
Using A Communication Architecture Specification in an Application-driven
Retargetable Prototyping Platform for Multiprocessing

Xinping Zhu Sharad Malik
Department of Electrical Engineering,

Princeton University, Princeton, NJ 08544, USA

Abstract—
In multiprocessor based SoCs, optimizing the communication

architecture is often as important, if not more important, than
optimizing the computation architecture. While there are ma-
ture platforms and techniques for the modeling and evaluation
of architectures of processing elements, the same is not true
for the communication architectures. This paper presents an
application-driven retargetable prototyping platform which fills
this gap. This environment aims to facilitate the design explo-
ration of the communication sub-system through application-
level execution-driven simulations and quantitative analysis.
First, we introduce an expressive communication architecture
specification which gives the designers the freedom to choose
and configure their custom interconnection schemes over a wide
range of communication architectures, covering the spectrum
from buses to packet switching networks. This, combined with
a distributed application model, drives a modular modeling and
simulation environment that permits detailed simulation of the
communication (and computation) architectures at the applica-
tion level. Through the case studies motivated by an embedded
system application, we show that through simulations, critical
system information such as timings and communication patterns
can be obtained and evaluated. Consequently, system-level de-
sign choices regarding the communication architecture can be
made with high confidence in the early stages of design. In ad-
dition to improving design quality, this methodology also results
in significantly shortening design-time.

I. Introduction
Modern System-on-the-Chip (SoC) designs increasingly con-

sist of on-chip distributed/parallel processing units. Driven by
the mounting computational complexity of multimedia and net-
work processing applications, together with the increasing ne-
cessity to produce high-quality, low non-recurring engineering
(NRE) cost IC designs in a shorter time frame, system designers
are pushing forward with multiple processing elements (PEs)
based SoC designs. Several such designs have been proposed
and implemented. RAW [16] is a scalable processing plat-
form which implements a simple, parallel and tiled architecture.
A typical RAW processor may contain 16 identical RISC PEs
connected by a 4-by-4 mesh packet-switching network. IXP
2800 [7] is a high-end network processing unit which contains
16 fully-programmable micro-engines and one XScale proces-
sor as the system control processor. The PEs and shared memory
clusters are connected via a high data-width and high bandwidth
bus network. These two examples highlight the increasing im-
portance of the communication architecture in the design of high
performance parallel computing systems.

In traditional processor design flow, designers start with a
cycle-accurate Instruction Set Simulator (ISS) to model and
simulate single-threaded application codes. The PE model
usually closely corresponds to a Register Transfer Language

(RTL) based micro-architecture representation which contains
PE micro-architectural components such as ALUs and register
files, memories, etc. Using simulation results, designers refine
the design through an iterative process. This traditional single-
processor oriented modeling methodology does not completely
address the new design challenges posed by the previous two
examples. The complexity of these multiple-processor based
processing platforms clearly exceeds the capability of modeling
just at the single processor level.

One promising alternative is to simplify the modeling task
by using a higher level of abstraction in hardware modeling.
Instead of modeling traditional PE micro-architectural compo-
nents such as ALUs, registers, we consider the entire PE as a
single component and the On-Chip Communication Architec-
ture (OCA) which connects these PEs as the first-class citizens
in modeling a heterogeneous multiprocessor based SoC archi-
tecture. Just as there exist different types of PEs, e.g. VLIW vs.
RISC, there also exist different types of OCAs, such as buses vs.
packet-switching networks. Even within the same type of OCA,
there are many design choices which are still to be made, such
as the buffer size, the protocols, etc. These choices are usually
not self-evident at the start of a design. Most of the time, mak-
ing the choices involves a detailed understanding of the com-
plex interplay between the application, PE micro-architecture
and the OCA. System designers must consider the speed, band-
width, power consumption and application constraints (such as
real-time deadlines) when determining the type and parameters
of the OCA to avoid latency penalties and achieve high system-
level performance.

Our design environment focuses on the following two aspects
of the prototyping and design exploration process: first, how to
present the system architecture, especially the OCA part, in a
uniform manner to the designers in the early stages of the de-
sign; second, how to enable designers to make informed choices
regarding different aspects of the OCAs during the design space
exploration. Clearly, one of the prerequisites of doing expressive
OCA design space exploration is an on-chip communication
architecture specification that is usable by retargetable design
tools. This specification should be able to explicitly describe
a multiprocessor based processing unit as what it is, namely a
collection of PEs and the OCA. Furthermore, relevant design
choices regarding the OCA should be explicit in this specifi-
cation. Finally, the environment should be able to execute real-
world applications through simulation to facilitate the evaluation
of specific OCA choices.

