Phase Coupled Code Generation for DSPs
Using a Genetic Algorithm

Markus Lorenz, Peter Marwedel

University of Dortmund, Dept. of Computer Science 12, Germany
email: {Markus.Lorenz, Peter.Marwede®uni-dortmund.de

Abstract allocation(RA) andaddress code generatigACG). Finding

The growing use of digital signal processors (DSPs) in e optimal solution for each subtask usually means solving
bedded systems necessitates the use of optimizing compifsrd\P-hard optimization problem. Due to the strong interde-
supporting special hardware features. Due to the irregular@#ndencies among these subtasks, it is important for efficient
chitectures present in today’s DSPs there is a need of compfid€ generation (particularly for DSPs) to perform all sub-
ers which are capable of performing a phase coupling of ##$KS Simultaneously by means of a compj#tase coupling
highly interdependent code generation subtasks and a graphinstance, finding an optimal instruction schedule does not
based code selection. In this paper we present a code gefgpessarily result in optimal code with respect to all sub-
ator which performs a graph based code selection and a c&atks together. Most traditional code generation techniques
plete phase coupling of code selection, instruction schedulﬁfg based otree basectode selection algorithms [1]. These
(including compaction) and register allocation. In additio'e runtime-efficient, but the main disadvantages are that us-
our code generator takes into account effects of the subseqijihg: trée based technique allows only a restricted phase cou-
address code generation phase. In order to solve the p which usually results in superfluous memory accesses
coupling problem and to handle the problem complexity, ogRd potentially leads to inefficient assembly code.
code generator is based on a genetic algorithm. Experimenin this paper we present a DSP code generator based on a
tal results for several benchmarks and an MP3 application fignetic algorithm capable of performing a graph based code
two DSPs show the effectiveness and the retargetability of @gtection and a complete phase coupling of the subtasks CS,
approach. Using the presented techniques, the number ofléxtincluding compaction) and RA. Effects of the subsequent
ecution cycles is reduced by 51% on average for the M3-D8@dress code generation phase are taken into account, too.
and by 38% on average for the ADSP2100 compared to stanfhe remainder of this paper is organized as follows: The
dard techniqués next section gives an overview of the related work in this
area. In section lll, the considered target architectures are ex-
plained. After that our genetic algorithm driven code genera-
| Introduction tor is presented. Finally, we demonstrate the effectiveness of

Digital signal processorgDSPs) are frequently used in emoYr code generator and conclude the paper with a summary.

bedded systems to flexibly account for specification modi-
fications in late design phases. Embedded processor bgded Related \Work

systems often have to meet real-time constraints while miyrost traditional compilers perform a tree based code selec-
mizing area and energy consumption. Thus, designers tryiih technique by using #ree pattern matcher The tree
meet the given timing constraints by adding instruction levghsed code selection techniques decompose data flow graphs
parallelism to processors. Unfortunately, the use of hete{gyrGs) into trees and perform a separate code selection for
geneous register files for reducing chip area and power c@enh tree. Graphs are often splitcammon subexpressions
sumption leads to irregular processor architectures which Es} to form trees. On general-purpose processors with
rarely be handled by traditional compilers. In order to meghye homogeneous register files, CSEs are normally kept in
given constraints with respect to execution time, code size §llisters, and the register allocation phase in the compiler
energly cogsurlt;ptlon, mﬁ;{.‘y.mograms are still written in agymg at avoiding register spills and reloads. However, this
sembly code. However, this IS a very time consuming proCessy oach usually does not work for DSPs with an irregular,
which potentially leads to incorrect and hardly portable codg,ecia|-purpose register architecture. The reason is that DSP
For this reason, there is an increased demand for optimiziflg,iqier files show a very small storage capacity (frequently
compilers which are adapted to special architectures and t a single value), so that temporary values cannot be kept

are capable of exploiting the irregular architecture featuresiffregisters during several instruction cycles. Sometimes DSP

DSPs. registers even cannot be spilled at all, so that from a com-
The task of code generation can be divided into the sytiter point of view, memory is the only "safe” resource for
taskscode selectiofiCS),instruction schedulinglS), register storing CSEs. Therefore, it is very common in DSP compil-

ers that CSEs are stored in memory right from the beginning
1This work has been sponsored by the German Research Foundation
(DFG). 2These are values which are used in more than one expression.

