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Abstract 

 
In this paper, we provide a new efficient and accurate 

congestion model embedded into a floorplanner to estimate 
the congestion of floorplans. It is based on probabilistic 
analysis and a new concept of Irregular-Grid which uses 
the routing information to determine the evaluating regions 
instead of fixed-size grids. Three complete experiments are 
performed and the experimental results show the 
correctness, accuracy and efficiency of our new congestion 
model. 

 
1. Introduction 

 
Advances in the deep-submicron technology have 

brought many changes and challenges to the targets of 
design methodologies. Wire congestion will deteriorate 
design performance because of detoured nets and even 
could lead to unroutable solutions. It also causes the 
timing-related problems because detoured routes result in 
mismatch between preroute and postroute timing models. 
Therefore measuring congestion earlier in the design cycle 
is necessary and may helps saving a lot of time and 
resources. A good model for congestion estimation should 
be accurate enough to reflect the real post-routing result 
and fast enough to be embedded into the iterative 
algorithms for searching the optimal floorplan solution. 

Previous researches address congestion model in 
floorplanning and placement stage. They could be roughly 
divided into three categories: empirical models[5], global 
router based models[6] and probabilistic analysis based 
models[1][3][4]. It has been verified experimentally that 
probabilistic analysis is a quite practical method to predict 
the wire congestion before routing. In this paper we 
propose a new congestion model which is based on the 
concept of probabilistic analysis but modifies the original 
weakness of fixed-size evaluating grids by using irregular-
size evaluating grids. Therefore the evaluating time will be 
saved to focus on the probably more congested locations 
instead of everywhere uniformly to make the estimation 
more precise and efficient. In order to maintain the 
computing complexity in constant time, we induced well-
approximating formulas to compute the probability for a 
net passing through an irregular-size grid rapidly. Finally  
experimental results validate our theoretical work and our 
model performs well in congestion estimating of floorplans 
to be applied to the routability-driven floorplanner. 

This paper is divided into six sections. In section 2, 
the formulation of the congestion estimating problem in 
floorplanning is given. In section 3, we introduce the 
tarditonal congestion model using probabilistic analysis 
and fixed-size evaluating grids, and also conduct some 
definitions and formulas. In section 4, the details of our 
_________________ 
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new congestion model will be described and explained 
completely. Three different experiments are designed and 
performed to demonstrate the correctness, accuracy and 
efficiency of our new model. The experimental results are 
shown in section 5. Finally, the conclusion  is given. 
 
2. Problem Formulation 
 

Given a set of m modules M1, M2, …, Mm and a set of 
n 2-pin nets N1, N2, …, Nn, the objective of floorplanning is 
to obtain a non-overlapping packing of all modules which 
achieves some optimization objectives such as the area of 
the packing, the interconnection length and the congestion 
cost. 

In this paper, we propose a new congestion model to 
estimate the congestion cost of a floorplan solution. Once 
the relative positions of the modules are determined, the 
pins could be placed temporarily to compute the 
interconnection length and congestion cost. Here we use 
the intersection-to-intersection method[4] to locate the pins 
and assume that  nets will be routed over-the-cell in multi-
bend shortest Manhattan distance. Due to the assumption 
of the routing path, it is obvious that all possible routing 
paths of one net could form a single point when two pins 
are at the same position, or a line when two pins are 
located vertically or horizontally, or otherwise a 
rectangular region including two pins exactly. In the later 
discussion we will only focus on the nets whose probable 
routing paths form a rectangular region and we call it the 
“routing range” of the net in this paper for convenience. 

According to the relative positions of pins, the nets 
are divided into two types: type I if one of the pins is 
lower-left against the other one, and type II if one of the 
pins is upper-left against the other one. Besides we also 
define that for a net Ni, the pin p1

i is on the other pin p2
i’s 

left (see figure 1). 
 