The contributions of this paper are twofold. First, we provide
a design environment targeting application driven design space
exploration for cycle-accurate multiprocessor modeling, espe-
cially for the OCA part. This environment significantly extends
previous work outlined in [20], [19] by incorporating a new
modeling language and simulation infrastructure and adding a
high-level language based distributed application model as in-
put. Second, a retargetable communication architecture speci-

1530-1591/04 $20.00 (c) 2004 IEEE

PEPEPEPE PEPE PEPE

Shared Bus

(a) A bus topology connecting
4 nodes

(b) A 4-by-4 torus network

Fig. 1. Two examples of interconnection network topology

fication has been developed within this framework. The envi-
ronment presents designers a wide range of OCA choices and
enables them to select from these choices, using the specifica-
tion, in the early stages of the design process. Compared to
the traditional design flow, our design framework can signifi-
cantly shrink the design turn-around time by supporting con-
current hardware and software modeling in an expressive and
flexible manner.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce some concepts and terminology of paral-
lel systems and the OCAs we use in this paper. Then, in Sec-
tion III we describe in detail the design flow and methodology
we propose for both distributed application and on-chip com-
munication architecture modeling. The design elements and
internals of the proposed communication architecture descrip-
tion are also discussed here. This is followed by Section IV,
where we focus on the implementation details of the simulation
framework based on two distinct simulation infrastructures. In
Section V, we present case studies exploring different aspects
of our simulation environment: to explore the different OCA
choices designers can make, to see different types of communi-
cation patterns the application can generate and how designers
can make OCA design decisions after analyzing the simulation
results. Some experimental results are presented and evaluated.
Section VI then discusses prior related work and Section VII
concludes the paper including a brief discussion of future direc-
tions.

II. System Architecture of the PE and the OCA
This section provides an overview of several relevant aspects

of the PEs, the OCAs and the interactions between them.
We start with some commonly used OCAs - viz. buses and

packet switched networks. A bus is usually composed of in-
terfaces, arbiters and a shared backplane. The PEs are con-
nected to the shared backplane through master and slave inter-
faces. The access to the backplane is arbitrated through the ar-
biters. Figure 1(a) shows a bus topology connecting 4 nodes.
In comparison, a packet switched interconnection network con-
sists of routers and links which are connected by a specific net-
work topology. Figure 1(b) shows a 4-by-4 network with a torus
topology. Both buses and packet-switching networks are widely
used in building distributed computing systems today, both for
the on-chip and off-chip cases. Examples are the RAW proces-
sor [16] for packet switched networks and the IXP2800 proces-
sor [7] for buses.

To give a high-level overview of how the OCA interfaces with
the PEs, we trace the path of a message sent from PE A to B. Fig-
ure 2 illustrates this process when it is implemented in a packet-
switched network. First, we assume a register-mapped OCA
interface where PE instructions can access network data easily
through registers. This is common in interconnection networks

{
 :
 send(dest, datalocation, length, handler)
 :
}

General
register

file

msg1

Packet
buffer
queue

router

flits

router

Incoming
message

queue

handler

General
register

file

flits

Network

SENDER (Node A)

RECEIVER (Node B)

Fig. 2. A trace of what occurs in an interconnection network
upon a send call

aggressively designed for low latency, such as the RAW Micro-
processor [16]. The process starts with user programs communi-
cating with each other using pre-defined library routines. Then,
these library routines are compiled into PE instructions such as
send and receive. Each instruction has a one-to-one correspon-
dence with one OCA functional primitive defined in [20], e.g.
OCA send, OCA receive. They are in turn understood by the
OCA interface and translated by the OCA modules into specific
OCA operation sequences. Each instruction has its own syntax
and semantics. For example, a send instruction encodes the des-
tination address, the data location and length, and the handler to
be invoked when the message arrives at the destination. At PE
A, when the send instruction issues, the OCA “send interface”
extracts the data from the specified register, and if the network
router (in the case of the bus, the master interface) is able to ac-
cept the data unit, injects it into the OCA right-away. If not, the
data unit is buffered in a dedicated buffer queue which sits be-
tween the OCA interface and the router (or the bus backplane).
On the receiving side, a receive instruction does no more than
pull out the data from the incoming message queue and write it
into specific register locations.