1530-1591/04 $20.00 (c) 2004 | EEE

and are reloaded into registers only at the time of further C&tits a fast design of DSPs adapted to special applications. In
uses [2, 3]. order to meet constraints with respect to performance, chip

In order to apply the traditional tree pattern matchingrea, and energy dissipation, the platform supports among oth-
technique to graphs, [3] proposes extensions which maé. the following features: There is a scalable number of data
this technique applicable to a strongly restricted class B#ths that enables processing either on a single data path or
architectures with heterogeneous register files. Since t@ieall data paths in parallel according to the SIMD principle.
pattern matchers for architectures with heterogeneous regisieine case of the M3-DSP, there are 16 data paths containing
files usually store CSEs in memory locations and load tHigecial-purpose register files.

value for every use, in [4] a technique based on a simulatedThe M3-DSP is organized as a VLIW architecture which
annealing algorithm is proposed which is capable of keepipgrmits independent control e.g. for data manipulation, data
(at least some) CSEs in special-purpose registers. Howeviefnsfer, program control, and the address generation unit.
there is still a demand for techniques supporting phas@e address generation unit (AGU) contains four address
coupling and instruction covering of different tree nodes. pointer registers which allow auto-increment addressing with
Phase coupling techniques for homogeneous VLIV¥ specific offset. If there is a need for larger offsets, the ad-
architectures (VLIW =very long instruction worfl are dress pointer registers can be used orthogonally with one of
presented in [5, 6]. But only one architecture consideregur modify registers in auto-modify operations. In addition,
in [5] shows a slight irregularity. _ page pointer relative addressing is possible. In order to reduce
In order to take into account the phase coupling problem, cog loop overhead, support for executing up to 256 processor

generation techniques have been proposed baseédt@ger instructions in zero-overhead hardware-loops is available.
linear programming(e.g. [7, 8]). However, the complexity

of the solver allows the computation of optimal solution

only for small benchmarks or only for some code generati ADSP

subtasks. The ADSP2100 of the ADSP210X-family [15] contains three
A phase coupling technique for irregular architectures badeictional units (ALU, MAC and shifter) with special-purpose
on constraint logic programminds proposed in [9]. Re- register files. A parallel execution of data transfers, memory
strictions w.r.t. the use of resources or the execution ord&rcesses and data manipulations is only possible in a restricted
of instructions are taken into account by the formulation efianner. The memory is partitioned into two memory banks
constraints. In addition, optimal graph based code selectiwhich allows accesses of two data words in parallel by us-
and instruction scheduling are applied independently of edoly two AGUs. Like in the M3-DSP, support for execution
other. Phase coupling between the different code generatidprocessor instructions in a zero-overhead hardware-loop is
tasks is achieved by passing alternative solutions to subieorporated.

guent optimization phases.

Genetic algorithms have been proven to be very effective

in finding optimal or near optimal solutions in huge sear Phase Coupled Code Generation
spaces. For this reason, we are using a special list-schedulin

algorithm in combination with a genetic algorithm as pr _e?ore presenting details of our genetic algorithm driven code
posed in [10]. In contrast to earlier work using geneti enerator, an overview of the code generation process is given.
algorithms fof scheduling problems (e.g. [10, 11, 12] ode generation is started after the source program is trans-
we perform a graph based code selection in’conj,uncti med into our low-level intermediate representation (LIR),
with a complete phase coupling of CS, IS and RA und ich serves as an exchange format for all succeeding trans-
consideration of the effects of the subséquent address c{fygations and optimizations. In order to propagate optimiza-
@ results to other phases, it allows storing machine depen-

generation phase. In contrast to the genetic algorithm dri i dt t architecture inf tion lik b
code generator presented in [13] we perform a stronger ph4§8* Program and targét architecture intormation lik€ number
type of available registers, functional units, parallel execu-

coupling by also integrating the code compaction phase ﬁ}gn possibilities and valid resource combinations of processor

considering the effects of address code generation. Our ¢ i In order t tih It tives f
mosomal representation also allows the representation of d3gjrUctions. In order to represent the resource alternatives tor

transfers and enables the representation of alternative macl"i‘ir?@edﬁc graph node of the LIR or abstract operation of the

programs which is essential for a complete phase coupli%.urce program (e.g. load or add), it is possible to associate

Another contribution of this paper concerns a technig lernative resource combinations with such a graph node. At
for merging different data paths (e.g. starting from CSE is level of abstraction the source program is represented by
by bypassingand a new crossover operatdg-crossovar a’set of DFGs which are then separately mapped to assembly

which takes into account the tree/graph structure of the givefde Py performing the following steps:

optimization problem. Due to the generic specification of the

target architecture, main parts of the code generator can bk Preprocessing

reused without modifications for other processors. The main task of this step is the generation of alternative

machine programs (or solutions) of the source program.

