
 

Mapping Multi-Million Gate SoCs on FPGAs:  
Industrial Methodology and Experience 

 
 

H. Krupnova 
 

CMG/FMVG, ST Microelectronics  
Grenoble, France 

Helena.Krupnova@st.com 
 
 

Abstract 
 

Today, having a fast hardware platform for SoC 
software development prior to silicon is an important 
challenge to gain the time-to-market. The FPGAs offer an 
excellent prototyping basis for building hardware 
platforms since more than ten years ([1]). However, as 
the circuit complexity increases and project timeframes 
shrink, building a multi-FPGA prototype represents a real 
challenge from the complexity viewpoint. The paper 
describes the state-of-the-art mapping methodology, 
prototyping tools and flows, shows the most difficult 
mapping problems and the ways to overcome them. The 
paper is issued from the experience of mapping on FPGA 
platform of four latest highly complex ST 
Microelectronics SoCs ranging from 1.5 to 4 million real 
ASIC gates mapped to up to 9 highest capacity FPGAs. 

1. Introduction 
 

As the complexity of digital systems increases, the 
amount of the embedded application software increases 
even faster. To meet the time-to-market requirement and 
to reduce the number of silicon cuts, the software teams 
would like to start the software development as early as 
possible. The FPGA-based prototyping ([2], [5], [6], [7], 
[9]) allows building the hardware platform before the 
silicon becomes available.  

Starting the software development in advance allows 
saving weeks and even months. In addition, very difficult 
hardware bugs may be detected only when running the 
real software with real applications. Thus, there is an 
increasing interest from the design teams to hardware 
prototyping technologies. 

When the basic functional block development and IP 
integration sufficiently advances, the design team 

becomes able to produce the first assembled backbone 
(Figure 1). Usually it includes the processor(s), memories, 
memory controllers and the system bus.  This backbone is 
delivered to the verification team and is ready to be ported 
to emulators ([11]) to debug the hardware. Once the 
hardware is working and stable, the mapping on the 
FPGA platform targeted for the software validation ([3]) 
can start.  
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Fig. 1: FPGA prototyping timeframes 
 

There are several validation iterations before the first 
tape-out. During each iteration, more IPs are added to the 
backbone. The design is thus validated incrementally. 
Building the FPGA prototyping platform follows the 
same schema. The objective is to have a usable FPGA 
platform early enough before the first silicon and in the 
same time containing the mature design attractive for the 
software development teams. From one side, the software 
teams want the design mapped on FPGAs to be mature 
enough (the tape-out version is the ideal one). From the 
other side, the FPGA prototype has to be ready as early as 
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possible: weeks and even months before the tape-out. The 
FPGA prototyping team has to cope with this 
contradiction. The best way to satisfy both requirements 
is to have an extremely fast FPGA mapping flow.  

The challenge today is the increasing complexity of 
the SoC projects: more than one core, several big 
memories, about ten main IP blocks developed in 
different world locations, ten to twenty or even more 
clocks (without counting the gated clocks), several dozens 
of small-size memories, etc. Mapping such a system on an 
FPGA platform (different technology, different clocking 
resources, etc.) requires more and more time. However, 
the challenge is to do this mapping in a very short time, 
just a few weeks and even few days. 

If the fast FPGA prototype is not available in time, 
the software team can continue to use the emulator ([11]) 
for software development. In the beginning, the emulator 
is the only one available hardware platform. The 
disadvantage of using an emulator for software 
development is relatively low speed (10 to 100 times 
slower than an FPGA prototype) and availability: the user 
time on emulator is expensive and the machine is usually 
shared between several projects and several design teams.   

The amount of practical data about the latest 
prototyping projects collected in this paper provides a 
view into the industrial FPGA prototyping challenges, 
methods and platforms. 

 
 

2. The design data  
 

The four case studies presented in this paper are 
listed in Table 1. They are the ST Microelectronics CMG 
projects called A, B, C and D. Design C is represented 
twice: C-1 corresponds to the first iteration; C-2 
corresponds to the second iteration. The Tables 1-4 
present a statistical data about the FPGA platforms 
created for these SoCs. The chip A is a digital TV 
processor and is already available on the market. The 
silicon for the chip B (a set top box system) already 
exists. The tape-out is already done for the chip D (a 
DVD chip). The tape-out for the chip C (a set top box 
system) is planned by the end of the year. All these chips 
contain the video processing blocks and some of them can 
also process the audio.  