 
 
 
 
 
 

    (a) Type I net                     (b) Type II net 
 

Figure 1. Type I and type II nets 
 

3. Probabilistic Analysis Congestion 
Estimation 
 

In this section we will review the congestion model 
proposed in [4] which use the concept of probabilistic 
analysis originally in [3]. Given a floorplan solution, first 
divide it into a 2-dimensional array with fixed-size grids. 
The routing range of each net may be covered by a set of 
grids. In figure 2(a) for a type I net the number of routes 
starting from p1

i and p2
i respectively to each grid is 

obtained. Therefore we make the following definition: 
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Definition 1: Assume that the routing range of Ni is 
covered by g1

i × g2
i grids, and the coordinate of the grid in 

the most lower-left corner to be (0, 0). For 0 ≤ x < g1
i and 0 

≤ y < g2
i, Tai(x, y) and Tbi(x, y) indicate the number of 

possible monotonic routes starting from the grid of p1
i and 

p2
i respectively to the grid at (x, y), and otherwise, Tai(x, y) 

and Tbi(x, y) are both 0. Note that when we assume the 
coordinate of the grid in the most lower-left corner to be (0, 
0), the coordinates of  p1

i and p2
i become (0, 0) and (g1

i -1, 
g2

i -1) for type I net respectively, and they become (0, g2
i -1) 

and (g1
i –1, 0) for  type II net respectively. 

 
 
 
 
 
 
 

(a) Tai(x, y)                               (b) Tbi(x, y) 
 

Figure 2. The number of routes from pins to each grid 
 
By Definition 1, we can calculate the number of 

routes for Ni passing through the grid at (x, y) by 
computing Tai(x, y) × Tbi(x, y). For a type I net, the total 
number of routes is Tai(g1

i–1, g2
i–1), so the probability for 

Ni passing through the grid at (x, y) is 
( ) 1 2( , ) ( , ) ( 1, 1).i i

i i iTa x y Tb x y Ta g g× − −  
For a type II net, the total number of routes is Tai(g1

i–1, 0), 
so the probability for Ni passing through the grid at (x, y) is 

( ) 1( , ) ( , ) ( 1,0).i
i i iTa x y Tb x y Ta g× −  

Tai(x, y) and Tbi(x, y) can be calculated by the 
following formula: 

 
Formula 1: For 0 ≤ x < g1

i and 0 ≤ y < g2
i,  

(1) Ni is type I: 
 

Tai(x, y) =              and 
 

Tbi(x, y) = Tai(g1
i–1–x, g2

i–1–y) =                             
 

(2) Ni is type II: 
 

Tai(x, y) =                           and            
 

Tbi(x, y) = Tai(g1
i–1–x, g2

i–1–y) =                         
 
The probability of Ni pass through the grid at (x, y) can be 
calculate by Formula 2. 
 
Formula 2: For 0 ≤ x < g1

i and 0 ≤ y < g2
i, 

(1) Ni is type I: the probability for Ni passing through the 
grid at (x, y) 

 
 
 

 
(2) Ni is type II: the probability for Ni passing through the 

grid at (x, y) 
 

 
 
 
Note that when 0 > x or x ≥ g1

i or 0 > y or y ≥ g2
i, Pi(x, y) 

must be 0. 

After processing all the nets, we can add up the 
probabilities for each net passing through one grid to be the 
estimated congestion cost of that grid. Larger the estimated 
cost of a grid is, more congested the grid might be. The 
congestion information at grid (x, y) is defined as  

1
( , ) ( , ).

n
ii

f x y P x y
=

=∑  
 Finally the average of the estimated cost of the top 

10% most congested grids is used to represent the entire 
congestion cost of a floorplan solution. 
 
4. Irregular-Grid Congestion Model 
 
4.1 Motivations and Notions 
 

A good congestion model should be accurate enough 
to estimate the real congestion and also fast enough to be 
embedded into a floorplanner. The previous congestion 
model with fixed-size grid proposed in [4] has a serious 
trade-off between accuracy and efficiency, because the 
fixed size of grids affects both of them simultaneously. 
Figure 3(a) shows five routing regions for five nets. A chip 
which is divided into  4 × 4 (6 × 6) fixed-size grid is shown 
in figure 3(b) (3(c)). Cells  with higher congestion are 
colored darker. This example shows the size of grid 
actually affect the estimation of congestion. 

