

Mapping Multi-Million Gate SoCs on FPGAs:
Industrial Methodology and Experience

H. Krupnova

CMG/FMVG, ST Microelectronics
Grenoble, France

Helena.Krupnova@st.com

Abstract

Today, having a fast hardware platform for SoC
software development prior to silicon is an important
challenge to gain the time-to-market. The FPGAs offer an
excellent prototyping basis for building hardware
platforms since more than ten years ([1]). However, as
the circuit complexity increases and project timeframes
shrink, building a multi-FPGA prototype represents a real
challenge from the complexity viewpoint. The paper
describes the state-of-the-art mapping methodology,
prototyping tools and flows, shows the most difficult
mapping problems and the ways to overcome them. The
paper is issued from the experience of mapping on FPGA
platform of four latest highly complex ST
Microelectronics SoCs ranging from 1.5 to 4 million real
ASIC gates mapped to up to 9 highest capacity FPGAs.

1. Introduction

As the complexity of digital systems increases, the
amount of the embedded application software increases
even faster. To meet the time-to-market requirement and
to reduce the number of silicon cuts, the software teams
would like to start the software development as early as
possible. The FPGA-based prototyping ([2], [5], [6], [7],
[9]) allows building the hardware platform before the
silicon becomes available.

Starting the software development in advance allows
saving weeks and even months. In addition, very difficult
hardware bugs may be detected only when running the
real software with real applications. Thus, there is an
increasing interest from the design teams to hardware
prototyping technologies.

When the basic functional block development and IP
integration sufficiently advances, the design team

becomes able to produce the first assembled backbone
(Figure 1). Usually it includes the processor(s), memories,
memory controllers and the system bus. This backbone is
delivered to the verification team and is ready to be ported
to emulators ([11]) to debug the hardware. Once the
hardware is working and stable, the mapping on the
FPGA platform targeted for the software validation ([3])
can start.

Time gain

…

Start the RTL
development

1st Assembly
Netlist

2nd Assembly
Netlist

…

Final Assembly
Netlist

1st HW prototype
available. Software

development can start

1st silicon

In the past
software

development
started here

Tapeout

Fig. 1: FPGA prototyping timeframes

There are several validation iterations before the first
tape-out. During each iteration, more IPs are added to the
backbone. The design is thus validated incrementally.
Building the FPGA prototyping platform follows the
same schema. The objective is to have a usable FPGA
platform early enough before the first silicon and in the
same time containing the mature design attractive for the
software development teams. From one side, the software
teams want the design mapped on FPGAs to be mature
enough (the tape-out version is the ideal one). From the
other side, the FPGA prototype has to be ready as early as

1530-1591/04 $20.00 (c) 2004 IEEE

possible: weeks and even months before the tape-out. The
FPGA prototyping team has to cope with this
contradiction. The best way to satisfy both requirements
is to have an extremely fast FPGA mapping flow.

The challenge today is the increasing complexity of
the SoC projects: more than one core, several big
memories, about ten main IP blocks developed in
different world locations, ten to twenty or even more
clocks (without counting the gated clocks), several dozens
of small-size memories, etc. Mapping such a system on an
FPGA platform (different technology, different clocking
resources, etc.) requires more and more time. However,
the challenge is to do this mapping in a very short time,
just a few weeks and even few days.

If the fast FPGA prototype is not available in time,
the software team can continue to use the emulator ([11])
for software development. In the beginning, the emulator
is the only one available hardware platform. The
disadvantage of using an emulator for software
development is relatively low speed (10 to 100 times
slower than an FPGA prototype) and availability: the user
time on emulator is expensive and the machine is usually
shared between several projects and several design teams.

The amount of practical data about the latest
prototyping projects collected in this paper provides a
view into the industrial FPGA prototyping challenges,
methods and platforms.

