
Design Methodology for a Tightly Coupled VLIW/Reconfigurable Matrix
Architecture: A Case Study

Bingfeng Meiyz, Serge Vernaldey, Diederik Verkestyz?, Rudy LauwereinsyzyIMEC vzw, Kapeldreef 75, B-3001, Leuven, Belgiumz Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium? Department of Electrical Engineering, Vrije UniversiteitBrussel, Brussel, Belgium

Abstract

Coarse-grained reconfigurable architectures have seen
growing importance recently. Design tools and methodol-
ogy are essential to their success. Based on our previous
work on modulo scheduling algorithms and a novel archi-
tecture with tightly coupled VLIW/reconfigurable matrix,
we present a C-based design flow using an MPEG-2 de-
coder as a design example. The application is mapped to
the architecture in less than one person-week starting from
a software implementation. The kernel and overall speedup
over the reference VLIW are 4.84 and 3.05 respectively. The
case study shows that our methodology and architecture can
deliver a competitive package in terms of design efforts and
performance over other programmable architectures.

1 Introduction

Reconfigurable architectures have seen growing impor-
tance among both academic research and commercial ap-
plications in the past few years. Particularly, coarse-grained
reconfigurable architectures gain much attention [1, 7, 8,
10, 11]. They often consist of tens to hundreds of func-
tional units (FUs), which are capable of executing word- or
subword-level operations instead of bit-level ones found in
common FPGAs. Thiscoarsegranularity greatly reduces
the delay, area, power and configuration time compared
with FPGAs, however, at the expense of flexibility.

The target applications of these architectures, e.g.,
telecommunications and multimedia, often spend most time
executing a fewtime-critical code segmentswith well-
defined characteristics [12]. So the performance of a whole
application may be improved considerably by mapping
these critical segments, typicallyloops, on reconfigurable
architectures. However, an application not only comprises
regular kernels, but also a large part of control-intensive,
irregular code which is difficult to map on reconfigurable
architectures. Therefore, most reconfigurable systems con-

sist of a reconfigurable matrix and a processor, typically a
RISC, to execute the entire application. Designing for such
systems is similar to a HW/SW co-design problem.

Although many architectures are proposed, few provide
design methodology and tools which can both exploit high
parallelism and deliver a software-like design experience.
Many lack efficient tools to map the kernel to the recon-
figurable matrix [7, 11], while some don’t have good sup-
port for co-design [1, 8, 10]. In our previous work [6], we
solved the problem of mapping a kernel to a family of re-
configurable architectures by a novel modulo scheduling al-
gorithm. In other work [5], we proposed a new architec-
ture, called ADRES (Architecture for Dynamic Reconfig-
urable Embedded Systems), which tightly couples a VLIW
and a reconfigurable matrix, resulting in many advantages
over common reconfigurable systems with loosely coupled
RISC/reconfigurable matrix. In this paper, we demonstrate
a C-based design flow taking full advantage of the schedul-
ing algorithm and the ADRES features using an MPEG-2
decoder as an example. The case study shows our method-
ology can design an application with efforts comparable
with software development while still achieving the high
performance expected from reconfigurable architectures.

The paper is organized as follow. Section 2 gives an
overview of the ADRES architecture. Section 3 explains
the C-based design flow. Section 4 describes how we map
the MPEG-2 decoder, including mapping results and some
comparisons with the VLIW architecture. Section 5 dis-
cusses related work. Section 6 concludes the paper.

2 ADRES Architecture Overview

Fig. 2 describes the system view of the ADRES archi-
tecture. It is similar to a processor with an execution core
connected to a memory hierarchy. The ADRES core (fig 1)
consists of many basic components, e.g., FUs and register
files (RF), which are connected in a certain topology. The
whole ADRES core has two functional views: the VLIW

1530-1591/04 $20.00 (c) 2004 IEEE

processor and the reconfigurable matrix. The reconfig-
urable matrix is used to accelerate the dataflow-like kernels
in a highly parallel way, whereas the VLIW executes the
non-kernel code by exploiting instruction-level parallelism
(ILP). These two functional views share some resources be-
cause their executions will never overlap with each other
thanks to the processor/co-processor model.