 
 
 
 
 
 
 

(a)                            (b)                            (c) 
Figure 3. Congestion estimation with different grid sizes 

 
The examples in figure 4 present the problem may be 

caused due to fixed cutting grid size. Figure 4(a) shows a 
floorplan solution and the routing ranges of six nets. Note 
that most of the nets are distributed on the right part of the 
whole plane, and it is supposed to be more congested there. 
In figure 4(b) and 4(c) the floorplan is divided into 6 × 4 
and 12 × 8 grids respectively. In figure 4(b) the longest net 
on the right part of the plane is only covered by 6 grids and 
it is obvious the estimated result may not be reliable. On 
the other hand, the estimation must be more precise in 
figure 4(c) and surely the computing time is longer. 
However we observed that there are more than a half of 
grids only being passed through by one net which will 
never lead to congestion. It means there must be some time 
being consumed in these unnecessary region. This also 
motivates us to think about the wasted time on processing 
some negligible parts. It is seem reasonable that computing 
the congestion of every intersection of routing ranges is 
more meaningful than spending time on several fixed-size 
grids in one intersection of routing ranges. For this notion, 
we try to construct estimating grids according to the 
routing ranges. 

 
 
 
 
 

  
 

Figure 4. Examples for cutting with different grid sizes 
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4.2 Irregular-Grid 
 

Our model uses the routing ranges of the nets to 
divide the layout. Every routing range will create two 
horizontal and two vertical cutting-lines which are 
extended from four boundaries of the routing range. We 
named the partitioned graph “Irregular-Grid” and each 
partitioned irregular-size rectangle “IR-grid” to be 
distinguished from the fixed-size grid. Figure 5 is a 
floorplan and the corresponding Irregular-Grid consists 12 
× 11 IR-grids. Every net will pass through several entire 
IR-grids because the pins must be right on the cutting-lines. 
The gray area shows a routing range and consists of  6 × 6  
IR-grids.  

 
 
 
 
 

 
Figure 5. Irregular-Grid  

 
4.3 Probability Estimation to an IR-grid 
 

Just as the estimation method with fixed-size grids, 
we have to compute the probabilities for each net passing 
through IR-grids first. The summation of the probabilities 
for all nets crossing an IR-grid is regarded as the estimated 
congestion cost of it. Note that the estimated cost here can 
not be used directly to judge the solution, because the sizes 
of IR-grids are not the same. A smaller IR-grid will be 
more congested than a larger one theoretically when they 
have an equal estimated cost. Hence we determine the sum 
of the probabilities crossing an IR-grid divided by the area 
of it to be the congestion cost of every area unit in the IR-
grid. Figure 6 shows a routing range of a Type I net which 
is divided into 6 × 6 fixed-size grids, and the Ta and Tb of 
every grid in figure 6(a) and 6(b) respectively. Assume that 
there is an IR-grid in the routing range involving 3 × 4 
grids presented by a black frame in figure 6. We found that 
all the routes passing through the white grids in the IR-grid 
are involved into the routes passing through the gray grids, 
so we only need to compute the routes crossing each gray 
grid without duplicating. Therefore we derived the 
formulas as follows: 
 
Formula 3: Assume that there exists an IR-grid I which 
covers from x1

I to x2
I in x-direction and from y1

I to y2
I in y-

direction where 0 ≤ x1
I < g1

i, 0 ≤ x2
I < g1

i, 0 ≤ y1
I < g2

i, 0 ≤ 
y2

I < g2
i. That is, the IR-grid I can be described as a set 

{ }1 2 1 2IR grid ( , ) | and .I I I II x y x x x y x y− = ≤ ≤ ≤ ≤  

(1) Ni is type I: probability PI
i that a route connecting the 

net Ni and pass through IR-grid I is 
 
 
 

(2) Ni is type II: probability PI
i that a route connecting 

the net Ni and pass through IR-grid I is 
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The congestion information function F(I) at IR-grid I 
can be calculated by 

1
F( ) .

n I
ii

I P
=

=∑  

Figure 6 shows a net with pins at (0, 0) and (6, 6). An 
IR-grid I ={(x, y)| 2 ≤ x ≤ 4, 2 ≤ y ≤5}. The number of 
routes connecting the pin passing through IR-grid I is 5×1 
+ 15×1 + 35×1 + 4×5 + 10×4 + 20×3 + 35×2 = 245 and the 
probability is 245/252. 