2. The design data

The four case studies presented in this paper are
listed in Table 1. They are the ST Microelectronics CMG
projects called A, B, C and D. Design C is represented
twice: C-1 corresponds to the first iteration; C-2
corresponds to the second iteration. The Tables 1-4
present a statistical data about the FPGA platforms
created for these SoCs. The chip A is a digital TV
processor and is already available on the market. The
silicon for the chip B (a set top box system) already
exists. The tape-out is already done for the chip D (a
DVD chip). The tape-out for the chip C (a set top box
system) is planned by the end of the year. All these chips
contain the video processing blocks and some of them can
also process the audio.

The Table 1 presents the estimated size in number of
ASIC gates without counting the memories, the number
and type of FPGAs that were used to build the most
recent hardware platform for this chip, the processor cores
and big size memories. The prototyping for the chip A
was performed using Xilinx VirtexE FPGAs XCV2000
having the approximate ASIC gate capacity of 250K
gates. The prototyping for the other SoCs was done using
the Xilinx Virtex2 XC2V6000 ([12]) chips (approximate
ASIC gate capacity 450K gates). The first assembled
version of the chip C (C-1) uses 4 XC2V6000 FPGAs.
The latest mapped version of the chip C (C-2) uses 7
XC2V6000 FPGAs and 2 XC2V8000. For the designs A,
B and D, the data presented below corresponds to the
latest mapped version.

 Size in ASIC

gates (no
memory)

Number of
FPGAs

Embedded Cores External
Memories

Design A 1.5 Mln 6 XCV2000 ST20C2C200 4Mx16 SRAM
Design B 4 Mln 8 XC2V6000 ST40-103, ST20C2C201 2 x 4Mx32 DDRs
Design C-1 1.5 Mln 4 XC2V6000 ST20C2C201 8Mx16 DDR
Design C-2 4 Mln 7 XC2V6000 +

2 XC2V8000
ST20C2C201 8Mx16 DDR

Design D 3 Mln 7 XC2V6000 ST20C104, ST220 4Mx16 DDR
Tab. 1: Prototyping projects complexity

 Average

FPGA filling
Maximal

FPGA filling
Size of the biggest IP Number of the

top-level pins
Design A 70% 94% 91% of the XCV2000 3350
Design B 84% 99% 140% of the XC2V6000 8100
Design C-1 63% 99% 53% of the XC2V6000 2500
Design C-2 82% 93% 115% of the XC2V6000 8600
Design D 84% 99% 99% of the XC2V6000 6100

Tab. 2: FPGA prototype complexity

 System

Frequency
Number of
clocks used
in more than

1 FPGA

Number of gated clocks Maximal number
of clocks on one

FPGA

Design A 1.5MHz 5 ~ 200 6
Design B 2MHz 7 ~ 800 14
Design C-1 2MHz 4 ~ 150 10
Design C-2 1MHz 4 ~300 14
Design D 1MHz 6 ~ 300 11

Tab. 3: FPGA prototype clocking data

 Fastest clock

frequency
Number of
mapping
iterations

Complete design or a sub-
system mapped

Pin multiplexing
ratio

Design A 10MHz 3 Complete design 4x1
Design B 24MHz 3 Sub-system 4x1
Design C-1 24MHz 1 Sub-system 4x1
Design C-2 12 MHz 2 Complete design 4x1
Design D 12MHz 2 Sub-system 4x1

Tab. 4: Prototyping project data

Two of four presented SoCs contain each two
processors. The average FPGA filling is ranging from
60% to more than 80%. The maximal FPGA filling goes
up to 99%. Fitting the corresponding IP block inside the
FPGA was in this case a real issue. In most cases, the
size of the biggest IP did not exceed the FPGA size.
However the design B contained the ST40 core, which
was split on 2 XC2V6000 FPGAs and one of the video
blocks demanding 120% of the XC2V6000 FPGA. This
block was finally not mapped on FPGA and kept as
dummy. In general, an IP block fills more than a half of
the FPGA size. The ideal partitioning strategy is to put
one (or more if the IPs have common clocks and
communications) IP per FPGA. Splitting an IP block in
several FPGAs is not desired because of the clocking,
speed and complexity reasons.

