nodes
(genes) and can be done inO(|V |). The results are two indi-
viduals consisting of recombined information of the parents.
However, the large number of constraints (e.g. data depen-
dencies or resource constraints) which have to be handled can
lead to invalid solutions. In order to avoid such invalid so-
lutions we combine the subsequent mutation operator with a
correctness check. So, the main tasks of themutationoperator

are to check the correctness of the actual allele and to generate
the new gene material by changing alleles. Performing muta-
tion for an individual is nearly the same task as initializing an
individual. In analogy to the initialization step we determine
a new allele of a gene by choosing an allele whose selection
potentially leads to a valid solution. Thus, the complexity of
the mutation step isO(|V 3|).

V Experimental Results
In this section, experimental results of our genetic algorithm
driven code generator are presented for two DSPs (the M3-
DSP and the ADSP). Columns 1 and 2 of table 1 give an
overview of the considered benchmarks. Except the MP3 ap-
plication, all benchmarks are taken from the DSPstone bench-
mark suite [19].

Table 1: Benchmark characteristics
#CSEbenchmark #CSEs
uses

CPU[s]

cm complexmultiply 4 8 19
bos biquadone section 3 7 49
cu complexupdate 4 8 37
nru n real updates 1 2 21
conv convolution 1 2 41
dot dot product 1 2 14
f2d fir2dim 8 16 360
lms lms 8 16 128
ncu n complexupdates 16 42 507
bNs biquadN sections 10 31 631
fir fir 5 10 107
m1 matrix1 5 10 128
m2 matrix2 8 16 285
m1x3 mat1x3 2 4 42
mp3 mp3 27 54 1034

Columns 3 and 4 give some characteristics about the num-
ber of common subexpressions in the source programs and
their uses respectively. Finally, column 5 shows the CPU
time requirements of our code generator on a 2.7 GHz Intel
Pentium 4 processor. The number of generations to be exe-
cuted by our code generator during code generation and ad-
dress code compaction is set to 8 times the number of graph
nodes. For example, the MP3 application has 56 basic blocks
and 1105 IR operations to be compiled by our code genera-
tor. In order to compile a basic block with 50 operations, 400
(8×50) generations are performed. Note that in most cases the
best result is already found early in the optimization process.
For this reason, the runtime of the genetic algorithm could be
drastically reduced in most cases without code quality losings.

All results are generated using asteady-stategenetic algo-
rithm with the following parameters4: population size: 30;
number of individuals in the population to be replaced by
the offspring: 4; mutation rate: 1/(number of graph nodes);
crossover rate: 0.9.

Results for the M3-DSP and the ADSP w.r.t. execution time
are given in figures 5 and 6. The code quality using a tree
based code selection and a restricted phase coupling as com-
mon in traditional code generators is set to 100%. Results

4The implementation of the base genetic algorithm uses the genetic algo-
rithm library PGAPack [20].

labeledgraph mean that a graph based code selection tech-
nique without bypassing is performed.graph+bypassing
shows the effectiveness of the bypassing technique. Finally,
graph+bypassing+pc indicates that a phase coupling of
CS, IS and RA instead of a restricted phase coupling is done
by also integrating the compaction phase into the genetic al-
gorithm and taking into account the effects of address code
generation.

Fig. 5: M3-DSP: Results w.r.t. execution time

The pictured results show that the execution time can
be dramatically reduced for both DSPs by using the ge-
netic algorithm driven code generator. Performing a graph
based CS technique with bypassing (s.graph+bypassing)
for the M3-DSP already leads to an average (avg) im-
provement of 26% and 23% for the ADSP. Compared to
graph , this also shows the benefit of the bypassing tech-
nique for reducing the execution time. The code qual-
ity is further improved by performing a complete phase
coupling (s. graph+bypassing+pc). In contrast to
graph+bypassing , instruction compaction is integrated
into the phase coupling of the genetic code generator and
the effects of address code generation are taken into account.
Compared tograph+bypassing this leads to an average
improvement of 34% for the M3-DSP and 19% for the ADSP
and demonstrates the benefit of the proposed techniques. Al-
together the execution time is reduced by 51% on average for
the M3-DSP and 38% for the ADSP.