   
 

 
 
 
 

 (a)                                   (b) 
 

Figure 6. Example for a net passing through an IR-grid 
 

The new irregular-grid congestion estimation model 
described here can be easily embedded into a floorplanner 
to estimate the congestion of floorplans. In next section, we 
will derive some accurate and efficient approximating 
formulas for Formula 3. Consequently, the advantages of 
our new irregular-grid model will become clear and will be 
described in Section 4.7.  
 
4.4 Approximating formulas 
 

It is obvious that Formula 3 still exhibits the 
correlation between the grid size and the time complexity. 
Hence we tried to derive formulas to approximate to 
Formula 3 and simplify the computation to constant time. 
For a type I net Ni, we could obtain the probability for Ni 
passing through an IR-grid I by calculating  

 
 

                                                                                            
It could be rewritten to 
 
  
                                                                                             
And then we will discuss the two functions 
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separately. 
Substituting the corresponding values in to Function 

(1), Function (1) can be written as     
 
 

 
 
Observe that 
 
 
 
 
 

[ ] [ ]
)1,1(

),1(),()1,(),(

21

2222

2

1

2

1

−−

+×++×∑ ∑
= =

ii
i

x

xx

y

yy

I
i

I
i

I
i

I
i

ggTa

yxTbyxTayxTbyxTa
I

I

I

I

∑ ∑
= = 












−−

+×
+













−−

+×
I

I

I

I

x

xx

y

yy
ii

i

I
i

I
i

ii
i

I
i

I
i

ggTa
yxTbyxTa

ggTa
yxTbyxTa2

1

2

1
)1,1(

),1(),(
)1,1(

)1,(),(

21

22

21

22

)1,1(
)1,(),(

21

22

−−
+×

ii
i

I
i

I
i

ggTa
yxTbyxTa

……Function (1)    

……Function (2)
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where Q=x+ y2
I , R= g1

i + g2
i –3 and r= g1

i –1. Note that Q 
involves the variable x, h(x,r,R,Q) is not a real 
hypergeometric distribution[2], but it is a hypergeometry-
like function. It has been proved that binomial distribution 
may approximate to hypergeometric distribution quite 
precisely and moreover normal distribution could also 
approximate to binomial distribution while assuming the 
function to be continuous instead of discrete. Although Q 
in h(x,r,R,Q) involves the variable x, we can still use the 
similar technique used to approximate a hypergeometric 
distribution to a normal distribution to approximate 
h(x,r,R,Q) to a normal-distribution-like function 

 
 

where 
 

 
 
 
provided that μx is not too near either 0 or 1[2].  
Function (1) becomes 

                                                                             
 

Function (2) could be approximated in the same way. 
 

Since the functions have been regarded as continuous, 
the summation functions could be substituted for integral 
functions. Therefore finally the approximating formulas are 
derived as follows: 

 
Theorem 1: Assume that there exists an IR-grid I which 
covers from x1

I to x2
I in x-direction and from y1

I to y2
I in y-

direction in the grids where 0 ≤ x1
I < g1

i, 0 ≤ x2
I < g1

i, 0 ≤ 
y1

I < g2
i, 0 ≤ y2

I < g2
i. 

(1) Ni is type I: the probability PI
i for Ni passing through I 

is 
 
 
 
 

Where 
 
 
 
 

 
(2) Ni is type II: the probability PI

i for Ni passing through I  
can be derived in the similar way. 

The definite integral in the above equation can be easily 
computed by Simpson’s rule of integration in constant time. 
Precision of the above approximating formulas is discussed 
in the next section. 
 
4.5 Precision Analysis and Calculation Rule 
Modification 
 

Although the approximating formulas are generally 
very effective and precise, there still exists a little failings 
in some cases. Due to the inherent weakness of the 

transformations between distributions, our approximating 
formulas will result in some inaccuracy and even errors. 
Take Function (1) for example. When (x+y2

I)/(g1
i+g2

i－3) 
equals to 0, 1, or greater than 1, in these cases μx is too 
near either 0 or 1. Function (1) will return an error value. 
The cases are discussed separately:  
(1) Only when x = 0 and y2

I = 0, (x+y2
I)/(g1

i+g2
i－3) = 0.  