Register File

FU FU FU FU FU FU

Reconfigurable Matrix View

VLIW View

Program Fetch
Instruction Dispatch
Instruction Decode

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

Figure 1. ADRES core

For the VLIW part, several FUs are allocated and con-
nected together through one multi-port register file, which
is typical for a VLIW architecture. The VLIW FUs are also
connected to the memory hierarchy, depending on avail-
able ports. For the reconfigurable matrix, apart from the
FUs and RF shared with the VLIW processor, there are a
number ofreconfigurable cells(RC) which basically com-
prise FUs and RFs too (fig. 3). The FUs can be heteroge-
neous supporting different operation sets. To remove the
control flow inside loops, the FUs support predicated op-
erations [6, 4]. The multiplexors are used to direct data
from different sources. The configuration RAM stores a
few configuration contexts locally, which can be loaded on
cycle-by-cycle basis. The configuration contexts can also
be loaded from the memory hierarchy at the cost of extra
delay if the local configuration RAM is not big enough.

ADRES core

I Cache D Cache

Main Memory

Figure 2. ADRES
system

FU

configuration
RAM

RF

reg

out1 out2

in

pred src1 src2

pred
_dst1 pred_dst2 dst

muxc muxc muxc

Figure 3. Reconfigurable
Cell

The communication between the VLIW and the recon-

figurable matrix happens through the shared RF, i.e., the
VLIW RF, and the shared access to the memory hierarchy.
In fact, ADRES is a template of an architecture instead of a
fixed architecture. An XML-based architecture description
language is used to define the overall topology, supported
operation set, resource allocation, timing and even the in-
ternal organization of each RC.

Thanks to its tight integration, ADRES has many advan-
tages. First, a system comprising a VLIW instead of a RISC
found in other reconfigurable systems provides a way to ac-
celerate the non-kernel code, which is often a bottleneck in
many applications. Second, it greatly reduces both commu-
nication overhead and programming complexity through the
shared RF and memory access between the VLIW and re-
configurable matrix. Finally, shared resources reduce costs
considerably.

3 C-Based Design Flow

The design flow of the ADRES architecture is shown
in fig. 4. A design starts from a C-language description
of the application. The profiling/partitioning step identi-
fies the candidate loops for mapping on the reconfigurable
matrix based on the execution time and possible speed-
up. Source-level transformations try to rewrite the kernel
in order to make it pipelineable and to maximize the per-
formance. Next, we use IMPACT, a compiler framework
mainly for VLIW [2], to parse the C code and do some
analysis and optimization. IMPACT emits an intermedi-
ate representation, calledLcode, which is used as the in-
put for scheduling. On the right side, the target architecture
is described in an XML-based language. Then the parser
and abstraction steps transform the architecture to an inter-
nal graph representation [6]. Taking the program and ar-
chitecture representations as input, the modulo scheduling
algorithm is applied to achieve high parallelism for the ker-
nels, whereas traditional ILP scheduling techniques are ap-
plied to gain moderate parallelism for the non-kernel code.
The communication between these two parts is automati-
cally identified and handled by our tools. Next, the tools
generate scheduled code for both the reconfigurable matrix
and the VLIW, which can be simulated by a co-simulator. If
not all the kernels can be stored locally on the configuration
RAM, we need to apply a kernel scheduling step, which is
still ongoing research, to reduce the configuration overhead.