The above description points to the requirements imposed on
the modeling environment to quantitatively analyze the system
performance - it should be able to model each functional unit
and each operation illustrated by Figure 2 faithfully.

III. Modeling Methodology
A. On-chip communication architecture modeling

In modeling the OCA, we apply the methodology proposed in
[20]. We model an instance of an OCA as a collection of soft-
ware primitives (executable models) which correspond to their
hardware counterparts in the OCA, e.g. crossbars, buffers. In
hardware, the assembly of these micro-architectural elements
constitutes the OCA datapath. On the software side, these soft-
ware modules communicate to each other through messages and
ports. The control logic is implicitly embedded in the software
module. In addition, these structural elements are organized in
an object oriented class inheritance hierarchy. This hierarchy
is implemented as a reusable and flexible module library which
contains extensively tested and trustworthy components. Con-
sequently, in designing a new type of OCA, designers need to
examine and implement individual building blocks by either in-
stantiating or extending available modules in the library. Fur-
thermore, these new functional modules can be placed in the
appropriate spot in the module library after testing. As a result,

CLUSTER my_net;
NODE n0, n1, n2, n3;
n0.addr = 0; n1.addr = 1; n2.addr = 2; n3.addr = 3;
my_net.vc_size = 1;
my_net.init_credit = 64;
my_net.routing = “dimension”;
my_net = torus(n1, n2, n3, n4);

Torus

CLUSTER my_bus;
NODE n0, n1, n2, n3;
n0.addr = 0; n1.addr = 1; n2.addr = 2; n3.addr = 3;
my_bus.data_width = 32;
my_bus.buffer_size = 64;
my_bus.protocol = “round_robin”;
my_bus = bus(n1, n2, n3, n4);

Bus

Fig. 3. Interconnection network description examples

an OCA design is simplified into a process of integrating these
“plug and play” modules.

B. Template based retargetable communication architec-
ture specification

As in most hardware designs, there are two basic parts which
define the OCA: the control and the datapath. Currently in our
modeling approach, the control of the OCA is implicitly defined
in each OCA module. The OCA datapath is explicitly defined
by a netlist of interconnections between OCA modules. The task
of the communication architecture specification is to be able to
abstract this netlist in a succinct manner and facilitate the design
exploration process for the OCA part.

The specification is relatively short to ensure its ease of use.
It focuses on the most important aspects of the communication
architecture, namely the topology, routing protocol and flow
control algorithm. First, we observe that most current OCAs
use one of a set of common interconnection topologies in the
datapath part, such as a shared bus, torus, mesh, hypercube or
ring. In describing the netlist based topology, we start from sev-
eral well-know interconnection topology templates, namely bus,
torus, mesh and hypercube. An arbitrary topology is also pos-
sible through more low-level primitives. Then, we describe the
control part through parameter setting. After we specify the cus-
tom routing protocol through several keywords, we are able to
transform this specification into an internal modular representa-
tion for use in specific simulation platforms. Since we adopt a
modular approach in modeling, it is relatively easy to extend our
approach to support other type of interconnection topologies as
well. Furthermore, even though this specification is developed
with the aim of constructing machine specific SoC simulators,
its semantics are not restricted by the fact we only use this for
on-chip interconnection structures. Other work has shown that
this methodology is also applicable to off-chip interconnection
schemes [19].

The specification has C-like syntax. This syntax supports
the basic elements of a script language: recognition of variable
names and constants, declarations, expressions, and evaluation
of function statements. It supports both implicit and explicit
clustering. It supports generalized implicit clustering expres-
sions which connect a list of nodes with a schema specified by a
topology keyword. In addition, explicit connectivity graphs can
be built through individual connection statements. The cluster
can also be constructed hierarchically. Thus, a hierarchical bus
or network can be specified by connecting clusters. The inter-
connections between the nodes are captured by an internal graph
model after the specification is processed. The basic syntax of
the specification language is listed as follows in the Backus Naur
Form (BNF) format.�
ns statement list ��� �

ns statement ��� � ns statement list ��
ns statement ��� �

ns expression � � “;” ��� � ns declaration � � “;” ��
ns operator ��� �

BUS ��� � MESH ��� � TORUS ��� � RING ����
CUBE ��� � CONNECT ��
ns expression ��� �

ns name � � “=” � � ns operator � � “(” ��
“ns name list” � � “)” ���

�
ns name � � “=” � � ns operator � � “(” � � INTEGER � � “)” ����
ns name � � “.” � � ns name � �

“=” � � LITERAL ��
ns declaration ��� �

NODE � � ns name ����
CLUSTER � � ns name ��� � NODE � � ns name list �

We will explain the detailed semantics of the specification
language by walking through the two examples of interconnec-
tion schemes shown in Figure 3. On the left side, it shows a sam-
ple configuration of 4 nodes connected by a shared bus. On the
right side, a torus packet-switching network connecting 4 nodes
is shown. Most statements are C-like assignment statements or
declaration statements. Only two kind of entities are allowed in
the description, cluster and node. The cluster consists of a col-
lection of nodes. Both cluster and node can be parameterized as
shown in the examples. If cluster is parameterized, the param-
eter applies to all the nodes which are contained in the cluster.
For example, the bitsize of data unit used in the interconnection
scheme is defined through a parameter called data width. Thus,
all the nodes in the cluster have the same data unit size.

Furthermore, the torus network shown uses virtual chan-
nel(VC) scheduling [5] and a credit-based flow control scheme
which are defined using the cluster-wise parameters vc size and
init credit. In the routing parameter section, the torus example
uses a dimension-order routing which is denoted by the string
“dimension”, where we route along the � -axis first and then the	 -axis. The bus example uses a round-robin arbitration algo-
rithm denoted by the string “round-robin”. For each intercon-
nection schema provided by the language, one or more routing
or bus protocols are implemented. For example, the bus schema
implements a parameterized shared bus model. This model sup-
ports separate data and control signals and request/grant style
of centralized arbitration schemes. Several different arbitration
algorithms are provided in addition to the round-robin one.

As we previously discussed, our current emphasis is on de-
scribing the datapath of the OCAs. Thus, the specification lan-
guage at present only supports a number of pre-defined routing
and bus protocols for each schema. These control protocols are
embedded and implicitly defined in the implementation of the
involved library modules (written in C/C++). This approach has
its advantages and disadvantages. The specification itself is rel-
atively short. Also, it gives the designers the ease of choosing
several well-defined control protocols during OCA design ex-
ploration. However, this approach is not extensible enough to
cope with novel routing protocols and emerging complex bus
protocols. To accommodate this challenge, our future work will
explore the possibility of including a synthesis methodology to
automatically generate the control logic of the library modules
facilitated by a formal description. Hence, the proposed con-
trol description, together with the existing datapath description,
would provide a system-level OCA description which in turn
drives the design space exploration.

C. Distributed application modeling
As our first step, we model the distributed application based

on a number of simplified and explicit MPI-1 [10] like mes-
sage passing library routine calls. Currently the library is based
on high-level languages such as C/C++. To compile the pro-
gram written with message passing function calls, we use the
GNU compilation toolsuite. The toolsuite includes a target-
processor compatible cross-compiler to compile C/C++ pro-
grams into target-processor native machine instructions. This
process is helped by writing an assembly language based mes-
sage passing library implementation for each target processor.
For example, an ARM-V ISA [8] compatible PE has a dedi-
cated implementation of message passing library routines with
an interface defined in “arm mp.h”, which are in turn compiled

#include “ arm_mp.h”
main(){
…
if (ns_arm_get_addr() == 0){

d = ns_arm_send(1, c, 2);
}else{

a = -1;
do {

a = ns_arm_recv(0, b, 2);
}while (a== -1);

… }

main.c

/* send */
int ns_arm_send(int dest, int *value, int length);

/* recv, return value == -1, then failed */
int ns_arm_recv(int source, int * buf, int length);

/* get the local PE address mapping*/
int ns_arm_get_addr();

arm_mp.h

GNU ARM
Compiler Suite

ARM BinaryARM Binary

Fig. 4. Code example for the message passing library imple-
mentation for ARM-V PEs

to ARM coprocessor instructions, e.g. STC and LDC. Some
code examples are shown in Figure 4 to illustrate the flow of
using message passing library routine calls. “main.c” is a C
application program using the message passing library. In this
program, if instantiated with two PEs, the process local to PE
0 sends a message to the process at PE 1 while the process lo-
cal to PE 1 does a blocking receive of the message. Although
the application model is straightforward, our experience shows
that these two primitives together with several house-keeping
function calls (such as PE addressing) are sufficient to model
message passing based distributed applications.