(2) Only when x = g1
i－2 and y2

I = g2
i－1, or x = g1

i－1 
and y2

I = g2
i－2, (x+y2

I)/(g1
i+g2

i－3) = 1. 
(3) Only when x = g1

i－1 and y2
I = g2

i－1, (x+y2
I)/(g1

i+g2
i

－3) > 1. 
Similarly the same condition can be derived for Function 
(2). Accordingly for a type I net incorrect approximation 
will be caused at grid (0, 0), (g1

i－2, g2
i－1), (g1

i－1, g2
i－

2), and (g1
i－1, g2

i－1) in the routing range (as the gray 
grids shown in figure 7). 
 
 
 
 

 
  Figure 7. Gray grids may cause incorrect approximation 
 
Because of the approximating errors, the algorithm 

has to be modified to avoid computing the error-making 
grids. Fortunately, we discovered that these grids are 
always exactly near two pins of a net (see figure 7). And 
we have already known that the probability for a net 
passing through IR-grids which cover any pin is always 1. 
Therefore we try to embrace the error-making grids into 
one IR-grid and then we can skip the computation to assign 
it 1 directly. 

We take a real case for example. Assume there is a 
type I net which is divided into 31×21 grids. If an IR-grid 
is in the routing range of the net as shown in figure 8(a), 
the two compared curves of the real values and the 
approximating values for x = 10, 11, …, 20 and y = 15 (the 
top y-coordinate of the IR-grid) of Function (1)) are drawn 
in figure 8(b). It is obvious that the approximation is 
extremely accurate. If an IR-grid is as shown in figure 8(c), 
Function (1) will make a mistake at grid (30, 19). 
Therefore the approximating curve in figure 8(d) shows no 
value when x = 30. Besides, the deviation of approximation 
is generally less than 0.05 and our derived formulas are 
applicable to replace the original complex formulas. 

 
 
 
 
 
 
 
 

 
(a)         (b) 

 
 
 
 
 
 
 
 
 
 
 

 (c)           (d) 
Figure 8. Examples for accuracy of approximation 
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4.6 Algorithm 
 
The Irregular-Grid congestion model can be 

embedded into any general floorplanners to estimate the 
probable congestion of every intermediate floorplan 
solution. And the estimated cost could be regarded as one 
of the criterions to judge a floorplan solution. Therefore 
given a floorplan solution, the estimating process is stated 
as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.7 Advantages 
 

The Irregular-Grid congestion model provides a 
accurate and effective method to estimate the congestion in 
floorplanning. Since the information of routing is used to 
divide the estimated sections, it has some additional 
advantages as below: (1) It provides a reasonable and 
generalized partitioning basis to various circuits while 
evaluating congestion. (2) It decreases the high 
dependency between the estimating accuracy and the 
number of estimating grids. (3) Instead of computing the 
probably less congested portions, spending more time on 
the probably more congested portions helps improving the 
accuracy and saving the run time. 

We derive a powerful approximating formula to 
replace the complex compute of probabilities and the time 
complexity is only constant time. The total time 
complexity of the algorithm proposed in [4] is O(n × G1 × 
G2), where n is the number of 2-pin nets, and G1 × G2 is the 
number of grids. The total time complexity of our approach 
is also O(n × G1 × G2), where G1 × G2 is changed to the 
number of IR-grids. Due to the relation between the 
numbers of nets and IR-grids, the time complexity can be 
rewritten to O(n3). However in the real case, the number of 
IR-grids is much fewer than n2 because a lot of cutting-
lines will duplicate. 
 
5. Experimental Results 
 

The test circuits are five MCNC benchmarks. All the 
experiments were implemented on Intel 2. 4GHz processor 
with 256MB memory. Three experiments are designed to 
test our new congestion model. In these experiments, the 
floorplanner we used is based on simulated annealing 
algorithm with normalized Polish expression[7]. The 
optimal objectives could be the minimization of the area, 
the interconnection length and the estimated congestion 
cost. To compute the interconnection-related objectives, 
we decompose the multi-pin nets into several 2-pin nets by 

minimum spanning tree. As in [4], the intersection-to-
intersection method is used to distribute the I/O pins into 
grids appropriately. The total wire length can be then 
computed. The congestion cost for a floorplan is calculated 
as the sum of rules of congestion information functions for 
the top 10% most congested IR-grids. The cost function 
used in the following experiments have the from α ×Area 
+ β ×Wirelength + γ ×Congestion. Every test case is 
performed 20 times using different random number 
generator seeds, and the average and the best results 
measured according the cost function used in the 
experiment, are reported in the following tables. 