While many key steps are fully automated, some steps
still need input from the designer to achieve best perfor-
mance, particularly the partitioning and source-level trans-
formation, where the most design efforts are spent on. The
profiling is done on our co-simulator. The partitioning de-
cision has to be made in the early phase. One reason is
that the optimization requirements for the reconfigurable
matrix and VLIW are different. For example, in order to

2

have high performance, the VLIW compiler might selec-
tively construct hyperblocks, whereas the optimization to-
ward reconfigurable matrix requires aggressive hyperblock
construction [6, 4]. We use two optimization settings for
the IMPACT frontend, which does much analysis and opti-
mization work. The source-level transformation is crucial
to map more loops to the reconfigurable matrix. There are
a number of restrictions for loop to be pipelineable. For
example, only innermost loop can be pipelined and jump-
ing out of the loop should occur at the end of a loop body.
A ”natural” source code might not have enough pipeline-
able loops. Several techniques can be used in constructing
pipelineable loops such as function inlining and loop un-
rolling. The transformed code can be directly verified on
the host computer or the VLIW without invoking the time-
consuming modulo scheduling algorithm.

C Impl.

profiling/partitioning

source−level
transformation

IMPACT frontend

Lcode

dataflow analysis &
optimization

architecture
description

architecture parser

architecture
 abstraction

modulo scheduling

kernel scheduling

ILP scheduling

register allocation

code generation

co−simulator

external tool

under deverlopment

Figure 4. Design flow for ADRES

A centralized setting file controls the whole process of
the compilation. Information obtained and decisions made
during the design are annotated into the setting file. The
setting file contains the control over both the global design
environment and each individual loop, which enables us to
focus on one loop at a time. This strategy reduces design
time significantly (fig. 5).

When we deal withloop1, the transformed source code
loop1* is verified first on the VLIW, which is very fast.
Next, the modulo scheduling is applied toloop1*. Since our
modulo scheduling algorithm is similar to a placement and
routing algorithm, it is also time-consuming, typically from
seconds to hours, and sensitive to initialization conditions,
e.g., the random seed. Modulo scheduling tries to engineer a
schedule with as small as possible II (initiation interval)[9].
A difference of 1 in II results in a big difference in the per-
formance of the pipelined loop. Therefore, it is worth trying

rest code

loop1

loop2

loop3

rest code

loop1*

loop2

loop3

src−level transformation
of loop1

orig. code on VLIW verified on VLIW

rest code

loop1*

loop2

loop3

loop1* runs on matrix

modulo sched.

annotate
sched. param

setting file

rest code

loop1*

loop2*

loop3

 verified on VLIW

src−level transformation
of loop2

modulo sched.

rest code

loop1*

loop2*

loop3

loop2* runs on matrix

rest code

loop1*

loop2*

loop3*

final integration

annotate
sched. param

read
sched. param

Figure 5. Focus on one loop at a time

different random seeds if a lower II looks possible. After
finding a low II, the parameters are annotated into the set-
ting file. If the modulo scheduling can’t find a good result,
we may go back to the source-level transformation step for
more refinement. At the next step, we can focus onloop2
while mappingloop1* to the VLIW temporarily. After all
the loops are successfully mapped to the reconfigurable ma-
trix, we can integrate all the pipelined loops together using
the parameters preserved in the setting file. Using this strat-
egy, we always focus on mapping one loop, and every loop
is verified through the co-simulation. This feature is espe-
cially useful to parallelize the design effort. Basically,each
person can work on one loop and get it verified in the co-
simulation environment. Finally, multiple loops can be put
together for integration. With the processor/co-processor
execution model, no unexpected things will happen.

Thanks to the tight integration of the ADRES archi-
tecture, communication between the kernels and the non-
kernel code can be handled by our compiler automati-
cally with much less communication overhead compared to
loosely coupled reconfigurable systems. The compiler only
needs to identify live-in and live-out variables of the loop
and assign them to the shared RF (VLIW RF). For commu-
nication through the memory space, we needn’t do anything
because the matrix and the VLIW share the memory access,
which also eliminates the need for data copying.