All presented ST SoCs are based on the ST Bus
architecture. The ST Bus is a configurable bus that is
generated by the dedicated internal tools and is tailored
for the application. It contains the protocol handlers, size
converters and big crossbars for the communication.
Having numerous advantages from the system viewpoint,
for FPGA mapping the ST Bus is one of the difficult
issues. Being based on crossbar logic, it introduces a
huge number of nets in the top netlist (up to 10000 for
the most complex SoCs). On the opposite, the maximal
number of I/Os on the latest FPGAs is 1104 ([12]).
Handling the ST Bus is thus the basic partitioning
difficulty when mapping the ST designs. The FPGA
implementation is not feasible without using the pin
multiplexing. Because of the pin multiplexing, the system
speed is divided and is situated between 1 and 10 MHz.

The presented complex SoCs require about 10 to 20
clocks. The FPGA prototype may require additional
clocks to implement the pin multiplexing, make working
the complex memories, model the special structures on
FPGAs, etc. Due to the limited number of clock
resources inside the FPGAs and on the board, the
prototyping engineer has to simplify and if possible
merge the clock domains. In the worst case he may have
a situation when there are more than twenty clocks on the
same FPGA while the FPGA has in total 16 global clock
lines (and the place and route problems may start when
exceeding 8 global lines) and 24 low skew lines with
lower quality. The maximal number of clocks on one
FPGA presented in Table 3 corresponds to the design
after all possible optimizations, clock line merges, etc.
The fastest clock frequency corresponds to the
multiplexing or other “service” clock.

The presented data gives an idea about the
complexity of building the FPGA implementations for
the latest SoCs. Due to the huge complexity there is no
time to build the custom FPGA board for these designs.
The size of some IPs may exceed the biggest FPGA size,
the demand in clock resources may exceed the FPGA
resources and the required pin number exceeds the
maximal FPGA pin number. Running the FPGA
synthesis and place and route is also extremely time
consuming. In addition, due to the presence of gated
clocks and non-mappable ASIC structures the designs
usually don’t work when running the first tests on the
FPGA platform. They require to be debugged to make
the FPGA implementation working. Mapping such SoC

 designs is also highly stressful for the whole chain of the
involved FPGA tools and platforms.

3. The FPGA platform
The Aptix System Explorer MP4 platform ([3]) was

selected to target the described above requirements. This
platform may host up to 12-14 FPGAs. As soon as the
new generation of FPGAs is available, the platform can
be upgraded with new FPGA modules. The MP4 board
contains 4 crossbars – FPICs - that realize the
programmable interconnect between the FPGAs. The
total number of FPGA pins that may be routed by the
crossbars is 2880. The MP4 board is based on folded clos
architecture: when mounted, each FPGA is connected to
all 4 FPICs. The FPICs have connections to FPGAs and
between them. The board is always routable. Since the
introduction of the Flex FPGA modules ([4]) it is also
possible to realize the direct connections between the
FPGAs. This makes possible to use up to 1100 FPGA
I/Os. Because the connections are direct, they don’t
require pins from the free-hole area, thus increasing the
board capacity and allowing use up to ten FPGAs. The
system is really open and flexible. By changing the
number of FPGAs mounted on the board and changing
the way they are connected, it allows building dedicated
FPGA architecture for each design (see Figures 2-6). In
addition, custom interface and memory boards may be
mounted on top of each FPGA module, allowing
connections with real hardware or use of big memories.
Figures 2-6 represent the FPGA architecture for each of
four presented above SoCs. Design A was mapped before
Aptix created its Flex modules ([4]) allowing FPGA-to-
FPGA connections. All the other circuits were mapped
using the Flex modules.

The MP4 board view containing a common
configuration for both C and D SoCs is presented in
Figure 7. Both designs use the external interface with ST
Microconnect box allowing the interface with
workstation-running application software through the
Internet. Both designs have the DDR memories emulated
using external SRAM modules.