During the application modeling, the particular choice of
OCA for the multiprocessor is not yet obvious. Once the dis-
tributed program is written, it can be correctly executed by a
multiprocessor model connected by any type of OCA. However,
the performance will depend significantly on the specific choice
made. The following section describes the total design flow that
helps in making the right choice.

D. Total design flow
Figure 5 shows the system design flow of the prototyping plat-

form. The blocks with shaded patterns represent the new soft-
ware additions to the framework. The ovals represent the steps
provided by the simulation infrastructure. On the top is the sys-
tem architecture description which consists of the OCA model
and the PE model. After the model parameters are checked
against specified value ranges, the specification is fed into the
simulator builders to construct a machine-specific executable
simulator. As shown in this figure, we support two distinct simu-
lator builders based on Liberty and SystemC. Details on this are
discussed in the next section. The distributed application model
is compiled into machine-specific binaries according to the steps
outlined in Figure 4. Then the binaries are used by the simulator
for execution driven simulation. After the simulation, relevant
performance statistics, such as execution cycles and link usages,
are gathered and analyzed. This is used in an iterative process in
design space exploration. Since both the application model and
the OCA model are straightforward and reusable, this leads to a
significant shortening of the design turn-around time.

IV. The Simulation Framework
A. Simulation infrastructure

We have implemented the methodology described in Section
III within two distinct modeling and simulation environments:
Liberty Simulation Environment (LSE) [18] and SystemC [11].
The following taxonomy is used throughout the following sec-
tions. The basic building blocks of the modular modeling en-

System Architecture
Description

Distributed
Application Model

Model
Configuration

Execution Execution

Simulation
Engine

LSE
Model

Wrapper

SystemC
Model

Wrapper

SystemC
Model

Wrapper

Performance

Application
Binary

Fig. 5. Design, modeling and simulation process

vironment are called modules. Each module has ports through
which tokens are sent to each other.

Both environments support construction of concurrent exe-
cutable models in a modular and hierarchical fashion. This en-
ables us to read in our system architecture specification shown
in Figure 3 as one of the inputs of the simulation engine. This
system architecture specification contains both the retargetable
communication architecture specification and the pointer to the
pre-compiled PE model library. Then the simulator builder con-
structs a machine-specific executable model inside the simula-
tion engine. Since both environments provide simulation ker-
nels, after the execution of the simulator, cycle-accurate perfor-
mance results can be obtained as output of the simulation en-
gine.

B. Integrating the PE model in both infrastructures
To be able to execute pre-compiled binary executables in

a cycle-accurate fashion within our hardware software co-
simulation environments, we need to incorporate an accurate PE
micro-architecture model in our platform. There exist two ap-
proaches, either we write from scratch two separate PE models
in both SystemC and LSE, or we reuse a third-party PE model in
our environment. Since we opt for an open platform where dif-
ferent types of PEs can be experimented using the retargetable
system specification, the former approach would be too rigid
and time-consuming to achieve our goal. Hence, the latter one
becomes the natural choice. In the reuse process, we keep the in-
terface simple and adopt related software patterns [6] to stream-
line the integration. In short, we provide an open interface which
enables us to incorporate heterogeneous PE models in both Sys-
temC and LSE.

As the first step, we choose a public-domain cycle-accurate
ARM simulator described in [13] as an example PE model. As
shown in Figure 5 minor addition and modification of the source
code of the simulator is needed to export necessary interfacing
library routines to both LSE and SystemC using the Wrapper
Façade Pattern [6]. For each PE to be wrapped, a clock tick
method is provided to advance the PE simulator cycle by cycle.
Furthermore, the integrated PE model needs to provide an input
and output interface to the OCA written in LSE and SystemC.
These interface are instances of the reusable modules defined in
[20]. Each interface contains a queue structure to buffer and for-
mat the tokens which are to be sent out or stored. This queue
based interfacing mechanism is proved to be general enough to
be applied to both LSE and SystemC. Since only a small set
of library routine calls, or the Façade, are exported to SystemC
and LSE, the calling environment does not know the PE-specific

variations and internal implementation details of each PE model,
e.g. whether it is a RISC processor model or a VLIW processor
model, or even the Model of Computation (MoC) used in the
PE timing model. Thus, other types of PE simulators, such as
a PowerPC timing model [13] could be incorporated as well to
construct a model of a heterogeneous multi-processor based ma-
chine. This further give us the possibility to utilize commercial
PE reference models or Intellectual Property (IP) models.