4 Mapping an MPEG-2 Decoder Application

In this section, we use an MPEG-2 decoder as a de-
sign example to illustrate the C-based design flow for the
ADRES architecture. The MPEG-2 decoder is a represen-
tative multimedia application. It requires very high compu-
tation power. Most execution time is spent on several ker-
nels, which have high inherent parallelism. This means it is
a good candidate for reconfigurable architectures. We use

3

a C implementation from the MPEG Software Simulation
Group (MSSG) as a starting point. The code is highly op-
timized for processors and a part of MediaBench [3]. The
application comprises 21 files and around 10,000 lines.

4.1 Mapping to the ADRES Architecture

First, we identify 14 loops from the original applica-
tions as candidates for pipelining on the reconfigurable
matrix by profiling the application. Among these loops,
form comppred1 to form comppred8 are 8 conditional
branches in the motion compensation.idct1 and idct2 are
vertical and horizontal loops of the fast IDCT (inverse dis-
crete cosine transformation).add block1 and add block2
are loops of summing blocks for intra and non-intra frames
respectively. In addition, to improve the performance as
much as possible, we extract two dequantization loops, i.e.,
non intra dequantandintra dequant, from the VLD (vari-
able length decoding) loops. The VLD itself is highly
control-intensive and has strong cross-iteration dependency
(fig. 6). Transforming the source code, we create pipeline-
able loops for dequantization at the expense of extra opera-
tions, but pipelining them on the reconfigurable matrix will
pay off. All the 16 loops (tab. 1) account for 84.6% of the
total execution time and only 3.3% of the total code size.

for(i=0; ; i++){

 /* VLD, highly ctrl intensive */

 if (code>=16384)

 {
 if (i==0) ...

 else ...

 }

 else if (code>=1024) ...

 else if (code>=512) ...

 ...

 /* dequantize */

 j = scan[ld1->alternate_scan][i];

 val = (val * ld1->quantizer_scale

 * qmat[j]) >> 4;
 bp[j] = sign ? -val : val;

}

for(i=0; ; i++){

 /* VLD */

 ...

 /* dequantize replaced */
 run_val[nc] = val;

 run_pos[nc] = i;

}

for(i = 0; i < nc; i++){ /* dequantize */

 val = run_val[i];

 pos = run_pos[i];

 j = scan[ld1->alternate_scan][pos];

 tmp = (val * ld1->quantizer_scale
 * qmat[j]) >> 4;

 bp[j] = run_sign[i] ? -tmp : tmp;

}

Figure 6. Extract intra dequant loop

Only a few of these loops can be immediately mapped
to the reconfigurable matrix. For the others we have to per-
form source-level transformation. For example, in the orig-
inal IDCT kernel (fig. 7), the inner loop body is in the form
of a function, which is fine for a processor, but unpipelin-
eable for a reconfigurable matrix. There is some shortcut
computation, which reduces execution time on the proces-
sor but is highly irregular. Moreover, theidct loop is only
applied to an 8x8 block at once, which means only 8 iter-
ations. This is very costly in terms of prologue and epi-
logue in a pipelined loop. To map theidct to the reconfig-
urable matrix, we have to transform the code considerably.
First, the loop body functionidctrow is inlined. Second, all
the shortcut computation is removed to make the loop more

regular. Finally, the idct is applied to a macroblock, which
usually has 6 8x8 blocks in MPEG-2 video. So the total
number of iterations of eachidct is increased to 48, greatly
reducing the pipelining overhead. After all these transfor-
mations, we end up with two pipelineable loops inidct with
high performance potential for pipelining. For other loops,
more transformations such as loop unrolling, loop flatten-
ing, and variable replicating are applied.

 for (i=0; i< 8; i++)

 idctrow(block + 8*i);

...
void idctrow(short *blk)

{

 if (!((x1 = blk[4]<<11) | (x2 = blk[6]) |...)

 ...)