: This is done by inserting the maximum number of data

I Targ et Architectures transfers between two specific graph nodes which can po-

A M3-DSP tentially occur and generating an initial covering of the

The M3-DSP is an instance of a scalable DSP platform for graph nodes with processor resources. Note that this task

mobile communication applications [14]. The platform per- represents the only difference in generating the code for

the M3-DSP and the ADSP. Following this phase, it igenerations. An overview of the main steps of the optimiza-
possible to prune the set of resource alternatives by pton process of our genetic algorithm driven code generator is
forming constraint propagatiorwhich is a basic tech- givenin fig. 1.

nigue in constraint logic programming. Applying the
constraint propagation algorithm, thedeandedge con- é

1. Initialization]»[2. Evaluation]»[3. Selection]4—

sistencyof all graph nodes is ensured. Node consistency .

means that for each graph node it is made sure that only

valid resource combinations according to the given oper-. 1 DIOSSOVET) phase
ation specification can be chosen. In addition, edge €o _ |, siruction scheduling ; coupling
sistency assures a valid data transfer path between t\-Register allocaton

data dependent graph nodes. B aneion !

2. Code generation (CS, IS, RA)
In this step, the process of code generation aims at re- best individual
stricting the set of resource alternatives by optimizing
according to a specified cost function. In addition, every

graph node has to be assigned to a specific control step first all individuals of the population are initialized (1)
(or execution cycle). Unfortunately, the generation @y performing the tasks of code generation (CS, IS and RA)
optimal assembly code means solving an NP-hard opiind afterwards evaluated according to a specified cost func-
mization problem. Thus, there is a need for an optimizgon (2). Individuals which should inherit their genes to the
tion algorithm capable of finding optimal or near optimahext generation are selected probabilistically in the following
solutions in polynomial time. For this reason, we argtep (3). The crossover operator (4) performs a recombination
using an optimization algorithm based on a genetic algef the genetic information by choosing two individuals and
rithm Wthh IS deS(_:rlbed in more detail in section A. Thgwapp"]g genes between these individuals. Af'[erwardS, mu-
result is a DFG with scheduled (and compacted) graghtion (5) creates new gene material by changing alleles. The

Fig. 1. Overview of the genetic code generator

nodes covered by processor resources. resulting individuals are evaluated (6) again. The optimization
, process is iterated until a termination condition (here: maxi-
3. Address code generation (ACG) mum number of generations) is met. It is a very important

In this step, the address code for the given memory agiaracteristic of genetic algorithms that suitable gene material
cess sequence of a specific basic block is generated. Jdigassed to the subsequent generations. This permits one to

resulting sequential address code is inserted into the LIRayise unfavorable decisions made in a previous optimization
code and is then compacted by reusing the genetic algfmse. For this reason, genetic algorithms are adequate for

rithm driven code generator. solving non-linear optimization problems like phase-coupled

code generation. However, one of the main problems using

After these steps, the current graph based LIR represer@@netic algorithms is finding a suitable representation of the

tion is mapped to assembly code. underlying optimization problem and using genetic operators

. . .which can be executed very quickly (because they are used
Due to the generic implementation of the code generati y4 y(y

techniques, the code for steps 2 and 3 can be applied Withoutny times). _)))
modifications for the ADSP and the M3-DSP. The difference In the next section we describe the coding mechanism and
between the code generators is confined to the specificatioff ¥ initialization, evaluation, crossover, and mutation steps of
the different target architectures in the first step. our code generator in more detail.