In order to verify the correctness of estimation, a fair 
judging method is needed. We use the congestion model 
proposed in [4] with very small fixed-size grid (10 × 10 
µm2 in experiments), and called it the “judging model” for 
convenience. In the following experiments, we embed our 
IR-grids model in a floorplanner to get a solution (a 
floorplan), and then use the “judging model” to compute 
the congestion information for the solution so that we can 
compare our solutions with solutions obtained by other 
floorplanner using fixed-size grid model. 

 
5.1 Experiment 1 

 
In this experiment we test two floorplanners: one only 

optimizes the area and the interconnection length, and the 
other additionally optimizes the congestion cost estimated 
by our new model. We use the judging model to evaluate 
the congestion of the two floorplan solutions generated by 
the above floorplanners. The decrease in the congestion 
could verify that our new model can be embedded into a 
floorplanner and reduce the congestion of the floorplan 
solution effectively. 

Table 1 shows the area and the wire length of the 
average and the best results of the first floorplanner. Table 
2 additionally shows the congestion cost estimated by our 
new model (IR-grid cgt cost) of the results of the second 
floorplanner. Both results are also tested by the judging 
model (judging cgt cost). The comparison between Table 1 
and 2 is shown in Table 3. We observe that the congestion 
falls down substantially with a little penalty in the area and 
the wire length. This phenomenon is reasonable for several 
objectives existing simultaneously, and our Irregular-Grid 
model can be used to help the floorplanner obtain a 
solution with less congestion. 
 
5.2 Experiment 2 
 

In this experiment we test the correctness of the 
Irregular-Grid model to make sure the estimated results 
approach to the real congestion situation. In this 
experiment the floorplanner only optimize the congestion 
cost based on our new model. In the process of 
floorplanning we extract the intermediate solution at each 
temperature-dropping step, which is also a locally-
optimized solution, and apply two judging models with 
different grid sizes to it. In figure 9 three curves show these 
three values in obtaining order 1 to 20 (test circuit ami33). 
Curve A is composed of the congestion costs computed by 
our new model with 30 × 30 µm2 grid size. Curve B and C 
are composed of the congestion costs computed by the 
judging models with 10 × 10 and 50 × 50 µm2 grid sizes 
respectively. Notice that we do 100 multiplies the values 
on curve A and 2.5 multiplies the values on curve B for 
adjusting the ranges of these three values to be near. We 

Algorithm Congestion Information Computation 
Input    : A floorplan with net information 
Output : Congestion information of the floorplan  
begin 
1 Determine the dividing lines determinted by the routing ranges of nets; 
2 Remove any two lines whose interval is smaller than the double of  the 

width/length of a grid and modify the corresponding routing ranges; 
3 For each net 

3.1 Assign 1 to the passing probabilities of the IR-grids which cover pins;
3.2 Compute the passing probabilities of the other IR-grids which are in 

the routing range by approximating formulas; 
3.3 Add the passing probability of each IR-grid to its own record of the 

congestion cost; 
4 For each IR-grid 

4.1 Compute the congestion information; 
5 Return the average of the congestion cost of the top 10% most congested 

area units; 
end 



 ACurve

BCurve

 CCurve

can observe that the slopes of curve A and B are more 
similar than the slopes of curve A and C. This indicates that 
the estimation of our model is as accurate as the fixed-size 
grid model with small grid size and can reflect the real 
congestion situation in floorplanning. 
 
5.3 Experiment 3 

 
In this experiment we compare the performance of 

Irregular-Grid model with the fixed-size grid model to 
verify the accuracy and efficiency of our model. We use 
two floorplanners which both optimize the congestion cost 
only using our new model and fixed-size grid model 
respectively. Table 4 and 5 show the grid size, the number 
of grids, congestion cost, and run time of the average and 
best solutions of two floorplanners (test circuit ami33). 
Besides, a judging model is also used to estimate the 
congestion of each floorplan solution (judging cgt cost). 
We can observe that the run time using our new model is 
about 2.3 times less than using the fixed-size grid model 
with grid size 100 × 100 µm2, however the judging 
congestion cost reduces 8.79% in average. And comparing 
with the fixed-size grid model with grid size 50 × 50 µm2, 
the run time is 3.5 times less and the judging congestion 
cost reduces 4.59%. Therefore we prove that our new 
model could safe time to improve the estimating accuracy 
and certainly achieve our theoretical benefit. 