 { /*shorcut */ }

 x0 = (blk[0]<<11) + 128

 x8 = W7*(x4+x5);)>>8;

 ...

 blk[6] = (x3-x2)>>8;
 blk[7] = (x7-x1)>>8;

}

short block[12][64];

...
for (i=0; i<8 * block_count; i++){

 n = i / 8; /* n is block no. */

 m = i % 8; /* m is row no. */

 blk = block[n] + 8 * m;

 x0 = (blk[0] << 11) + 128;

 x1 = blk[4] << 11;

 ...

 blk[6] = (x3-x2)>>8;
 blk[7] = (x7-x1)>>8;

}

Figure 7. Transformation for idct1 loop

The above example shows that the required transforma-
tions are very diverse. It requires experience from the de-
signer to figure out the appropriate ones. Therefore, it is un-
likely to be automated in the near future. Fortunately, since
we only need to focus on a few loops instead of the entire
application, design efforts are limited to C-to-C rewriting
for these loops while bearing the target matrix architecture
in mind. In this particular case, it took the author 3 days to
rewrite the C code to reflect all the required transformations.

We annotate the partitioning decision of these 16 loops
into the setting file. Next, IMPACT is invoked to parse the
source code, do analysis and optimization, where two sets
of optimization parameters are applied toward the VLIW
and the matrix respectively according to the information
recorded in the setting file. Afterward, our compiler per-
forms modulo scheduling and ILP scheduling. Although
there are 16 loops to be scheduled and scheduling each
loop take from seconds to half an hour (tab. 1). We only
need to schedule one loop at a time, whereas the non-
kernel code (including other loops) can be scheduled on
the VLIW. In this way, we can rapidly explore different de-
sign choices for one loop without invoking time-consuming
modulo scheduling for other loops.

After all the loops are successfully mapped, we obtained
the configuration contexts required for each loop. The char-
acteristics of the MPEG-2 decoder can help to reduce the
configuration RAM requirements. In MPEG-2 video, there
are three types of frames, I-, P- and B-Frame. Different
frames call different kernel sequences. I-Frame uses only 6
loops, while P- and B-Frame call 10 and 14 loops respec-
tively. A frame lasts normally more than 10ms, while load-
ing configurations takes only�s. Hence, the kernels needed

4

by a frame can be loaded before the frame starts without
incurring much overhead. In MPEG-2, the maximal num-
ber of contexts required is constrained by B-Frame, which
uses 29 contexts. In case the configuration RAM is not big
enough, we should apply kernel scheduling techniques, still
ongoing research, to minimize reconfiguration overhead.

In the application, we observed how the tight inte-
gration of ADRES plays an important role in reducing
programming complexity and communication overhead.
Taking form predictionsas an example (fig. 8), it has a
very complex control structure to compute parameters for
each form prediction function call, which contains all 8
form comppred loops. The code is very control-intensive
and not a loop, therefore, it can’t be mapped to the reconfig-
urable matrix. There is quite a lot of communication traffic
between it and theform comppredloops. ADRES provides
an ideal solution for this kind of situation. The above code
is mapped to the VLIW, while theform comppred loops
are mapped to the matrix. The scalar variables passed be-
tween them are identified and assigned to the shared RF by
the compiler automatically. Moreover, thanks to the shared
memory access, only the memory address, which itself is a
scalar variable, is passed to the pipelined loops instead of
copying the memory block. The VLIW and the reconfig-
urable matrix work together cooperatively.

if ((macroblock_type & MACROBLOCK_MOTION_FORWARD)

 || (picture_coding_type==P_TYPE))

{
 if (picture_structure==FRAME_PICTURE)

 {

 if ((motion_type==MC_FRAME)

 || !(macroblock_type & MACROBLOCK_MOTION_FORWARD))

 {

 if (stwtop<2)

 form_prediction(forward_reference_frame,0,current_frame,0,

 Coded_Picture_Width,Coded_Picture_Width<<1,16,8,bx,by,

 PMV[0][0][0],PMV[0][0][1],stwtop);
 ...

 }

 ...