V. Case Studies
In our past work we have been able to evaluate the latency of

an interconnection network by testing it under statistical traffic
patterns [19]. However, the statistical approach has its limita-
tions in both the validity and the applicability of predicting real-
world performance of the interconnection network [9]. Hence,
we perform the following case studies focusing on application-
driven design space exploration for the communication architec-
ture.

As a sampled design space for the OCA part, we select the
following three different interconnection schemes:
 TORUS: a 3-by-3 torus network connecting 9 nodes
 BUS: a single shared bus connecting 9 nodes
 FULL: a fully enabled 9-by-9 crossbar connecting 9 nodes

Each node contains an ARM-V compatible PE and its related
interfaces. Both the PE model and OCA models are cycle-
accurate. We assume that the OCA and all the PEs share the
same clock. For the sake of comparison, we set the parameters
of the three cases as uniform as possible, such as the datawidth,
transfer latency, etc. For the packet switched network schemes
(TORUS and FULL), each connection is a bi-directional 32-bit
pipelined link. The crossbar uses a 3-stage pipeline and is fully
buffered. We utilize dimension-order routing as the torus rout-
ing protocol and worm-hole routing as the link scheduling al-
gorithm [5]. Hop-by-hop credit-based flow control is used to
prevent the buffer overrun problem. For our simple bus scheme
(BUS), it takes 3 cycles to write one 32-bit word from the master
interface to the slave interface if there is no contention. The ar-
bitration is done by a one-cycle centralized round-robin arbiter.

Based on these machine configurations, we implement
a high throughput crypto-processor running 3DES encryp-
tion/decryption applications. DES [15], the Data Encryption
Standard, is one of the most popular methods of encryption.
3DES encryption means encrypting data three times instead of
one. 3DES is now widely used in secure networking and other
security applications. Our experiments show that our modeled
machines are able to provide a maximum aggregate throughput
of up to 1250 encryption/decryption tasks per second. In com-
parison, one ARM processor in our experiment setup can only
achieve the throughput of 250 tasks per second. Each encryp-
tions/decryption task consists of one 3DES encryption operation
of a 1K byte plain-text and one 3DES decryption operation of
the result cipher-text.

In order to illustrate the importance of the communication
patterns exhibited by different applications, we select two sep-
arate parallel applications. The first one, KEY EXCHANGE,
distributes the required 3DES keys to all the PEs by perform-
ing one-to-one key exchange between the nodes. Another one,
3DES, uses a 3-stage DES pipeline to encrypt/decrypt the text.
The SystemC simulation results of the relative system through-
put are shown in Table 1. Here we set the system through-
put of the BUS configuration as the baseline performance and
calculate the speedup over the BUS case. We observe that
for KEY EXCHANGE, a communication-intensive application,
both TORUS and FULL are doing very well, achieving up to 4-
5X speedup over the BUS configuration. After our detailed anal-

Table 1
Speedup comparison of different machine configurations
Configuration KEY EXCHANGE 3DES

BUS 1.0 1.0
TORUS 4.454 0.997
FULL 4.632 1.001

Table 2
Comparison of the two simulation platforms

Models Simulation Speed
(Kcycles/sec)

Lines of Source Code

LSE 15.8 3800
SystemC 10.2 1600

ysis, we conclude that this significant speedup is due to the fact
that KEY EXCHANGE results in a bus contention rate of up to
8.82% (out of a bus utilization rate of 15%) during the BUS sim-
ulation. This indicates that the bus is already saturated and the
contention seriously degrades the entire system performance.
Also, the results indicate that TORUS is able to achieve simi-
lar performance as the FULL configuration which offers the best
possible interconnection scheme for a packet switching network.
However, it is usually much easier and less costly to implement
an on-chip network like TORUS compared to FULL. For 3DES,
a computation intensive application, it is shown that the differ-
ences of performance among these three cases are negligible.
We believe that this is because 3DES is relatively “silent” com-
pared to KEY EXCHANGE. It only causes a bus contention rate
of less than 0.1% for the BUS case. From the analysis of the
obtained results, we see that understanding the characteristics
of actual application traffic patterns is critical to the selection of
the appropriate OCA for real-world systems.