A Overview of the Genetic Code Generator B Chromosomal Representation
A specific individual represents the machine code sequence of

!:n Oer#iigetr?t r(])?)rt]icrjrlw?zg][ﬁ)rﬁ)rtoetc):lr?rq?qﬁzn\]\?r:?é(r:t)i/sﬂc]:z[)eaIbsiengfgefg-he basic block (BB). For this purpose, the graph nodes of the
erating optimal or near optimal solutions according to a Specqurc.e program are mappfed Fo.genes (s. fig. 2).)

ified cost function. Genetic algorithms (GA) have proven to This means that every individual of a population has the
solve complex optimization problems by imitating the naturghme number of genes (in this case 23). The given graph
evolution process (see e.g. [16] for an overview). A poprode numbers represent the corresponding gene of the chro-
lation of a GA consists of several individuals, each of theMosome. Data transfers which can potentially occur are rep-
representing a potential solution of the optimization problergsented as CP-nodes (CP = copy). The available alternative
The representation of an individual is given bgraomosome resources (e.g. registefs B, C, ...) are stored along whith
which is subdivided intgenes The genes are used to encodéach gene.

the variables of the optimization problem. This means that

finding a suitable combination afleles(concrete values) for e .

the genes is the same as finding good solutions for the offg- Initialization

mization problem. By applying genetic operators ldslec- The initialization is performed for each individual separately
tion, mutation andcrossoveto the members of the populationwith the goal of generating a population of different solutions
the fitness of the individuals will increase in the course of tifnachine code sequences). Obviously, it is necessary to solve

DFG Chromosome o Next control ste@:s,ae + 1.
Gene 1:

&a pef ={"cnst2’, cnst_int9’} e Parallel execution with an operation (which is assigned
a l Gene2: 0 to a control step< ¢smqz)- This is only possible under
2 Ly“ ;Q - LH(J} e the assumption of no resource conflicts.
el NGB gE ArgiopyS e e In the presence of CSEs it is possible that the result of
i " Argz={’cnst2’, "cnst_int9’} an operation is already computed and is still available in
. y’ g’;ne}MUL} a register resource. If the current operation can define
] FU ={omu} (write) the same resource, an execution of this operation
q ; I S e can be avoided. This is calldgypassand is described in
B P cp ATGLtA BoC, chst2'} detail bel
\ L ‘ ArgL-{AB.Co ¢ more detail below.
_y’ @ Gene 17:
Yo P op {cr.ST.EloT. v} Finally, theready _set is updated in step (7). LéV’| and
P m ' I T b AcCU, '+ |E| be the number of graph nodes and edges respectively. The
CP g P Argl={"addri}’ " complexity of this step i©)|V3|.
cP l Arg2={AccuU,’*’}
3
o Sone 2ty NP N R I
m ‘Ei] FU = 2»}4u} M| | M| | M| | MUl
&c CP IT = ACCU 1 ACCU 1 ACCU 1 ACCU
pef ={Accu} " 1 W 1 ¥ 1
N e A T SR S]
. T i
o ! om ‘mom
Fig. 2: Chromosomal DFG representation » me i 9 LMJE i o i »
12 19 : 12 \ : ; ¢ijE] : 12
@ @ | @ @ @ g @
the tasks of code generation CS, IS and RA. The main initial- | ~~, ! /\i ! NG ! V'
ization procedure can be sketched as follows: LORRGH)))) (+)
L T S A e A
WHILE readyset# emptyDO a) b) c) d)
I/ Perform constraint propagation after steps (2) to (5) . .
(1) gene = InstructionScheduling(ind): Fig. 3: Example for bypassing
(2) opgene = CodeSelection(gene); The princi ;
-) 4) principle of bypassing
(2) fu gene = ge:ectrunctlonal_trmlt(gene) ; as mentioned before, the execution of a graph based code se-
(4) ’C’; gene = Re ect ni'flrluctlo_n ype(gene): |ection instead of a tree based approach bears an immense op-
(g) el gene = Ceglster_ ocation(gene); timization potential. Thus, besides a more effective realization
(7) 65 gene dompactlon(gene); of an instruction covering, storing of CSEs can be potentially
EN(D) pdate(ready -set) avoided. But, after insertion of all potential data transfer paths

