
Fault-Tolerant Deployment of Embedded Software for
Cost-Sensitive Real-Time Feedback-Control Applications ∗

Claudio Pinello Luca P. Carloni Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720-1772

{pinello,lcarloni,alberto}@eecs.berkeley.edu

Abstract

Designing cost-sensitive real-time control systems for safety-
critical applications requires a careful analysis of the cost/coverage
trade-offs of fault-tolerant solutions. This further complicates the dif-
ficult task of deploying the embedded software that implements the
control algorithms on the execution platform that is often distributed
around the plant (as it is typical, for instance, in automotive applica-
tions). We propose a synthesis-based design methodology that relieves
the designers from the burden of specifying detailed mechanisms for
addressing platform faults, while involving them in the definition of the
overall fault-tolerance strategy. Thus, they can focus on addressing
plant faults within their control algorithms, selecting the best compo-
nents for the execution platform, and defining an accurate fault model.
Our approach is centered on a new model of computation, Fault Tol-
erant Data Flows (FTDF), that enables the integration of formal vali-
dation techniques.

1 Introduction
The increasing role of embedded software in real-time

feedback-control systems drives the demand for fault-tolerant
design methodologies [20]. The aerospace and automotive in-
dustries offer many examples of systems whose failure may
have unacceptable costs (financial, human or both). In a real-
time feedback-control system, like the one of Figure 1, the con-
troller interacts with the plant by means of sensors and actu-
ators. A controller is a hardware-software system where the
software algorithms that implement the control law run on an
execution platform. An execution platform is a distributed sys-
tem that is typically made of a software layer (RTOS, middle-
ware services, . . .) and a hardware layer (a set of processing
elements, called electronic control units or ECUs, connected
via communication channels like buses, crossbars, or rings).
The design of these heterogeneous reactive distributed systems
is made even more challenging by the requirement of making
them resilient to faults. Technically, a fault is the cause of an
error, an error is the part of the system state which may cause
a failure, and a failure is the deviation of the system from the
specification [19]. A deviation from the specification may be
due to designers’ mistakes (“bugs”) or to accidents occurring
while the system is operating. We classify the latter in two cat-
egories that are relevant for feedback-control systems: plant
faults and execution platform faults. Theoretically, all bugs can
be eliminated before the system is deployed. In practice, they

∗This research was supported in part by the Marco/Gigascale Systems Re-
search Center, the NSF under the project ITR (CCR-0225610), and BMW.

are minimized by using design environments that are based on
precise models of computation (MoC), whose well-defined se-
mantics enable formal validation techniques [3, 9, 10], (e.g.,
synchronous languages [7]). Instead, plant faults and platform
faults must be dealt with on-line. Hence, they must be included
in the specification of the system to be designed.

Plant faults, including sensors and actuators, must be han-
dled at the algorithmic level using estimation techniques and
adaptive control methods. For instance, a drive-by-wire sys-
tem might need to handle properly a tire puncture or the loss of
one of the four brakes. Faults in the execution platform af-
fect the computation, storage, and communication elements.
For instance, a loss of power may turn off an ECU, momen-
tarily or forever. System operation can be preserved in spite of
platform faults if alternative resources supplying the essential
functionality of the faulty one are available. Hence, the pro-
cess of making the platform fault-tolerant usually involves the
introduction of redundancy with obvious impact on the final
cost. While the replication of a bus or the choice of a faster
microprocessor may not affect sensibly the overall cost of a
new airplane, their impact is quite significant for high-volume
products like the ones of the automotive industry. The analysis
of the trade-offs between higher redundancy and lower costs
is a challenging HW-SW codesign task that designers of fault-
tolerant systems for cost-sensitive applications must face in ad-
dition to the following two: (1) how to introduce redundancy,
and (2) how to deploy the redundant design on a distributed
execution platform. Since these two activities are both tedious
and error prone, designers often rely on off-the-shelf solutions
to address fault tolerance, like Kopetz’s Time Triggered Archi-
tecture (TTA) [16]. One of the main advantages of off-the-shelf
solutions is that the application does not need to be aware of the
fault tolerant mechanisms that are transparently provided by the
architecture to cover the execution platform faults. Instead, de-
signers may focus their attention on avoiding design bugs and
tuning the control algorithms to address the plant faults. How-
ever, the rigidity of off-the-shelf solutions may lead to subopti-
mal results from a design cost viewpoint.