Table 2 gives the simulation speed and lines of source code we
obtain in the process of simulating 3DES on top of the TORUS
machine configuration in both SystemC and LSE. For the lines
of code, we only count additional software modules we need
to write besides the SystemC and LSE frameworks. Both the
application binary and the simulator builder are compiled using
GNU g++ 3.2 with the compile flag “-O3 -fomit-frame-pointer”.
The simulation is run on a PIII 1.1 GHz machine with Redhat
Linux 8.0. In terms of measuring the performance, we count the
system cycles advanced by all the PEs as the simulation speed.
We see that LSE simulation is significantly faster than SystemC
simulation. We attribute the speed advantage of LSE to its faster
scheduling kernel and the benefits of the low level modeling lan-
guage overhead (C++ vs. C) and compiled code simulation. But
it is still quite slow when we consider the fact that the simple
PE model we have integrated is capable of a simulation speed
of 492.3K cycles/sec (about 4X slower after we count the 9X
slow down of the multiprocessor simulation). We believe that
the slow down is due to the fact that there still exists no efficient
static scheduling technique to speed up the sequencing of local
OCA operations in the OCA models, while there exists an effi-
cient simulation kernel for the PE counterpart [13]. In addition,
there exists a non-negligible overhead related to the interface be-
tween the PE and the OCA models. Finally, from lines of code
developed we see that SystemC considerably surpasses LSE in
terms of software productivity even though its simulation speed
is slower.

A. Toolsuite evaluation and discussion
Once the designers have a correct application model and ma-

chine configuration ready, the design turn-around time is rela-

tively short. For the 3DES application running on top of each
of the previous three machines, the entire building process takes
less than 10 minutes for both SystemC and LSE. The simulation
could take longer time depending on the dataset size and num-
ber of iterations. In general, the process illustrated by Figure 5
is short enough to allow multiple iterations of model modifica-
tion, either in the application model or in the machine structure
model, in one day. The shortening of design turn-around time
enables system architects to not only explore the design space
more carefully but also to generate more reliable prototypes in
the early stages of the process, thus enhancing their productiv-
ity.

VI. Related work
On-chip communication architecture modeling is a relatively

new research area. [20] proposed a detailed methodology based
on modular design and an object-oriented class hierarchy as part
of the system-level design flow for programmable computing
platforms [14]. This methodology was later applied in [19] to
construct a fast power-performance simulator for on- and off-
chip interconnection networks. Sharing similar goals in design-
ing heterogeneous embedded systems, Metropolis [2] starts with
a formal semantic foundation, and then refines the design to the
lower levels. Instead, our approach is a bottom-up one. We start
with analyzing various types of OCA instantiations and then de-
rive a module library at different abstraction layers.

There exist extensive efforts in modeling and designing mul-
tiprocessors such as Network Processor Unit (NPU) based sys-
tems (both chip-level and board-level). StepNP [12] is a system-
level design exploration platform for NPUs. It uses SystemC to
model a multi-threaded architecture platform. Benini et al. [3]
use SystemC and a GNU GDB enabled Instruction-Set Simu-
lator (ISS) to model and simulate multiprocessor based archi-
tectures. This approach is limited by using a GDB based ISS
while our approach utilizes a fully functional and timing PE
model at the micro-architectural level. CovergenSC [4] is a
SystemC based system-level modeling and verification tool pro-
vided by CoWare. Equipped with a fast SystemC simulation en-
gine, it enables designers to rapidly create transaction level sim-
ulation models for multiprocessor systems (e.g. systems with
integrated LISA 2.0 processor models) connected by complex
on-chip buses. It also provides analysis tools to view system
information such as bus and processor utilization. However,
all these three platforms only cover a bus based interconnec-
tion model which connects all the processor cores together. In
comparison, our platform is general enough to model a variety
of different and complex interconnection choices driven by a
retargetable communication architecture specification, both of
which are lacking in the three previous approaches. Also our
platform provides a flexible and open interface to integrate the
needed PE model depending the required system type, simula-
tion granularity and timing accuracy. Additionally, StepNP and
CovergenSC focus on the transaction level and Benini et al. em-
phasize the ISA level. Finally Tensilica provides XTMP [17]
which can integrate multiple C-callable Xtensa instruction sim-
ulators connected by customized interconnect modules. Cur-
rently XTMP only supports functional simulation. In compari-
son, we currently provide a library of cycle-accurate models and
our approach is extensible to incorporate both transaction-level
models and mixed-level models.