Fig. 2: FPGA board configuration for the
design A

FPIC1 FPIC2 FPIC3 FPIC4

FPGA1 FPGA2 FPGA3

FPGA5 FPGA6 FPGA7

400 160 320

160
320 400

FPGA4

FPGA8

160

240

80

200 120

160 200
Fig. 3: FPGA board configuration for the

design B

FPIC1 FPIC2 FPIC3

FPGA1 FPGA2 FPGA3
320 160 320

FPGA4
160

200 200

FPIC4

Fig. 4: FPGA board configuration for the
design C-1

FPIC1 FPIC2 FPIC3 FPIC4

FPGA1 FPGA2 FPGA3

FPGA5 FPGA6 FPGA7

100 200 130

200
270 250

FPGA4

FPGA8

160

430

80 80

160 160 160

130

FPGA5

Fig. 5: FPGA board configuration for the

design C-2

FPIC1 FPIC2 FPIC3 FPIC4

FPGA1 FPGA2 FPGA3

FPGA5 FPGA6 FPGA7

160 240 320

160
320 480

FPGA8
160

160 80 160

320 480

400 480 400

FPGA6FPGA5 FPGA4
320

FPGA3FPGA2 FPGA1

FPIC4FPIC3 FPIC2 FPIC1

Fig. 6: FPGA board configuration for the
design D

Fig. 7: Aptix board view for C and D designs

To debug the design, the MP4 platform allows the

direct visibility (using the HP logic analyzer) of all the
signals routed by FPICs. In addition, it is possible to see
the internal FPGA signals using the Xilinx incremental
probe routing capability supported by Aptix Explorer
software.

4. The mapping flow

The mandatory conditions to start the FPGA

prototyping are the following.
1) Each IP block was validated in simulation.
2) The assembled top design was validated on the

emulator.
3) The synthesizable test bench is available and

validated in emulation.
The FPGA mapping can be initiated when the design

hardware is stable and operational. The mapping time
usually consists of the mapping itself and the debugging
and running the tests on the board. A number of mapping
steps presented below reflects the complexity of the
mapping process.

1) Mapping on Xilinx Virtex2 technology is done
by specifying Xilinx as a target library inside
the Synopsys DC. The reason to use the DC
synthesis is its closeness to the ASIC
implementation flow, thus avoiding all kind of
synthesis problems. In addition, the design team
often delivers the design to the verification team
in internal Synopsys gate format (Gtech or
Corelib).

2) There is a number of modifications that are
required for the FPGA netlist: customizing the
testbench to Aptix platform, introducing clock
generation and reset logic, building the clock
distribution on the FPGA platform, changing the

non-mappable structures and gated clocks, etc.
These modifications are performed using the Design C : 9 FPGAs ST Microconnect Link

FPGAs

Design D : 7 FPGAs
Synopsys dc_shell. Script utilization is vital to
be able to iterate during the mapping and the
debugging process: it guarantees repeatability,
eliminates human errors and allows reuse
between different design versions and even
different designs.

3) The FPGA mapping may also be done using the
Synplicity Certify tool ([8]). It is used for FPGA
synthesis, removing the gated clocks and design
partitioning. The synthesis starting from RTL
produces up to 40% improvement in area
comparing to DC synthesis from Gtech.
Synplicity synthesis is used for most critical IP
blocks and in all cases when there is a problem
with fitting a block into an FPGA. The RTL is
requested from the design team to use the
Certify.

4) The netlist viewing and analysis is performed
using the Debussy tool from Novas ([10]). It
makes possible analysis of the clock domains,
gated clock structures, logic cones during the
debugging, etc.

5) The ASIC memories need to be specifically
modeled for the FPGA technology. Xilinx
Coregen tool is used to build the Xilinx
memories. In addition to modeling the low-level
memory, the user needs to design and validate
the memory wrapper.