 
6. Conclusion 
 

We propose a concept of irregular-size grid to build 
up a new congestion model. Due to the effective 
approximating probability formulas we derived, our new 

model could estimate congestion of a floorplan more 
accurately in less run time. Besides, our model provides a 
reasonable basis to partition the estimating region. Finally 
three complete testing experiments are processed and the 
experimental results show the ability of our model to 
estimate congestion more accurately and efficiently. 
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Improvement of average results Improvement of best results
circuit area

(%)
wire length

(%) 
judging cgt 

(%) 
area 
(%) 

wire length
(%) 

judging cgt
(%) 

apte 0.577 -1.566 12.128 -0.59 12.3 10.93 
xerox -2.33 -4.68 20 7.1 -27.7 7.9 

hp -5.6 4.88 9.46 -8.9 -14.4 11.32 
ami33 -1.57 3.5 5.59 -3.28 8.26 7.3 
ami49 -0.09 -3.46 1.96 -0.42 0.02 18.26 

average results best results 
circuit area 

(mm2) 
wire length 

(µm) 
time 
(sec) 

judging cgt
cost  

area 
(mm2) 

wire length 
(µm) 

time 
(sec)

judging cgt
cost 

apte 48.52 190749 36.7 0.314989 47.63 196240 38 0.20913
xerox 22.22 136281 48.9 0.140384 21.25 93361 47 0.080556

hp 9.65 64784 24 0.176407 9.33 48066 25 0.152014
ami33 1.27 82366 196 0.5029 1.22 81483 200 0.470891
ami49 42.75 1067681 479.3 0.191047 42.46 1046063 487 0.205271

average results best results 
circui

t 

grid 
size 

(µm2) 
area 
(mm2

) 

wire 
length 
(µm) 

IR-grid 
cgt cost 
(×1000) 

time 
(sec) 

judging 
cgt 
cost 

area 
(mm2

) 

wire 
length 
(µm) 

IR-grid
cgt cost 
(×1000)

time
(sec)

judging 
cgt 
cost 

apte 60×60 48.24 193736.9 0.1531 198.9 0.276787 47.91 172163 0.1296 191 0.186267
xerox 30×30 22.75 142668.2 0.209 203.4 0.1123039 19.74 119235.8 0.162 211 0.0741933

hp 30×30 10.19 61624.3 0.4054 106.3 0.1597123 10.17 54987.5 0.3438 110 0.134803
ami33 30×30 1.29 79482.3 5.241 296.5 0.4748 1.26 74750.3 5.153 307 0.4365
ami49 30×30 42.79 1104683.9 0.54383 1254.1 0.187311 42.64 1045836.8 0.515 1161 0.167791

average results best results grid 
size 

(µm2) 
# of 

IR-grid 

IR-grid 
cgt cost 
(×100) 

Time 
(sec) 

judging 
cgt cost 

# of  
IR-grid 

IR-grid 
cgt cost 
(×100) 

time 
(sec) 

judging 
cgt cost

30×30 589 0.2358 27.7 0.21239 25×25 0.2328 31 0.163903

average results best results grid size
(µm2) # of 

grid
grid cgt 

cost 
Time
(sec)

judging 
cgt cost 

# of 
grid 

grid cgt 
cost 

time
(sec)

judging 
cgt cost

100×100 557 0.528656 63.6 0.231073 23×33 0.518196 67 0.166933
50×50 2215 0.356049 96 0.22215 42×60 0.30192 96 0.167464

Table 3. Comparison between Table 1 and 2 Table 1. Results with fixed-size grid model 

Table 4. Results with Irregular-Grid model 
(congestion optimization only) Table 5. Results with fixed-size grid model

(congestion optimization only) 

Table 2. Results with Irregular-Grid model 

Figure 9. Comparison between the fixed-size 
grid model and Irregular-Grid model (ami33)
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