VII. Conclusions
This paper describes our approach in constructing a fast and

retargetable modeling and simulation platform for multiproces-

sor design space exploration. This platform seeks to explore the
choices of various types of OCAs while considering the inter-
play between the application, the PE micro-architecture and the
OCA at various levels of granularity. To facilitate the process,
we use a relatively short and easy-to-use retargetable communi-
cation architecture specification and a pre-defined PE model to
synthesize a machine-specific high-performance cycle-accurate
simulation engine. This enables the designer to obtain and
analyze critical system information such as the timing, com-
munication patterns and channel utilization for each configura-
tion. Using a proof-of-concept embedded system application,
we demonstrate that system architects can rely on the simulation
results to make intelligent design choices regarding the OCA.
Also the design cycle is significantly shortened, especially in the
early stages of the design. Finally model re-usability is guaran-
teed and thus productivity of designers is enhanced.

Future directions include integrating the network configura-
tion language with a flexible control description within a unified
framework. Currently we release the source code of the library
of stable modules in SystemC together with the simulation in-
frastructure for research usage [1], so that more interesting work
on distributed computing platforms can be done.

References
[1] ARMn Simulator. http://www.ee.princeton.edu/ � mescal/software.html.
[2] The Metropolis Project. http://www.gigascale.org/metropolis.
[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Pon-

cino. SystemC cosimulation and emulation of multiprocessor SoC designs.
IEEE Computer, 36(4), 2003.

[4] CoWare Inc. CoWare ConvergenSC System Designer. http://www.coware.
com.

[5] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel
and Distributed Systems, 3(2), 1992.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Publishing
Company, New York, NY, 1995.

[7] Intel Corp. Intel IXP2800 Network Processor. http://www.intel.com/
design/network/products/npfamily/docs/ixp2800 docs%.htm.

[8] D. Jaggar and D. Seal. ARM Architecture Reference Manual (2nd Edition).
Addison-Wesley, 2000.

[9] W. B. Ligon III and U. Ramachandran. Toward a more realistic perfor-
mance evaluation of interconnection networks. IEEE Transactions on Par-
allel and Distributed Systems, 8(7), 1997.

[10] Message Passing Interface Forum. MPI: A Message Passing Interface
Standard. Technical report, University of Tennessee, Knoxville, Ten-
nessee, US, 1994.

[11] Open SystemC Initiative. SystemC. http://systemc.org.
[12] P. G. Paulin, C. Pilkinton, and E. Bensoudane. StepNP: A system-level

exploration platform for network processors. IEEE Design & Test Com-
puters, 19(6), 2002.

[13] W. Qin and S. Malik. Flexible and formal modeling of microprocessors
with application to retargetable simulation. In Proceedings of 2003 Design
Automation and Test in Europe Conference (DATE 03), 2003.

[14] W. Qin, S. Rajagopalan, M. Vaccharajani, H. Wang, X. Zhu, D. August,
K. Keutzer, S. Malik, and L.-S. Peh. Design tools for application specific
embedded processors. In Proceedings of Second International Workshop
on Embedded Software (EMSOFT ’02), 2002.

[15] B. Schneier. Applied Cryptography. John Wiley & Sons, New York, NY,
1996.

[16] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.
The Raw Microprocessor: A computational fabric for software circuits
and general-purpose programs. IEEE Micro, 22(2), 2002.

[17] Tensilica, Inc. Xtensa Instruction Set Simulator and Xtensa Modeling Pro-
tocol. http://www.tensilica.com.

[18] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.
August. Microarchitectural exploration with Liberty. In Proceedings of
the 35th International Symposium on Microarchitecture (MICRO), 2002.

[19] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-
performance simulator for interconnection networks. In Proceedings of
the 35th International Symposium on Microarchitecture (MICRO), 2002.

[20] X. Zhu and S. Malik. A hierarchical modeling framework for on-chip com-
munication architectures. In Proc. International Conference on Computer-
Aided Design, 2002.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

