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Abstract 

Mobile video processing as defined in standards like 
MPEG-4 and H.263 contains a number of time-
consuming computations that cannot be efficiently 
executed on current hardware architectures. The authors 
recently introduced a reconfigurable SoC platform that 
permits a low-power, high-throughput and flexible 
implementation of the motion estimation and DCT 
algorithms. The computations are done using domain-
specific reconfigurable arrays that have demonstrated up 
to 75% reduction in power consumption when compared 
to generic FPGA architecture, which makes them suitable 
for portable devices. This paper presents and compares 
different configurations of the arrays to efficiently 
implementing DCT and motion estimation algorithms. A 
number of algorithms are mapped into the various 
reconfigurable fabrics demonstrating the flexibility of the 
new reconfigurable SoC architecture and its ability to 
support a number of implementations having different 
performance characteristics 

 
 

1. Introduction 

Video and multimedia processing on portable devices, 
such as mobile phones, requires a lot of computing power 
to run specific computations such as Motion Estimation 
(ME) and the Discrete Cosine Transform (DCT). These 
algorithms can be implemented on Digital Signal 
Processors (DSPs), however, this leads to a high operating 
frequency and increased power consumption of the system. 
The other possibility is to implement these complex 
algorithms on dedicated hardwired logic, which reduces 
the power consumption considerably at the expense of 
reducing flexibility in the hardware. The specifications of 
such algorithms are permanently changing, hence the need 
for a flexible architecture that could adapt to such changes. 

A possible solution is a Field Programmable Gate Array 
(FPGA) which provides a high-flexibility and low-cost at 
the expense of increased power consumption. 

To overcome this problem, the authors recently 
introduced in [1] and [2] a novel reconfigurable platform 
that provides a compromise between performance, speed, 
power-consumption and flexibility when implementing 
such complex algorithms. The reconfigurable system uses 
domain-specific programmable arrays that are optimized 
for the target computations, such as ME or DCT. Domain-
specific arrays have less flexibility than generic FPGAs, 
however, they are more efficient in implementing the target 
computations. Furthermore, multimedia computations 
usually have a number of possible implementations each 
with different drawbacks in terms of quality, power-
consumption and processing time; the reconfigurable 
arrays provide an efficient solution to map a number of 
these possible implementations and switch between them 
dynamically. 

Both a software flow and interconnects types have been 
proposed to be able to create reconfigurable arrays specific 
to any application or computation. Initially this has been 
used to create arrays targeting ME and DCT. The array 
presented in [1] targeting ME calculations showed a 
reduction of around 75% in power consumption when 
compared to generic FPGAs, while the area is reduced by 
45% and timing improved by 23%. In [2] the same 
structure is used to design an array for Distributed 
Arithmetic (DA) calculations: the array provides a 38% 
reduction in power consumption, 14% in area and 54% 
decrease in the maximum operating frequency. 

In this paper we present a number of different ME and 
DCT implementations targeting the previously described 
arrays. These implementations prove the flexibility and 
reconfigurability of the arrays. The implementations have 
different characteristics in terms of area usage on the array 
and power consumption which are explored in this paper. 
This paper shows that the ability of the new reconfigurable 
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System-on-Chip to support these implementations proves 
that this domain-specific reconfigurable architecture is well 
suited to flexibility-demanding applications like MPEG-4. 

This paper is organized as follows: In section 2, the 
reconfigurable system-on-chip architecture is overviewed. 
Sections 3 describes the DCT implementations while 
section 4 contains the ME implementations. 

2. Reconfigurable Platform and Arrays 
The reconfigurable system is composed of DSPs, 

processors and the domain-specific reconfigurable arrays 
as shown in Fig. 1 and described in [1] [2]. The 
communication between these arrays and the processor 
takes place through a system-on-chip. A controller in the 
processor is used to integrate and generate the addresses 
for these array structures. 

 
Figure 1: Reconfigurable System-on-Chip 

The reconfigurable arrays used can be treated as any 
soft-core as they are generated as synthesizable netlists 
which are easily integrated in the software flow of the 
ASIC. The arrays are heterogeneous and contains clusters 
specific to one operation. The combination of such clusters 
makes the array domain specific. The clusters used for 
DCT and ME are described below. 

In the arrays different levels of reconfigurable 
interconnects are provided to allow flexible mapping of 
diverse ME and DCT algorithms. Each cluster is composed 
of a number of elements. High-speed and short 
interconnects are provided inside the clusters in order to 
connect the elements together; this allows cascading the 
elements to permit computations wider than the 4-bits 
provided by one element. Furthermore, an interconnects 
mesh similar to the one used in generic FPGA architectures 
is provided to connect the clusters together. The mesh is 
composed of a combination of 8-bit and 1-bit tracks, which 
allows having a reduced number of switches and 
configuration bits when compared generic fine-grain 1-bit 
FPGAs. 