between two graph nodes, the result of a CSE (s. multiplica-
tion node in fig. 2) is transported on different data paths to
The algorithm is based on a variant of the well-knadighr succeeding nodes. As we will demonstrate using the exam-
schedulingalgorithm [17]. While theready _set is not ple in fig. 3, bypassing helps to make multiple use of CSEs.
empty, the steps (1) to (7) are performed in a loop. In tdl genes which already have been processed are shaded and
first step (1), the next gene to be scheduled fready _set ~are marked by the assigned operation and by the destination
is chosen. After that, the processor operatifiyene , the register resource (s. genes 6, 10, 11, 17 and 18 in fig. 3 a)).
functional unitfu gene , the instruction typeit gene , and the Gene 10 performs airtual copy function which just trans-
destination register resourcef gene is determined proba- f€rs the data (fronACCY without consuming a real proces-
bilistically. Choosing one specific resource alternative meap@' instruction (toACCU. Gene 11 performs a concrete data
erasing all other resources of the corresponding set. In orHé‘x';‘Sfer OT) from register resourceCCUO registerA. In the
to avoid the selection of invalid resource combinations and ijdnt part, the CSE is stored into the memory (s. gene 17) and

valid data transfer paths, constraint propagation is performigdhen loaded from memory (gene 18). Part b) of the figure
after steps (2) to (5) respectively. shows that gene 19 is assigned to a data transfer and the reg-

. ister resourc@\. Since the corresponding data resides already
In order to assign the current gene to a control step, the gtegisterA (s. gene 11) the execution of this operation can
of alternatives is determined: dt,,,... is the highest assignedpe avoided. For this reason, a bypass is set from gene 11 to
control step, the gene can potentially be assigned to the fgkne 20 (s. fig. 3 c)). This means that the memory accesses of
lowing control steps: gene 17 and 18 can also be avoided. This is dead code and can
be eliminated (s. fig. 3 d)). In this way it is possible to elimi-
3assigning different instruction types for two specific genes means tHaate data transfers and also memory accesses. The determina-
these graph nodes must be scheduled to different execution cycles. tion of whether specific genes define the same value is decided

with the help ofvalue numbergs. e.g. [18]) which are com- are to check the correctness of the actual allele and to generate
puted once before starting the code generation process. Thius,new gene material by changing alleles. Performing muta-
two genes get the same value number if they define the satina for an individual is nearly the same task as initializing an
value. individual. In analogy to the initialization step we determine

a new allele of a gene by choosing an allele whose selection
potentially leads to a valid solution. Thus, the complexity of

D Evalu‘_atlon o o . the mutation step i©(|V3)).
The evaluation of the individuals of a population is required to

differentiate the solutions. Without loss of generality, we as-)

sume that individuals causing less costs represent better sdfu- EXperimental Results

tions than individuals with higher costs. The evaluation funfa this section, experimental results of our genetic algorithm
tion has an essential impact on the optimization progressdsiven code generator are presented for two DSPs (the M3-
the genetic algorithm because these values serve as a b@SP and the ADSP). Columns 1 and 2 of table 1 give an
for the subsequent selection step. For example minimizatioverview of the considered benchmarks. Except the MP3 ap-
of execution time is possible by counting the number of eplication, all benchmarks are taken from the DSPstone bench-
ecution cycles. A high number of cycles corresponds tonsark suite [19].

low fitness. Effects of the subsequent address code generation

phase can be taken into account by extending the evaluation Table 1: Benchmark characteristics
function. Since execution of the address code generation far #CSE
each individual would be a very time consuming process alr| benchmark #CSEs uses CPUls]
approximation is needed. In our case we consider the nunfFcm complexmultiply 7 3 19
ber of necessary memory accesses as an approximation of th@os biquadonesection 3 7 19
required address code. For this reason, among the solutionscu complexupdate 1 8 37
with minimal number of execution cycles those are preferred nru n_realupdates 1 2 21
which cause the smallest number of memory accesses. Theconv_| convolution 1 2 41
evaluation step can be doneGr{1). dot | dotproduct 1 2 14
f2d fir2dim 8 16 360
. Ims Ims 8 16 128
E Crossover and Mutation ncu | n.complexupdates| 16 a2 507
The crossoveroperator deals with generating new individu- ﬁ:\'s ﬁ;q“adN-seCt'O”s 150 il) (fg%
als by probabilistically swapping genes between two selected
NS . ml matrix1 5 10 128
individuals. Unfortunately, standard crossover operators likg
. . . . m2 matrix2 8 16 285
one pointor uniform crossover do not consider the special " mTx3 T maiix3 Vi i a0
graph/tree structure of our optimization problem. For thismp3— [mp3 27 54 1034

reason, we have developed a special crossover opeT&tor
crossovemwhich takes into account the execution order of the