The Table 1 presents the estimated size in number of 
ASIC gates without counting the memories, the number 
and type of FPGAs that were used to build the most 
recent hardware platform for this chip, the processor cores 
and big size memories. The prototyping for the chip A 
was performed using Xilinx VirtexE FPGAs XCV2000 
having the approximate ASIC gate capacity of 250K 
gates. The prototyping for the other SoCs was done using 
the Xilinx Virtex2 XC2V6000 ([12]) chips (approximate 
ASIC gate capacity 450K gates). The first assembled 
version of the chip C (C-1) uses 4 XC2V6000 FPGAs. 
The latest mapped version of the chip C (C-2) uses 7 
XC2V6000 FPGAs and 2 XC2V8000. For the designs A, 
B and D, the data presented below corresponds to the 
latest mapped version. 

 
 Size in ASIC 

gates (no 
memory) 

Number of 
FPGAs 

Embedded Cores External 
Memories 

Design A 1.5 Mln 6 XCV2000 ST20C2C200 4Mx16 SRAM 
Design B 4 Mln 8 XC2V6000 ST40-103, ST20C2C201 2 x 4Mx32 DDRs 
Design C-1 1.5 Mln 4 XC2V6000 ST20C2C201 8Mx16 DDR 
Design C-2 4 Mln 7 XC2V6000 + 

2 XC2V8000 
ST20C2C201 8Mx16 DDR 

Design D 3 Mln 7 XC2V6000 ST20C104, ST220 4Mx16 DDR 
Tab. 1: Prototyping projects complexity 

 
 Average 

FPGA filling 
Maximal 

FPGA filling 
Size of the biggest IP Number of the 

top-level pins 
Design A 70% 94% 91% of the XCV2000 3350 
Design B 84% 99% 140% of the XC2V6000 8100 
Design C-1 63% 99% 53% of the XC2V6000 2500 
Design C-2 82% 93% 115% of the XC2V6000 8600 
Design D 84% 99% 99% of the XC2V6000 6100 

Tab. 2: FPGA prototype complexity 
 
 
 



 
 System 

Frequency 
Number of 
clocks used 
in more than 

1 FPGA 

Number of gated clocks Maximal number 
of clocks on one 

FPGA 

Design A 1.5MHz 5 ~ 200 6 
Design B 2MHz 7 ~ 800 14 
Design C-1 2MHz 4 ~ 150 10 
Design C-2 1MHz 4 ~300 14 
Design D 1MHz 6 ~ 300 11 

Tab. 3: FPGA prototype clocking data 
 
 Fastest clock 

frequency 
Number of 
mapping 
iterations 

Complete design or a sub-
system mapped 

Pin multiplexing 
ratio 

Design A 10MHz 3 Complete design 4x1 
Design B 24MHz 3 Sub-system 4x1 
Design C-1 24MHz 1 Sub-system 4x1 
Design C-2 12 MHz 2 Complete design 4x1 
Design D 12MHz 2 Sub-system 4x1 

Tab. 4: Prototyping project data 
 

Two of four presented SoCs contain each two 
processors. The average FPGA filling is ranging from 
60% to more than 80%. The maximal FPGA filling goes 
up to 99%. Fitting the corresponding IP block inside the 
FPGA was in this case a real issue. In most cases, the 
size of the biggest IP did not exceed the FPGA size. 
However the design B contained the ST40 core, which 
was split on 2 XC2V6000 FPGAs and one of the video 
blocks demanding 120% of the XC2V6000 FPGA. This 
block was finally not mapped on FPGA and kept as 
dummy. In general, an IP block fills more than a half of 
the FPGA size. The ideal partitioning strategy is to put 
one (or more if the IPs have common clocks and 
communications) IP per FPGA. Splitting an IP block in 
several FPGAs is not desired because of the clocking, 
speed and complexity reasons. 

All presented ST SoCs are based on the ST Bus 
architecture. The ST Bus is a configurable bus that is 
generated by the dedicated internal tools and is tailored 
for the application. It contains the protocol handlers, size 
converters and big crossbars for the communication. 
Having numerous advantages from the system viewpoint, 
for FPGA mapping the ST Bus is one of the difficult 
issues. Being based on crossbar logic, it introduces a 
huge number of nets in the top netlist (up to 10000 for 
the most complex SoCs). On the opposite, the maximal 
number of I/Os on the latest FPGAs is 1104 ([12]). 
Handling the ST Bus is thus the basic partitioning 
difficulty when mapping the ST designs. The FPGA 
implementation is not feasible without using the pin 
multiplexing. Because of the pin multiplexing, the system 
speed is divided and is situated between 1 and 10 MHz. 

The presented complex SoCs require about 10 to 20 
clocks. The FPGA prototype may require additional 
clocks to implement the pin multiplexing, make working 
the complex memories, model the special structures on 
FPGAs, etc. Due to the limited number of clock 
resources inside the FPGAs and on the board, the 
prototyping engineer has to simplify and if possible 
merge the clock domains. In the worst case he may have 
a situation when there are more than twenty clocks on the 
same FPGA while the FPGA has in total 16 global clock 
lines (and the place and route problems may start when 
exceeding 8 global lines) and 24 low skew lines with 
lower quality. The maximal number of clocks on one 
FPGA presented in Table 3 corresponds to the design 
after all possible optimizations, clock line merges, etc. 
The fastest clock frequency corresponds to the 
multiplexing or other “service” clock. 