2.1 Array for Motion Estimation 

The computational clusters in the array targeting ME 
calculations where designed for different ME architectures 
with varying performance, speed and area requirements. 
The following clusters were identified as common reusable 
blocks, and arranged as shown in Fig. 2 : 

! Register-Multiplexer (MUX): A 2-to-1 multiplexer 
with optional register at the output. 

! Absolute Difference Calculator (AD): Two inputs 
addition and subtractions and an optional absolute 
difference calculator are supported. 

! Adder/sub-tractor and accumulator (ADD/ACC): 
Allows sequential accumulation and simple 
combinatorial addition and subtraction. 

! Min/Max Comparator (COMP): Enables the 
comparison of two values and a ability to detect the 
maximum or minimum value of a vector. 

2.2 Array for DCT 

The array for DCT targets Distributed Arithmetic 
calculations, which includes computations like filtering, 
DCT and DWT. Distributed Arithmetic is supported using 
the following two clusters which are arranged as in Fig. 3: 

! Add-Shift clusters that allows addition and 
subtraction operations as well as shifting. Shift-
accumulation is also supported. 

! Memory elements can be used to implement Look-
Up-Tables and ROMs with configurable 
geometries. 

 

 
Figure 2: Array with clusters for Motion Estimation [1]. 

 
Figure 3: Array with clusters for Distributed Arithmetic and 

DCT [2]. 



3. DCT Implementations 

3.1 Distributed Arithmetic 

Distributed Arithmetic (DA) implementations [4] target 
sum-of-product calculations with multiplications by fixed-
coefficients. The multiplication is replaced by a Look-Up-
Table (LUT) and a shift-accumulator. DA provides an 
efficient implementation for multiple sum-of-product 
calculations having the same input, which is the case for 
the DCT [3]. The equation for a 1-D N-point DCT is: 
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The N-points DCT can be considered as N parallel 
filters. The basic bit-serial DA implementation of the DCT 
is shown in Fig. 4. The DCT on the array requires N shift-
registers for parallel-to-serial conversion, N LUT 
memories and N shift-accumulators. All the N memories 
receive the same address. 

One shift-register and a shift-accumulator are each 
mapped to a add-shift cluster, while the LUT is mapped to 
a part of a memory cluster. 
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Figure 4: Simple DCT implementation using Distributed 

Arithmetic 

3.2 Mixed ROM 

The 8-point 1D-DCT can be expressed as the product of 
an 8x8 matrix by an eight element column vector [4]. 
However, through algebraic manipulations [6] [7] this 
matrix can reduced to 4x4 matrix. Hence, the number of 
words per ROM is reduced to only 16 which is 16 times 
less than the previous implementation [5] but some 
overhead has been incurred in the form of adders to 
calculate the address of the ROMs. The mapping of the 
algorithm onto the proposed reconfigurable fabric is 
illustrated in Fig. 5. 

3.3 CORDIC based # 1 

The DCT computation using COordinate Rotation 
DIgital Computer (CORDIC) is used which is described in 
[3]. Since the memory is an integral part of the DA and 

ROM size increases exponentially with respect to vector 
size N. Many techniques have been developed for reducing 
the size of ROM. The CORDIC algorithm reformulates the 
1-D DCT so that the ROM size is reduced to a fix size of 4 
words, independent of the bandwidth of the input data.  

The DA based CORDIC is calculated through the 
following expressions [7]: 
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The DA functionality is implemented by converting 
parallel data to serial through shift registers and using this 
data to formulate the address of the memories. This 
CORDIC based implementation requires 6-CORDIC and 
16 butterfly adders for an 8 point 1D DCT. The CORDIC 
rotators are implemented through ROM and Shift 
Accumulators as shown in the Figure 6: while butterfly 
adders are implemented through add-shift clusters. 

 

 
Figure 5: DCT Implementation using 4x4 matrix for memory 

reduction 

 
Figure 6: CORDIC Rotator  Based 8-Point DCT 

Implementation 



3.4 CORDIC based # 2 

Since CORDIC algorithm results in a very regular 
structure suitable for VLSI implementation, there has been 
great interest in developing the CORDIC based DCT 
architecture. The implementation shown in Figure 7 is a 
scaled DCT architecture based upon the CORDIC 
algorithm, which is described in [8]. This implementation 
is different to first CORDIC based implementation in the 
following respects: 

•  Uses 20 butterfly adders instead of 16 

•  Uses 3 CORDIC rotators instead of 6 

The constant scale factor is not considered in this 
implementation as that can be combined with the 
quantization constants without requiring any extra 
hardware. 

The CORDIC rotators are based upon the same 
elements which are discussed in previous CORDIC based 
implementation. 

 
Figure 7: A Scaled DCT Architecture Based Upon CORDIC 

Algorithm 

3.5  Skew circular convolution based 

The algorithm is proposed by Li [10] which is well 
suited for DA based VLSI implementations. This 
technique starts with re-ordering the input sequences. Then 
Skew circular convolutions are performed on the reordered 
inputs, which gives odd-indexed transformed sequence. 
The transformed sequences are re-ordered for the proper 
output sequences. The Mapping of Li’s Algorithm onto re-
configurable array for odd-indexed DCT is shown in figure 
8. 