: Columns 3 and 4 give some characteristics about the num-
genes. Experimental results have shown a much faster cg‘gi_of common subexpressions in the source programs and

vergence using the CS-crossover operator than standard opeér: . :

ators. The basic idea is that all genes of a specific indivi I€ir uses respectively. Finally, column 5 shows the CPU
. ; s me requirements of our code generator on a 2.7 GHz Intel

ual which are assigned before a specific control stejoss ntium 4 processor. The number of generations to be exe-

are left unchanged. This leads to valid partial solutions up ted by our code énerator durina code aeneration and ad-

this control step. Only those genes are swapped which are @s-, y 9 9 9

: ss code compaction is set to 8 times the number of graph
signed to a greater control step thatross The parameter R .
cscrossis determined for each individual again. In fig. 4 thigoqes, ot example, the MP3 applieation has 56 basic blocks

. - nd 1105 IR operations to be compiled by our code genera-
is demonstrated fafscross= 2. tor. In order to compile a basic block with 50 operations, 400
(8x50) generations are performed. Note that in most cases the
an an omEoon best result is already found early in the optimization process.
2|1 021
110 110

v 4
Parent1 Wj%—rﬁ Child Wﬂj—rrﬁ For this reason, the runtime of the genetic algorithm could be
3 31°5 5
i t

cs =2

w @<
]

& w (B3

0
_ drastically reduced in most cases without code quality losings.
Parenz [0]2[4[3[1]o4]3]5] ™ cniaz[o[2 [S10] + | o [O4]S]

All results are generated usingteady-statgenetic algo-
_ rithm with the following parametets population size: 30;
Fig. 4: CS-crossover number of individuals in the population to be replaced by

. the offspring: 4; mutation rate: 1/(number of graph nodes);
This step depends only on the number of graph nodggssover rate: 0.9.

(genes) and can be doned{|V|). The results are two indi- o
viduals consisting of recombined information of the parentg, RESUlts for the M3-DSP and the ADSP w.r.t. executiontime
e given in figures 5 and 6. The code quality using a tree

However, the large number of constraints (e.g. data dep d cod lecti d tricted ph i

dencies or resource constraints) which have to be handled E8f°¢ cOd€ seleclion and a resiricted phase couping as com-
lead to invalid solutions. In order to avoid such invalid sgl°o" in traditional code generators is set to 100%. Results
lutions we combine the subsequent mutation operator with @he implementation of the base genetic algorithm uses the genetic algo-
correctness check. So, the main tasks oftlwationoperator rithm library PGAPack [20].

— |~

NN

labeledgraph mean that a graph based code selection teadwupling of these subtasks. In this paper we have presented
nigue without bypassing is performegtaph+bypassing a genetic algorithm driven code generator which performs
shows the effectiveness of the bypassing technique. Finaflyaph based code selection and complete phase coupling of
graph+bypassing+pc indicates that a phase coupling otode selection, instruction scheduling (including compaction)
CS, IS and RA instead of a restricted phase coupling is doaied register allocation. In addition, our code generator takes
by also integrating the compaction phase into the genetic isto account effects of the subsequent address code generation
gorithm and taking into account the effects of address coplease. Results for several benchmarks and an MP3 applica-
generation. tion for two DSPs show the effectiveness and the retargetabil-

_ _ ity of our genetic code generator. The number of execution
Cgraph Cgraph+bypassing Egraph+bypassing+pc cycles is reduced by 51% on average for the M3-DSP and

® g N o by 38% on average for the ADSP compared to standard tech-

£ - : niques. Due to the generic implementation of our techniques

£8 1 on a common compiler framework, these techniques can be

p i applied to other processor architectures, too.

o3 1

3 i References

X

% 1

39 H 1 [1] R. Wilhelm and D. MaurerCompiler Design Addison Wesley, 1995.

= Q 5 o [2] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection
> Using Binate Covering for Code Size Optimization. Rmoc. of the

ICCAD, 1995,

Fig. 5: M3-DSP: Results w.r.t. execution time [3] G. Araujo, S. Malik, and M. Lee. Using Register Transfer Paths in