Figure 8. A piece of form predictions

4.2 Mapping Results

To do the experiment, an architecture resembling the
topology of MorphoSys [11] is instantiated from the
ADRES template. In this configuration, a total of 64 FUs
are divided into four tiles, each of which consists of 4x4
FUs. Each FU is not only connected to the 4 nearest neigh-
bor FUs, but also to all FUs within the same row or column
in this tile. In addition, there are row buses and column
buses across the matrix. The first row of FUs are also used
by the VLIW processor and connected to a multi-port reg-
ister file. Only the FUs in the first row are capable of exe-
cuting memory operations, i.e., load/store operations.

The entire design took less than one person-week to fin-
ish starting from the software implementation. The main ef-

forts are spent on identifying pipelineable loops and source-
level transformations. The scheduling results for kernels
are listed in tab. 1, while the simulation results for the en-
tire application are listed in tab. 2, which are obtained from
an in-house co-simulator. The second column of tab. 1 is
the number of operations of the loopbody. Initiation inter-
val (II) means a new iteration can start at every II cycle.
Instruction-per-cycle (IPC) reflects the parallelism. Stages
refer to total pipeline stages which have an impact on pro-
logue/epilogue overhead. Scheduling time is the CPU time
to compute the schedule on a Pentium 4 1.7GHz/Linux PC.

kernel no. II IPC stages sched.
of time
ops (secs)

clear block 8 1 8 3 0.05
form comppred1 41 2 20.5 6 81
form comppred2 13 1 13 6 4.6
form comppred3 57 2 28.5 10 586
form comppred4 33 2 16.5 5 30
form comppred5 54 2 27 8 245
form comppred6 30 2 15 5 42
form comppred7 67 3 22.3 6 167
form comppred8 43 2 21.5 6 132

saturate 78 3 26 10 1720
idct1 83 3 27.7 7 363
idct2 132 4 33 7 459

addblock1 48 2 24 7 73
addblock2 44 2 22 4 27

non intra dequant 20 1 20 12 53
intra dequant 18 1 18 12 18

Table 1. Scheduling results for kernels

4.3 Comparison with VLIW Architecture

Since we view coarse-grained reconfigurable architec-
ture as a promising alternative competing with other es-
tablished programmable architectures, we compared our re-
sults to those on the VLIW, which is widely used in DSP
and multimedia applications and has mature compiler sup-
port. It should be noted that commercial VLIWs, e.g., TI’s
64x series, have many specific instructions such as SIMD
to improve performance. But that normally requires hand-
crafted assembly code, and we can add similar instructions
into ADRES too. To be fair, we compare ADRES to VLIW
without using assembly code. IMPACT framework is used
again here as both compiler and simulator to obtain results,
where aggressive optimizations are enabled. The tested
VLIW has the same configuration as the first row of the
tested ADRES architecture. The results are shown in tab. 2.
The test video stream ismobl 015.m2vwith 352x240x450

5

VLIW(IMPACT) ADRES
total ops 2:92� 109 5:31� 109

total cycles 1:28� 109 4:20� 108
frames/sec 35.2 107.1

speed-up/kernels 4.84
speed-up/overall 3.05

IPC(excl. kernels) 2.71

Table 2. Comparison with VLIW architecture

frames, and frame rate is obtained by assuming both archi-
tectures run at 100MHz. Overall ADRES executes more op-
erations because of the optimization techniques mentioned
in section 4.1. However, ADRES manages to speed-up ker-
nels by almost 5 times and entire application by 3 times
over the reference VLIW. The IPC excluding the kernels is
2.71, which means we are able to discover some ILP for the
non-kernel code.