The odd-indexed DCT components are calculated 
through following equation under skew circular 
convolution [10]: 
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In the same way, even indexed DCT components are 
calculated using: 
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These equations can be presented in matrix form which 
is explained in [11] and these can be implemented in 
VLSI. Only a 16 words ROM is required as DCT 
components are separated into odd and even. The different 
elements which are required for Skew Circular 
Convolution are illustrated in Figure 8. 

 
Figure 8: Implementation of Li’s Algorithms to Compute 

Odd-indexed DCT coefficients. 

 

Figure 9: Implementation of Li’s Algorithms with larger 
LUTs but not adders and subtracters at the input. 

DCT can be calculated through skew circular 
convolution without splitting into odd and even indexed 
components and reordering stages at input and output, 
through following set of equations [10]. 
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The above equation can be expressed as: 
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Where ( )( )i
i NC 34

2cos Π=  

The implementation requires 256 words ROM which is 
16 times more than the previous implementation but does 
not require adder/subtracters. DA based implementation of 
the above algorithm is shown in Figure 9. 

3.6 Comparison of implementations 

The implementations have been compared in terms of 
area consumed on the array and the result is shown in 
Table 1. Since all the clusters have a similar area on the 
chip, the total number of clusters used defines the total 
area usage. At these initial stages no power estimation was 
performed; the implementations can have different power 
consumption due to the different area usage and different 
signal activities in the design. Hence, some 
implementations can be more suited to low-power 
applications. 
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Add-Shift 
Clusters 
    a) Adders 
    b) Subtracters 
    c) Shift Reg 
    d) Acc 
 Total 24 36 32 24 16 
Mem- Cluster 08 12 06 08 08 
Total clusters 32 48 38 32 24 

Table 1: Area usage of the DCT implementations 

4. Motion Estimation Implementations 

Motion estimation is based largely on a search scheme, 
which tries to find the best matching position of a 16x16 
macro-block of the current frame with all the candidate 
blocks within a predetermined or adaptive search range in 
the previous frame. The matching position relative to the 
original position is described by a displacement vector 
called the motion vector. The motion vector gives the 
displacement of the macro-block with the minimum 
distortion from the reference macro-block. The matching 
criterion usually used is the Sum of Absolute Differences 
(SAD) and this is the one supported by the array: 
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Where IK(m,n) and IK-1(m+dx , n+dy) are luminance 
values of the macro block and N is the size of the block 
(could be 8, 16 or 32) 

Full search algorithms provide optimal solutions with 
low control overhead and are based on matching criterion. 
The FSBMA are computationally complex and are 
accompanied by significant power consumptions. The 1-D 
array architectures proposed among which are [12]-[14] 
require high operating frequencies in order to fulfill the 
data-flow requirements of these demanding complex 
algorithms for ME. Several ME algorithms where reviewed 
with an intension to create a feasible reconfigurable cluster 
array. Various low-power 2D systolic array 
implementations for block matching algorithms have been 
proposed in [18] and [19]. 

A systolic array was mapped on the reconfigurable 
array. The basic structure of the PE is depicted in the Fig. 
10. The PE architecture shows the use of the clusters from 
the array. 

 
Figure 10: PE Module for the Motion Estimation architecture 

The PE array is composed of a 4 x 16 PEs (64 PE 2-D 
array) as shown in Fig. 11. The search area pixels are 
broadcasted through all the 16 PE array (PE module 0) and 
the current pixel data is propagated through using a shift 
register. The PE array is segregated into 4 modules with 
each row having a 16 PE single array. Each PE module is 
responsible for calculating the SAD for a particular 
candidate block during block matching. The first round of 
SAD calculations would take 16 clock cycles. The 
previous data is fed to the PEs through a reconfigurable 
Register-Multiplexer module which helps in reducing the 
memory bandwidth. The current pixel data value is shifted 
through a register array. Each PE cell structures helps in 
computation of the absolute difference between the 
previous and current block luminance values of these 
pixels. 



 
Figure 11: Low-Power 2-D systolic array architecture 

5. Conclusion 

This paper has described a number of DCT and Motion 
Estimation implementations that have been successfully 
mapped to domain-specific reconfigurable arrays designed 
for these computations. The implementations have 
different advantages in terms of area usage on the array 
and time needed to finish the computation as well as the 
quality and precision of the output result. This 
demonstrates the flexibility provided by the arrays in 
allowing the mapping of a range of implementations of the 
same calculation. 

Hence, the flexible arrays provide a better alternative to 
hardwired ASIC solutions for complex algorithms that are 
in constant update such as MPEG-4. Furthermore, the 
arrays have the ability to be dynamically reconfigured to 
support different implementations of the same algorithms 
for different run-time constraints, such as low-battery 
conditions and noisy channels in mobile devices. 
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