
Efficient Implementations of Mobile Video Computations on
Domain-Specific Reconfigurable Arrays

Sami Khawam1, Sajid Baloch2, Arjun Pai2, Imran Ahmed2, Nizamettin Aydin1, Tughrul Arslan1,2, Fred Westall3

1 School of Electronics and Engineering.
University of Edinburgh, King's Buildings,
Mayfield Road, Edinburgh, EH9 3JL, UK

2 Institute for System Level Integration
The Alba Centre, Alba Campus
Livingston, EH54 7EG, UK

3 EPSON Scotland Design Centre
Integration House, Alba Campus
Livingston, EH54 7EG, UK

Abstract

Mobile video processing as defined in standards like
MPEG-4 and H.263 contains a number of time-
consuming computations that cannot be efficiently
executed on current hardware architectures. The authors
recently introduced a reconfigurable SoC platform that
permits a low-power, high-throughput and flexible
implementation of the motion estimation and DCT
algorithms. The computations are done using domain-
specific reconfigurable arrays that have demonstrated up
to 75% reduction in power consumption when compared
to generic FPGA architecture, which makes them suitable
for portable devices. This paper presents and compares
different configurations of the arrays to efficiently
implementing DCT and motion estimation algorithms. A
number of algorithms are mapped into the various
reconfigurable fabrics demonstrating the flexibility of the
new reconfigurable SoC architecture and its ability to
support a number of implementations having different
performance characteristics

1. Introduction

Video and multimedia processing on portable devices,
such as mobile phones, requires a lot of computing power
to run specific computations such as Motion Estimation
(ME) and the Discrete Cosine Transform (DCT). These
algorithms can be implemented on Digital Signal
Processors (DSPs), however, this leads to a high operating
frequency and increased power consumption of the system.
The other possibility is to implement these complex
algorithms on dedicated hardwired logic, which reduces
the power consumption considerably at the expense of
reducing flexibility in the hardware. The specifications of
such algorithms are permanently changing, hence the need
for a flexible architecture that could adapt to such changes.

A possible solution is a Field Programmable Gate Array
(FPGA) which provides a high-flexibility and low-cost at
the expense of increased power consumption.

To overcome this problem, the authors recently
introduced in [1] and [2] a novel reconfigurable platform
that provides a compromise between performance, speed,
power-consumption and flexibility when implementing
such complex algorithms. The reconfigurable system uses
domain-specific programmable arrays that are optimized
for the target computations, such as ME or DCT. Domain-
specific arrays have less flexibility than generic FPGAs,
however, they are more efficient in implementing the target
computations. Furthermore, multimedia computations
usually have a number of possible implementations each
with different drawbacks in terms of quality, power-
consumption and processing time; the reconfigurable
arrays provide an efficient solution to map a number of
these possible implementations and switch between them
dynamically.

Both a software flow and interconnects types have been
proposed to be able to create reconfigurable arrays specific
to any application or computation. Initially this has been
used to create arrays targeting ME and DCT. The array
presented in [1] targeting ME calculations showed a
reduction of around 75% in power consumption when
compared to generic FPGAs, while the area is reduced by
45% and timing improved by 23%. In [2] the same
structure is used to design an array for Distributed
Arithmetic (DA) calculations: the array provides a 38%
reduction in power consumption, 14% in area and 54%
decrease in the maximum operating frequency.

In this paper we present a number of different ME and
DCT implementations targeting the previously described
arrays. These implementations prove the flexibility and
reconfigurability of the arrays. The implementations have
different characteristics in terms of area usage on the array
and power consumption which are explored in this paper.
This paper shows that the ability of the new reconfigurable

1530-1591/04 $20.00 (c) 2004 IEEE

System-on-Chip to support these implementations proves
that this domain-specific reconfigurable architecture is well
suited to flexibility-demanding applications like MPEG-4.

This paper is organized as follows: In section 2, the
reconfigurable system-on-chip architecture is overviewed.
Sections 3 describes the DCT implementations while
section 4 contains the ME implementations.

2. Reconfigurable Platform and Arrays
The reconfigurable system is composed of DSPs,

processors and the domain-specific reconfigurable arrays
as shown in Fig. 1 and described in [1] [2]. The
communication between these arrays and the processor
takes place through a system-on-chip. A controller in the
processor is used to integrate and generate the addresses
for these array structures.