6) The FPGA place and route is performed using
the Xilinx ISE tool. It is encapsulated by the
Aptix Explorer tool, which does the board place
and route. The FPGA place & route jobs are
dispatched to multiple workstations using the
LSF tool. The place and route tool is also used
in standalone to clean the FPGA place and route
problems, to estimate the block sizes, to check
the presence of the gated clocks and clean the
clock problems.

7) The FPGA pin multiplexing is performed using
Aptix multiplexing tool.

8) Aptix Logic AggreGater tool is used for multi-
FPGA partitioning.

9) Celaro emulator from Mentor Graphics ([11]) is
used as a reference for debugging. The design
mapped on emulator is the closest to the FPGA
prototype and is preferable than simulation.

The FPGA mapping flow is presented in Figure 8.
Putting all steps together represents a tedious amount of
work, which requires a significant amount of time, which
is in contradiction with the requirement to build the
FPGA platform in a short time.

Fig. 8: The mapping flow

The most critical issues when mapping on FPGAs
are related to timing and partitioning. The FPGA
technology is different from the ASIC technology and
this highly impacts clocking. The FPGA interconnect
delays are not predictable and there are glitches. This
makes it very hard to implement the correct functionality
of the gated clocks. Unfortunately there are more and
more of them in the designs. A significant part of gated
clocks may be cleaned automatically using for example
Certify tool. However, the designer still needs to clearly
understand the clock gating to guide the “de-gating”
process. Finally, there always exist special cases that
must be arranged manually (divided clocks, removing of
scan clock multiplexers, etc). In addition, ASIC circuits
may contain structures impossible to map correctly on
FPGAs that require to be modified. An example is
presented in Figure 9. The signal OUT will have glitches
near both clock edges. If it is registered using the same
clock signal, there is a high probability that a wrong
value will be registered.

Fig. 9: Structure not mappable on FPGA

Today, introducing more debugging support and

automatic cleaning of timing problems is made at a cost

of reducing the platform speed (the Celaro emulators
may be taken as an example). A lot of work must be done
manually to build the fast FPGA platform exploiting the
full advantages of the modern FPGA technology.
Roughly, the tradeoff is: if a fast mapping is desired, the
platform will be slow. If a fast platform is desired the
mapping will be slow.

Board programming & debug

iterations
FPGA & Board Place & Route

Pin Multiplexing

… FPGAn FPGA1 TOP

Multi-FPGA Partitioning
(Logic AggreGater)

Xilinx Mapped Netlist

FPGA Synthesis
(Synopsys DC, Certify)

Gate RTL

5. Conclusions

To cope with the SoC complexity, the FPGA
mapping tools and platforms must evolve to provide
better debugging capabilities, more powerful clock
resources, clock analysis features, automatic clock
mapping, knowledge bases enumerating the existing
problems and solutions, design rule checkers, smart
design partitioners taking into account clock resources,
common test benches and constraint file formats for
different hardware platforms, etc. The “ideal” future
prototyping platform would be one, which combines the
speed advantage of the modern FPGA technology with
the ease of mapping offered by the big emulation
platforms.

6. References

[1] S. Hauck: The Roles of FPGAs in Reprogrammable

Systems. Proc. Of the IEEE, Vol. 86, No. 4 (1998):
615-639.

[2] http://www.aptix.com
[3] System Explorer MP4 Reference Guide, Aptix, 1999
[4] Aptix Product Datasheet : Xilinx Virtex-II FPGA

Module, May 2002
[5] http://www.xilinx.com
[6] http://www.prodesigncad.de/chipit.htm
[7] http://www.eve-team.com
[8] http://www.synplicity.com/products/certify/index.ht

ml
[9] M. Pavesi: Modern FPGA capabilities made

available to the FlexBench modular rapid
prototyping platform. Proc. DATE 2002.

[10] http://www.novas.com/Products/Debussy
[11] http://www.mentor.com/celaro
[12] Xilinx, “Virtex-II Platform FPGA Handbook”,

December 2000

clock

OUT
B

A

http://www.aptix.com/

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