The presented data gives an idea about the 
complexity of building the FPGA implementations for 
the latest SoCs. Due to the huge complexity there is no 
time to build the custom FPGA board for these designs. 
The size of some IPs may exceed the biggest FPGA size, 
the demand in clock resources may exceed the FPGA 
resources and the required pin number exceeds the 
maximal FPGA pin number. Running the FPGA 
synthesis and place and route is also extremely time 
consuming. In addition, due to the presence of gated 
clocks and non-mappable ASIC structures the designs 
usually don’t work when running the first tests on the 
FPGA platform. They require to be debugged to make 
the FPGA implementation working.  Mapping such SoC 



 designs is also highly stressful for the whole chain of the 
involved FPGA tools and platforms. 

3. The FPGA platform 
The Aptix System Explorer MP4 platform ([3]) was 

selected to target the described above requirements. This 
platform may host up to 12-14 FPGAs. As soon as the 
new generation of FPGAs is available, the platform can 
be upgraded with new FPGA modules. The MP4 board 
contains 4 crossbars – FPICs - that realize the 
programmable interconnect between the FPGAs. The 
total number of FPGA pins that may be routed by the 
crossbars is 2880. The MP4 board is based on folded clos 
architecture: when mounted, each FPGA is connected to 
all 4 FPICs. The FPICs have connections to FPGAs and 
between them. The board is always routable. Since the 
introduction of the Flex FPGA modules ([4]) it is also 
possible to realize the direct connections between the 
FPGAs. This makes possible to use up to 1100 FPGA 
I/Os. Because the connections are direct, they don’t 
require pins from the free-hole area, thus increasing the 
board capacity and allowing use up to ten FPGAs. The 
system is really open and flexible. By changing the 
number of FPGAs mounted on the board and changing 
the way they are connected, it allows building dedicated 
FPGA architecture for each design (see Figures 2-6). In 
addition, custom interface and memory boards may be 
mounted on top of each FPGA module, allowing 
connections with real hardware or use of big memories. 
Figures 2-6 represent the FPGA architecture for each of 
four presented above SoCs. Design A was mapped before 
Aptix created its Flex modules ([4]) allowing FPGA-to-
FPGA connections. All the other circuits were mapped 
using the Flex modules. 

The MP4 board view containing a common 
configuration for both C and D SoCs is presented in 
Figure 7. Both designs use the external interface with ST 
Microconnect box allowing the interface with 
workstation-running application software through the 
Internet. Both designs have the DDR memories emulated 
using external SRAM  modules. 
 

 
 
 
 
 
 
 
 

 
 

Fig. 2: FPGA board configuration for the 
design A 
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Fig. 3: FPGA board configuration for the 

design B 
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design C-1 

 
 
 
 
 
 
 
 
 
 
 
 

FPIC1 FPIC2 FPIC3 FPIC4

FPGA1 FPGA2 FPGA3 

FPGA5 FPGA6 FPGA7 

100 200 130 

200
270 250 

FPGA4

FPGA8

160

430

80 80 

160 160 160 

130

FPGA5

 
Fig. 5: FPGA board configuration for the 

design C-2 
 

FPIC1 FPIC2 FPIC3 FPIC4

FPGA1 FPGA2 FPGA3 

FPGA5 FPGA6 FPGA7 

160 240 320

160
320 480

FPGA8
160

160 80 160 

 
 
 

320 480

400 480 400

FPGA6FPGA5 FPGA4 
320 

FPGA3FPGA2 FPGA1 

FPIC4FPIC3 FPIC2 FPIC1 

 
 
 
 
 
 
 
 
 

Fig. 6: FPGA board configuration for the 
design D 

 



 
 

Fig. 7: Aptix board view for C and D designs 
 
To debug the design, the MP4 platform allows the 

direct visibility (using the HP logic analyzer) of all the 
signals routed by FPICs. In addition, it is possible to see 
the internal FPGA signals using the Xilinx incremental 
probe routing capability supported by Aptix Explorer 
software. 
 

4. The mapping flow 
 
The mandatory conditions to start the FPGA 

prototyping are the following. 
1) Each IP block was validated in simulation. 
2) The assembled top design was validated on the 

emulator. 
3) The synthesizable test bench is available and 

validated in emulation. 
The FPGA mapping can be initiated when the design 

hardware is stable and operational. The mapping time 
usually consists of the mapping itself and the debugging 
and running the tests on the board. A number of mapping 
steps presented below reflects the complexity of the 
mapping process. 