Figure 1: Reconfigurable System-on-Chip

The reconfigurable arrays used can be treated as any
soft-core as they are generated as synthesizable netlists
which are easily integrated in the software flow of the
ASIC. The arrays are heterogeneous and contains clusters
specific to one operation. The combination of such clusters
makes the array domain specific. The clusters used for
DCT and ME are described below.

In the arrays different levels of reconfigurable
interconnects are provided to allow flexible mapping of
diverse ME and DCT algorithms. Each cluster is composed
of a number of elements. High-speed and short
interconnects are provided inside the clusters in order to
connect the elements together; this allows cascading the
elements to permit computations wider than the 4-bits
provided by one element. Furthermore, an interconnects
mesh similar to the one used in generic FPGA architectures
is provided to connect the clusters together. The mesh is
composed of a combination of 8-bit and 1-bit tracks, which
allows having a reduced number of switches and
configuration bits when compared generic fine-grain 1-bit
FPGAs.

2.1 Array for Motion Estimation

The computational clusters in the array targeting ME
calculations where designed for different ME architectures
with varying performance, speed and area requirements.
The following clusters were identified as common reusable
blocks, and arranged as shown in Fig. 2 :

! Register-Multiplexer (MUX): A 2-to-1 multiplexer
with optional register at the output.

! Absolute Difference Calculator (AD): Two inputs
addition and subtractions and an optional absolute
difference calculator are supported.

! Adder/sub-tractor and accumulator (ADD/ACC):
Allows sequential accumulation and simple
combinatorial addition and subtraction.

! Min/Max Comparator (COMP): Enables the
comparison of two values and a ability to detect the
maximum or minimum value of a vector.

2.2 Array for DCT

The array for DCT targets Distributed Arithmetic
calculations, which includes computations like filtering,
DCT and DWT. Distributed Arithmetic is supported using
the following two clusters which are arranged as in Fig. 3:

! Add-Shift clusters that allows addition and
subtraction operations as well as shifting. Shift-
accumulation is also supported.

! Memory elements can be used to implement Look-
Up-Tables and ROMs with configurable
geometries.

Figure 2: Array with clusters for Motion Estimation [1].

Figure 3: Array with clusters for Distributed Arithmetic and

DCT [2].

3. DCT Implementations

3.1 Distributed Arithmetic

Distributed Arithmetic (DA) implementations [4] target
sum-of-product calculations with multiplications by fixed-
coefficients. The multiplication is replaced by a Look-Up-
Table (LUT) and a shift-accumulator. DA provides an
efficient implementation for multiple sum-of-product
calculations having the same input, which is the case for
the DCT [3]. The equation for a 1-D N-point DCT is:

() ()∑
−

=

 ⋅+⋅⋅=

1

0 2

12
cos)(

N

i
u N

ui
ixucX

π

The N-points DCT can be considered as N parallel
filters. The basic bit-serial DA implementation of the DCT
is shown in Fig. 4. The DCT on the array requires N shift-
registers for parallel-to-serial conversion, N LUT
memories and N shift-accumulators. All the N memories
receive the same address.

One shift-register and a shift-accumulator are each
mapped to a add-shift cluster, while the LUT is mapped to
a part of a memory cluster.

I0
12-bit
Shift

Register

12

256
Words /
8-bits

1

I1
12-bit
Shift

Register

12 1

I7
12-bit
Shift

Register

12 1

8

256
Words /
8-bits

256
Words /
8-bits

16-bit
Shift
Acc

8 O016

16-bit
Shift
Acc

8 O116

16-bit
Shift
Acc

8 O716

Figure 4: Simple DCT implementation using Distributed

Arithmetic

3.2 Mixed ROM

The 8-point 1D-DCT can be expressed as the product of
an 8x8 matrix by an eight element column vector [4].
However, through algebraic manipulations [6] [7] this
matrix can reduced to 4x4 matrix. Hence, the number of
words per ROM is reduced to only 16 which is 16 times
less than the previous implementation [5] but some
overhead has been incurred in the form of adders to
calculate the address of the ROMs. The mapping of the
algorithm onto the proposed reconfigurable fabric is
illustrated in Fig. 5.