. . . Code Generation for Heterogeneous Memory-Register Architectures. In
The pictured results show that the execution time can proc. of the DAC1996. g yRed

be dramatically reduced for both DSPs by using the gz R. Leupers. Register Allocation for Common Subexpression in DSP
netic algorithm driven code generator. Performing a graph Data Paths. IProc. of the ASP-DAC000.

based CS technique with bypassingf@ph+bypassing) [5] S. Novack and A. Nicolau. Mutation Scheduling: A Unified Approach
for the M3-DSP already leads to an averagwg) im- to Compiling for Fine-Grain Parallelism. In K. Pingali, U. Banerjee,
provement of 26% and 23% for the ADSP. Compared to D. Gelernter, A. Nicolau, and D. Padua, editdranguages and Com-

. . ! pilers for Parallel ComputingLNCS. Springer—Verlag, 1994.
graph , this also shows the benefit of the bypassmg tec%] S. Hanono and S. Devadas. Instruction Selection, Resource Allocation,

nique for reducing the execution time. The code qual-" and Scheduling in the AVIV Retargetable Code GeneratoRrte. of
ity is further improved by performing a complete phase the DAG San Francisco, California, USA, 1998.

coupling (s. graph+bypassing+pc). In contrast to [7] T. Wilson, G. Grewal, B. Halley, and D. Banerji. An Integrated Ap-

+ i i i i iq i proach to Retargetable Code GenerationPtac. of the International
graph+bypassing , instruction compaction is mtegratedLTﬁt Sympositim on High-Level Synthe@tario. Canada, 1994,

into the phase coupling of the genetic code generator a D. Kastner and M. Langenbach. Integer Linear Programming vs. Graph-
the effects of address code generation are taken into acCOUNt. gased Methods in Code Generation. Technical Report A/01/98., Uni-
Compared tggraph+bypassing this leads to an average versitit des Saarlandes, 1998.

improvement of 34% for the M3-DSP and 19% for the ADSR9] S. Bashford and R. Leupers. Constraint driven Code Selection for
and demonstrates the benefit of the proposed techniques. Al- Fixed-Point DSPs. liProc. of the DAC1999.

together the execution time is reduced by 51% on average[ﬂ@i} S.J. Beatylnstruction Scheduling Using Genetic Algorithni#hD the-

_ 0 sis, Department of Mechanical Engineering, Colorado State University,
the M3-DSP and 38% for the ADSP. Fort Collins, Colorado, USA, 1991.

Clgraph Ograph+bypassing W graph+bypassing+pc [11] T. Zeitlhofer and B. Wess. Operation Scheduling for Parallel Functional

. _ Units Using Genetic Algorithms. IfProc. of the ICASSPPhoenix,

N . Arizona, USA, 1999.

[12] S. Fohlich. Codegenerierunguf Signalprozessoren mit Hilfe genetis-
cher Algorithmen PhD thesis, Technische UnivertitWien, 2001.

[13] M.Lorenz, T. Deger, R. Leupers, P. Marwedel, and G.P. Fettweis. Low-
Energy DSP Code Generation Using a Genetic AlgorithmPrioc. of
the ICCD, Austin, Texas, USA, 2001.

[14] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broadband

- mobile multimedia modem DSP. IRroc. of the ICSPATToronto,

100

80

60

rel. execution time in %

20

LS e P O Canada, 1998.
© &« e [15] Analog DevicesADSP-2001 User's Manual991.
Fig. 6: ADSP: Results w.r.t. execution time [16] T.Back. Evolutionary Algorithms in Theory and Practic®xford Uni-

versity Press, 1996.
. [17] K.R. Baker.Introduction to Sequencing and Schedulivgiley, 1974.
Vl COﬂC'USIOnS [18] S.S. Muchnick.Advanced Compiler Design and Implementatifor-

The growing use of DSPs in embedded systems necessiﬁt&s?/a;s;‘r‘fg‘li“”Jp&‘b'\'/serl‘;rz'e1?:97'Schg_er and H. Meyr. DSPstone
pptlleIng compilers Wh.ICh are capable of making use of t % A DSP-oriented Bénchmarkind Methodblogy. moc. of the ICSPAT
irregular processor architecture features. Due to the strong in- pallas, Texas, USA, 1994.

terdependencies between code selection, instruction schegg|-p. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm
ing, register allocation and address code generation, there is Library. Technical Report ANL-95/18, Argonne National Laboratory,

a demand for code generation techniques performing phase 199-

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