1) Mapping on Xilinx Virtex2 technology is done 
by specifying Xilinx as a target library inside 
the Synopsys DC. The reason to use the DC 
synthesis is its closeness to the ASIC 
implementation flow, thus avoiding all kind of 
synthesis problems. In addition, the design team 
often delivers the design to the verification team 
in internal Synopsys gate format (Gtech or 
Corelib). 

2) There is a number of modifications that are 
required for the FPGA netlist: customizing the 
testbench to Aptix platform, introducing clock 
generation and reset logic, building the clock 
distribution on the FPGA platform, changing the 

non-mappable structures and gated clocks, etc. 
These modifications are performed using the Design C : 9 FPGAs ST Microconnect Link 

FPGAs 

Design D : 7 FPGAs
Synopsys dc_shell. Script utilization is vital to 
be able to iterate during the mapping and the 
debugging process: it guarantees repeatability, 
eliminates human errors and allows reuse 
between different design versions and even 
different designs. 

3) The FPGA mapping may also be done using the 
Synplicity Certify tool ([8]). It is used for FPGA 
synthesis, removing the gated clocks and design 
partitioning. The synthesis starting from RTL 
produces up to 40% improvement in area 
comparing to DC synthesis from Gtech. 
Synplicity synthesis is used for most critical IP 
blocks and in all cases when there is a problem 
with fitting a block into an FPGA. The RTL is 
requested from the design team to use the 
Certify. 

4) The netlist viewing and analysis is performed 
using the Debussy tool from Novas ([10]). It 
makes possible analysis of the clock domains, 
gated clock structures, logic cones during the 
debugging, etc. 

5) The ASIC memories need to be specifically 
modeled for the FPGA technology. Xilinx 
Coregen tool is used to build the Xilinx 
memories. In addition to modeling the low-level 
memory, the user needs to design and validate 
the memory wrapper. 

6) The FPGA place and route is performed using 
the Xilinx ISE tool. It is encapsulated by the 
Aptix Explorer tool, which does the board place 
and route. The FPGA place & route jobs are 
dispatched to multiple workstations using the 
LSF tool. The place and route tool is also used 
in standalone to clean the FPGA place and route 
problems, to estimate the block sizes, to check 
the presence of the gated clocks and clean the 
clock problems. 

7) The FPGA pin multiplexing is performed using 
Aptix multiplexing tool.  

8) Aptix Logic AggreGater tool is used for multi-
FPGA partitioning.  

9) Celaro emulator from Mentor Graphics ([11]) is 
used as a reference for debugging. The design 
mapped on emulator is the closest to the FPGA 
prototype and is preferable than simulation.  

The FPGA mapping flow is presented in Figure 8. 
Putting all steps together represents a tedious amount of 
work, which requires a significant amount of time, which 
is in contradiction with the requirement to build the 
FPGA platform in a short time.  

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: The mapping flow 
 

The most critical issues when mapping on FPGAs 
are related to timing and partitioning. The FPGA 
technology is different from the ASIC technology and 
this highly impacts clocking. The FPGA interconnect 
delays are not predictable and there are glitches. This 
makes it very hard to implement the correct functionality 
of the gated clocks. Unfortunately there are more and 
more of them in the designs. A significant part of gated 
clocks may be cleaned automatically using for example 
Certify tool. However, the designer still needs to clearly 
understand the clock gating to guide the “de-gating” 
process. Finally, there always exist special cases that 
must be arranged manually (divided clocks, removing of 
scan clock multiplexers, etc). In addition, ASIC circuits 
may contain structures impossible to map correctly on 
FPGAs that require to be modified. An example is 
presented in Figure 9. The signal OUT will have glitches 
near both clock edges. If it is registered using the same 
clock signal, there is a high probability that a wrong 
value will be registered. 

 
 
 
 
 
 

 
Fig. 9: Structure not mappable on FPGA 

 
Today, introducing more debugging support and 

automatic cleaning of timing problems is made at a cost 

of reducing the platform speed (the Celaro emulators 
may be taken as an example). A lot of work must be done 
manually to build the fast FPGA platform exploiting the 
full advantages of the modern FPGA technology. 
Roughly, the tradeoff is: if a fast mapping is desired, the 
platform will be slow. If a fast platform is desired the 
mapping will be slow. 
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5. Conclusions 
 

To cope with the SoC complexity, the FPGA 
mapping tools and platforms must evolve to provide 
better debugging capabilities, more powerful clock 
resources, clock analysis features, automatic clock 
mapping, knowledge bases enumerating the existing 
problems and solutions, design rule checkers, smart 
design partitioners taking into account clock resources, 
common test benches and constraint file formats for 
different hardware platforms, etc. The “ideal” future 
prototyping platform would be one, which combines the 
speed advantage of the modern FPGA technology with 
the ease of mapping offered by the big emulation 
platforms.  
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