3.3 CORDIC based # 1

The DCT computation using COordinate Rotation
DIgital Computer (CORDIC) is used which is described in
[3]. Since the memory is an integral part of the DA and

ROM size increases exponentially with respect to vector
size N. Many techniques have been developed for reducing
the size of ROM. The CORDIC algorithm reformulates the
1-D DCT so that the ROM size is reduced to a fix size of 4
words, independent of the bandwidth of the input data.

The DA based CORDIC is calculated through the
following expressions [7]:

() ()φφφφ sincos2sincos' 00

1

0

yxyxx j
N

ii
jj −−−= −

−

=
∑

() ()φφφφ sincos2sincos' 00

1

0

xyyxy j
N

ii
jj +−+= −

−

=
∑

The DA functionality is implemented by converting
parallel data to serial through shift registers and using this
data to formulate the address of the memories. This
CORDIC based implementation requires 6-CORDIC and
16 butterfly adders for an 8 point 1D DCT. The CORDIC
rotators are implemented through ROM and Shift
Accumulators as shown in the Figure 6: while butterfly
adders are implemented through add-shift clusters.

Figure 5: DCT Implementation using 4x4 matrix for memory

reduction

Figure 6: CORDIC Rotator Based 8-Point DCT

Implementation

3.4 CORDIC based # 2

Since CORDIC algorithm results in a very regular
structure suitable for VLSI implementation, there has been
great interest in developing the CORDIC based DCT
architecture. The implementation shown in Figure 7 is a
scaled DCT architecture based upon the CORDIC
algorithm, which is described in [8]. This implementation
is different to first CORDIC based implementation in the
following respects:

• Uses 20 butterfly adders instead of 16

• Uses 3 CORDIC rotators instead of 6

The constant scale factor is not considered in this
implementation as that can be combined with the
quantization constants without requiring any extra
hardware.

The CORDIC rotators are based upon the same
elements which are discussed in previous CORDIC based
implementation.

Figure 7: A Scaled DCT Architecture Based Upon CORDIC

Algorithm

3.5 Skew circular convolution based

The algorithm is proposed by Li [10] which is well
suited for DA based VLSI implementations. This
technique starts with re-ordering the input sequences. Then
Skew circular convolutions are performed on the reordered
inputs, which gives odd-indexed transformed sequence.
The transformed sequences are re-ordered for the proper
output sequences. The Mapping of Li’s Algorithm onto re-
configurable array for odd-indexed DCT is shown in figure
8.

The odd-indexed DCT components are calculated
through following equation under skew circular
convolution [10]:

[]∑
−

=

+
+

 Π−=

12/

0
2/ 3

4

2
cos'''

N

i

ji
iNij N

XXX

In the same way, even indexed DCT components are
calculated using:

[] ()∑
−

=
−−

+Π+=

12/

0
1

2
2

12
cos'''

N

i
nNij N

jn
XXX

These equations can be presented in matrix form which
is explained in [11] and these can be implemented in
VLSI. Only a 16 words ROM is required as DCT
components are separated into odd and even. The different
elements which are required for Skew Circular
Convolution are illustrated in Figure 8.

Figure 8: Implementation of Li’s Algorithms to Compute

Odd-indexed DCT coefficients.

Figure 9: Implementation of Li’s Algorithms with larger
LUTs but not adders and subtracters at the input.

DCT can be calculated through skew circular
convolution without splitting into odd and even indexed
components and reordering stages at input and output,
through following set of equations [10].

.
4

3.2
cos.''

1

0

 Π=
+−

=
∑ N

XX
jiN

i
ij

The above equation can be expressed as:

=

7

6

5

4

3

2

1

0

65432107

54321076

43210765

32107654

21076543

10765432

07654321

76543210

7

6

5

4

3

2

1

0

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

X

X

X

X

X

X

X

X

x

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

Y

Y

Y

Y

Y

Y

Y

Y

Where ()()i
i NC 34

2cos Π=

The implementation requires 256 words ROM which is
16 times more than the previous implementation but does
not require adder/subtracters. DA based implementation of
the above algorithm is shown in Figure 9.