5 Related Work

Many coarse-grained reconfigurable architectures have
been proposed in the past, but design methodology and tools
lag behind. MorphoSys [11] uses an assembly-like lan-
guage to manually map kernels, largely because of its SIMD
programming model. Moreover, due to its loosely coupled
nature, the designer has to identify and translate data trans-
fers between the RISC and the RC array to communication
primitives, involving much data copying. PipeRench [10]
features a very clever architecture for pipelining. A method-
ology is developed to pipeline loops automatically. How-
ever, the reconfigurable part communicates with the other
part through two FIFOs, which means it suffers from the
same problems as other loosely-coupled reconfigurable sys-
tems. RaPiD [1] supports a C-like language to program ker-
nels. RaPiD-C is specialized for pipelining, which requires
considerable designer’s knowledge about the architecture
and is not easy to integrate with ANSI C for complete ap-
plication design. PACT [8] uses the NML language, essen-
tially an assembly language, to model kernels. Automatic
placement and routing tools are able to map the kernel to
the PACT XPP. Recently, PACT started to build a loosely-
coupled system, including an ARM7 processor and using
the AMBA bus as communication channel. The co-design
flow for a complete application is not established yet.

6 Conclusion and Future Work

Coarse-grained reconfigurable architectures have advan-
tages over traditional FPGAs in terms of delay, area and
power. One big issue facing them is how to map not only
computation-intensive kernels but also an entire applica-

tion. To compete with other programmable architectures
like the VLIW, which has mature compiler support, the de-
sign tools and methodology should deliver both high per-
formance and software-like design experience in order to
be widely accepted in applications. We approach this prob-
lem by a combination of a compiler-friendly architecture,
a modulo scheduling algorithm for mapping loops, and a
C-based design flow. Here we present a case study of an
MPEG-2 decoder to illustrate the design flow. The results
show we can achieve satisfying results for the entire appli-
cation in less than one person-week. Major efforts are spent
on profiling/partitioning and source-level transformation.

The source-level transformations very much depend on
the experience of the designer. We would like to formulate
it in a way that an average software programmer can easily
use these techniques. Other ongoing work is about kernel
scheduling. We are developing techniques to minimize re-
configuration overhead in case the local configuration RAM
is not big enough to contain all the kernels.

References

[1] C. Ebeling, D. Cronquist, and P. Franklin. RaPiD - reconfig-
urable pipelined datapath. InProc. of International Workshop
on Field Programmable Logic and Applications, 1996.

[2] The IMPACT group. http://www.crhc.uiuc.edu/impact.
[3] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-

abench: A tool for evaluating and synthesizing multimedia
and communicatons systems. InInternational Symposium on
Microarchitecture, pages 330–335, 1997.

[4] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated exe-
cution using the hyperblock. In25th Annual Intl. Symp. on
Microarchitecture, pages 45–54, 1992.

[5] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauw-
ereins. ADRES: An architecture with tightly coupled VLIW
processor and coarse-grained reconfigurable matrix. InField-
Programmable Logic and Applications, 2003.

[6] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwere-
ins. Exploiting loop-level parallelism for coarse-grained re-
configurable architecture using modulo scheduling. InProc.
Design, Automation and Test in Europe (DATE), 2003.

[7] T. Miyamori and K. Olukotun. REMARC: Reconfigurable
multimedia array coprocessor. InInternational Symposium
on Field Programmable Gate Arrays (FPGA), 1998.

[8] PACT XPP Technologies, 2003. http://www.pactcorp.com.
[9] B. R. Rau. Iterative modulo scheduling. Technical report,

Hewlett-Packard Lab: HPL-94-115, 1995.
[10] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and

R. R. Taylor. PipeRench: A virtualized programmable dat-
apath in 0.18 micron technology. InProc. of IEEE Custom
Integrated Circuits Conference, 2002.

[11] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
and E. M. C. Filho. Morphosys: an integrated reconfigurable
system for data-parallel and computation-intensive applica-
tions.IEEE Trans. on Computers, 49(5):465–481, May 2000.

[12] T. Wolf and M. Franklin. CommBench - a telecommunica-
tion benchmark for network processors. InIEEE intl. Symp.
on Performance Analysis of Systems and Software, 2000.

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