Fig. 6: ADSP: Results w.r.t. execution time

VI Conclusions
The growing use of DSPs in embedded systems necessitates
optimizing compilers which are capable of making use of the
irregular processor architecture features. Due to the strong in-
terdependencies between code selection, instruction schedul-
ing, register allocation and address code generation, there is
a demand for code generation techniques performing phase

coupling of these subtasks. In this paper we have presented
a genetic algorithm driven code generator which performs
graph based code selection and complete phase coupling of
code selection, instruction scheduling (including compaction)
and register allocation. In addition, our code generator takes
into account effects of the subsequent address code generation
phase. Results for several benchmarks and an MP3 applica-
tion for two DSPs show the effectiveness and the retargetabil-
ity of our genetic code generator. The number of execution
cycles is reduced by 51% on average for the M3-DSP and
by 38% on average for the ADSP compared to standard tech-
niques. Due to the generic implementation of our techniques
on a common compiler framework, these techniques can be
applied to other processor architectures, too.

References
[1] R. Wilhelm and D. Maurer.Compiler Design. Addison Wesley, 1995.
[2] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection

Using Binate Covering for Code Size Optimization. InProc. of the
ICCAD, 1995.

[3] G. Araujo, S. Malik, and M. Lee. Using Register Transfer Paths in
Code Generation for Heterogeneous Memory-Register Architectures. In
Proc. of the DAC, 1996.

[4] R. Leupers. Register Allocation for Common Subexpression in DSP
Data Paths. InProc. of the ASP-DAC, 2000.

[5] S. Novack and A. Nicolau. Mutation Scheduling: A Unified Approach
to Compiling for Fine–Grain Parallelism. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Com-
pilers for Parallel Computing, LNCS. Springer–Verlag, 1994.

[6] S. Hanono and S. Devadas. Instruction Selection, Resource Allocation,
and Scheduling in the AVIV Retargetable Code Generator. InProc. of
the DAC, San Francisco, California, USA, 1998.

[7] T. Wilson, G. Grewal, B. Halley, and D. Banerji. An Integrated Ap-
proach to Retargetable Code Generation. InProc. of the International
Symposium on High-Level Synthesis, Ontario, Canada, 1994.

[8] D. Kästner and M. Langenbach. Integer Linear Programming vs. Graph-
Based Methods in Code Generation. Technical Report A/01/98., Uni-
versität des Saarlandes, 1998.

[9] S. Bashford and R. Leupers. Constraint driven Code Selection for
Fixed-Point DSPs. InProc. of the DAC, 1999.

[10] S.J. Beaty.Instruction Scheduling Using Genetic Algorithms. PhD the-
sis, Department of Mechanical Engineering, Colorado State University,
Fort Collins, Colorado, USA, 1991.

[11] T. Zeitlhofer and B. Wess. Operation Scheduling for Parallel Functional
Units Using Genetic Algorithms. InProc. of the ICASSP, Phoenix,
Arizona, USA, 1999.

[12] S. Fröhlich. Codegenerierung f¨ur Signalprozessoren mit Hilfe genetis-
cher Algorithmen. PhD thesis, Technische Universit¨at Wien, 2001.

[13] M. Lorenz, T. Dräger, R. Leupers, P. Marwedel, and G.P. Fettweis. Low-
Energy DSP Code Generation Using a Genetic Algorithm. InProc. of
the ICCD, Austin, Texas, USA, 2001.

[14] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broadband
mobile multimedia modem DSP. InProc. of the ICSPAT, Toronto,
Canada, 1998.

[15] Analog Devices.ADSP-2001 User’s Manual, 1991.
[16] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-

versity Press, 1996.
[17] K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.
[18] S.S. Muchnick.Advanced Compiler Design and Implementation. Mor-

gan Kaufmann Publishers, 1997.
[19] V. Zivojnovic, J.M. Velarde, C. Schl¨ager, and H. Meyr. DSPstone -

A DSP-oriented Benchmarking Methodology. InProc. of the ICSPAT,
Dallas, Texas, USA, 1994.

[20] D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm
Library. Technical Report ANL-95/18, Argonne National Laboratory,
1996.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