3.6 Comparison of implementations

The implementations have been compared in terms of
area consumed on the array and the result is shown in
Table 1. Since all the clusters have a similar area on the
chip, the total number of clusters used defines the total
area usage. At these initial stages no power estimation was
performed; the implementations can have different power
consumption due to the different area usage and different
signal activities in the design. Hence, some
implementations can be more suited to low-power
applications.
 MIX

ROM
COR-
DIC 1

COR-
DIC 2

SCC
EVEN/
ODD

SCC

4
4
8
8

08
08
08
12

10
10
06
06

04
04
08
08

0
0
8
8

Add-Shift
Clusters
 a) Adders
 b) Subtracters
 c) Shift Reg
 d) Acc
 Total 24 36 32 24 16
Mem- Cluster 08 12 06 08 08
Total clusters 32 48 38 32 24

Table 1: Area usage of the DCT implementations

4. Motion Estimation Implementations

Motion estimation is based largely on a search scheme,
which tries to find the best matching position of a 16x16
macro-block of the current frame with all the candidate
blocks within a predetermined or adaptive search range in
the previous frame. The matching position relative to the
original position is described by a displacement vector
called the motion vector. The motion vector gives the
displacement of the macro-block with the minimum
distortion from the reference macro-block. The matching
criterion usually used is the Sum of Absolute Differences
(SAD) and this is the one supported by the array:

SADN (dx,dy) = ∑∑
= =

− ++−
N

xm

N

yn
KK dyndxmInmI |),(),(| 1

Where IK(m,n) and IK-1(m+dx , n+dy) are luminance
values of the macro block and N is the size of the block
(could be 8, 16 or 32)

Full search algorithms provide optimal solutions with
low control overhead and are based on matching criterion.
The FSBMA are computationally complex and are
accompanied by significant power consumptions. The 1-D
array architectures proposed among which are [12]-[14]
require high operating frequencies in order to fulfill the
data-flow requirements of these demanding complex
algorithms for ME. Several ME algorithms where reviewed
with an intension to create a feasible reconfigurable cluster
array. Various low-power 2D systolic array
implementations for block matching algorithms have been
proposed in [18] and [19].

A systolic array was mapped on the reconfigurable
array. The basic structure of the PE is depicted in the Fig.
10. The PE architecture shows the use of the clusters from
the array.

Figure 10: PE Module for the Motion Estimation architecture

The PE array is composed of a 4 x 16 PEs (64 PE 2-D
array) as shown in Fig. 11. The search area pixels are
broadcasted through all the 16 PE array (PE module 0) and
the current pixel data is propagated through using a shift
register. The PE array is segregated into 4 modules with
each row having a 16 PE single array. Each PE module is
responsible for calculating the SAD for a particular
candidate block during block matching. The first round of
SAD calculations would take 16 clock cycles. The
previous data is fed to the PEs through a reconfigurable
Register-Multiplexer module which helps in reducing the
memory bandwidth. The current pixel data value is shifted
through a register array. Each PE cell structures helps in
computation of the absolute difference between the
previous and current block luminance values of these
pixels.

Figure 11: Low-Power 2-D systolic array architecture

5. Conclusion

This paper has described a number of DCT and Motion
Estimation implementations that have been successfully
mapped to domain-specific reconfigurable arrays designed
for these computations. The implementations have
different advantages in terms of area usage on the array
and time needed to finish the computation as well as the
quality and precision of the output result. This
demonstrates the flexibility provided by the arrays in
allowing the mapping of a range of implementations of the
same calculation.

Hence, the flexible arrays provide a better alternative to
hardwired ASIC solutions for complex algorithms that are
in constant update such as MPEG-4. Furthermore, the
arrays have the ability to be dynamically reconfigured to
support different implementations of the same algorithms
for different run-time constraints, such as low-battery
conditions and noisy channels in mobile devices.

6. REFERENCES
[1] Khawam S., Arslan T., Westall F., “Embedded

reconfigurable array targeting motion estimation applications” ,
Proceedings of the 2003 IEEE International Symposium on
Circuits and Systems, May 2003, Vol. 2, pp. 760-763

[2] Khawam S., Arslan T., F. Westall F., “Domain-specific
reconfigurable array for Distributed Arithmetic”, Proceedings
of the 13th International Conference on Field Programmable
Logic and Applications, FPL 2003, Sept 2003, pp. 1139-1144

[3] Ahmed N., Natrajan T., Rao K.R., “Discrete Cosine
Transform” IEEE Tans. On Computers, Vol. C-23, No. 1, p90-
93, Dec. 1984

[4] White, S.A, “Applications of distributed arithmetic to
digital signal processing: a tutorial review”, ASSP Magazine,
IEEE, Volume: 6 Issue: 3, Jul 1989, Page(s): 4-19

[5] Sungwook Yu, Swartzlander, E. E., Jr., “DCT
implementation with distributed arithmetic”, IEEE transactions
on Computers, Vol. 50 Is. 9, Sept. 2001.

[6] B. G. Lee. “A new algorithm to compute the discrete cosine
transform” IEEE Transactions on Accoustics, Speech and
Signal Processing, ASSP-32:1243-1245, Dec. 1984.

[7] P. Pirsch, N. Demassieux and W. Gehrke, “VLSI
architectures for video compression-a survey”, Proceedings of
the IEEE, 83:220-246, Feb. 1995.

[8] Yi Yang, Chunyan Wang, Omair Ahmed, M., Swamy M.
N. S., “An online CORDIC based 2-D IDCT implementation
using distributed arithmetic”, 6th Inter. Symp. on Signal
Processing and its applications,. 2001, Vol. 1

[9] Sungwook Yu, Swartzlander, E. E., Jr., “A scaled DCT
architecture with the CORDIC algorithm” IEEE Transactions
on Signal Processing, Vol. 50, Jan. 2002

[10] W. S. Wong, A. Berno, Hussein M. A., “A fast VLSI chip
for computing the two-dimensional discrete cosine transform”,
IEEE Pacific Rim Conf. on Communications, Computers and
Signal Processing, 1993.,Vol.: 2 , pp : 662 -665

[11] W. Li, “A new algorithm to compute the DCT and its
inverse”, IEEE Transactions on Signal Processing, Vol. 39 no.
6, pp. 1305-1313, Jun. 1991.

[12] Komarek, T.; Pirsch, P., Array architectures for block
matching algorithms, IEEE Transactions on Circuits and
Systems, Vol. 36 Issue: 10 , Oct. 1989

[13] Yang, K.-M.; Sun, M.-T.; Wu, L. , A family of VLSI
designs for the motion compensation block-matching algorithm,
IEEE Transactions on Circuits and Systems, Vol. 36 Issue: 10 ,
Oct. 1989

[14] De Vos, L.; Stegherr, M.; Noll, T.G., VLSI architectures
for the full-search blockmatching algorithm, International
Conference on Acoustics, Speech, and Signal Processing, 1989.
ICASSP-89., 1989

[15] Stechele, W., Algorithmic complexity, motion estimation
and a VLSI architecture for MPEG-4 core profile video codecs,
International Symposium on VLSI Technology, Systems, and
Applications, 2001

[16] Xiao-Dong Zhang; Chi-Ying Tsui; An efficient and
reconfigurable VLSI architecture for different block matching
motion estimation algorithms Acoustics, Speech, and Signal
Processing, 1997. ICASSP-97., 1997 IEEE.

[17] Kin-Hung Lam; Chi-Ying Tsui; Low power 2-D array
VLSI architecture for block matching motion estimation using
computation suspension, Signal Processing Systems, 2000.
SiPS 2000. 2000 IEEE Workshop on , 11-13 Oct. 2000

[18] Elgamel, M.A.; Shams, A.M.; Xi Xueling; Bayoumi, M.A.;
Enhanced low power motion estimation VLSI architectures for
video compression, Circuits and Systems, 2001. ISCAS 2001.
The 2001 IEEE Inte. Symp. on , Vol.: 4

[19] Elgamel, M.A.; Shams, A.M.; Bayoumi, M.A.; A
comparative analysis for low power motion estimation VLSI
architectures ,Signal Processing Systems, 2000. SiPS 2000.
2000 IEEE Workshop on , 11-13 Oct. 2000

[20] Sousa, L.; Roma, N.; Low-power array architectures for
motion estimation, Multimedia Signal Processing, 1999 IEEE
3rd Workshop on , 13-15 Sept. 1999

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