These considerations motivate the present work. We pro-
pose an interactive design methodology that involves designers
in the exploration of the redundancy/cost trade-off. To do so ef-
ficiently, we introduce automatic synthesis techniques that pro-
cess simultaneously the algorithm specification, the character-
istics of the chosen execution platform, and the corresponding
fault model. In particular, the designers focus on the control al-
gorithms and the selection of the components and architecture

1530-1591/04 $20.00 (c) 2004 IEEE

controller

embedded software

plant
sensor

sensor

actuator

actuator

execution platform

sensor
driver

sensor
driver

actuator
driver

actuator
driver

control law algorithms

RTOS & middleware

hardware architecture

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

Figure 1. A real-time control system.

CH1

CH0

ECU0 ECU1 ECU2

Figure 2. A simple platform graph.

for the execution platform. In addition, they also specify the
relative criticality of each algorithm process and the expected
set of platform faults. Then, we use this information to (1) au-
tomatically deduce the necessary software process replication,
(2) distribute each process on the execution platform, and (3)
derive an optimal scheduling of the processes on each ECU to
satisfy the overall timing constraints. Together, the three steps
(replication, mapping, and scheduling) result in the automatic
deployment of the embedded software on the distributed execu-
tion platform. When the final results do not satisfy the timing
constraints for the control application, precise guidelines are
returned to the designers who may use them to refine the con-
trol algorithms, modify the execution platform, and revisit the
fault model. While being centered on a synthesis step, our ap-
proach does not exclude the use of pre-designed components,
such as TTA modules, communication protocols like TTP, or
fault-tolerant operating systems. These components can be part
of a library of building blocks that the designer may use to fur-
ther explore the fault-coverage/cost trade-off. Finally, the pro-
posed methodology is founded on a new MoC, fault tolerant
data flow (FTDF), thus making it amenable to the integration
of formal validation techniques.

2 The Proposed Design Methodology

The Fault Model. For the sake of simplicity, in most of this
paper we assume fail silence: components either provide cor-
rect results or do not provide any result at all. Recent work
shows that fail-silent platforms can be realized with limited
area overhead and virtually no performance penalty [5]. The
fail silence assumption can be relaxed if invalid results are de-
tected otherwise, as in the case of CRC-protected communica-
tion and voted computation [12]. Also, the presence of value

m

m
fine

control
task

coarse
control

task
m

m

m

m

m

sensor

inputsensor

sensor

arbiter

m

output

actuator

m actuator

inverted pendulum
(the plant)

Figure 3. Controlling an inverted pendulum.

errors, where majority voting is needed, can be accounted for in
the FTDF communication media (see Section 3). The same is
true for Byzantine failures, where components can have any be-
havior, including malicious ones like coordinating to bring the
system down to a failure [18]. In addition to the type of faults,
a fault model also specifies the number (or even the mix) of
faults to be tolerated [23]. A statistical analysis of the various
components MTBFs (mean time between faults), their inter-
actions and MTBR (mean time between repairs), should de-
termine which subsystems have a compound MTBF that is so
short to be of concern. The use of failure patterns to capture
effectively these interactions was proposed in [8], which is the
basis of our approach.

Setup. Consider the feedback control system in Figure 1.
The control system repeats the following sequence at each pe-
riod Tmax: (1) sensors are sampled, (2) software routines are ex-
ecuted, and (3) actuators are updated with the newly-processed
data. The actuator updates are applied to the plant at the end
of the period to help minimize jitter, a well known technique in
the real-time control community [24, 15]. In order to guaran-
tee correct operation, the worst-case execution time (WCET)
among all possible iterations must be smaller than the given
period Tmax (our real-time constraint), which is determined by
the designers of the controller based on the characteristics of
the application. Moreover, the critical subset of the control al-
gorithms must be executed in spite of the specified platform
faults. We use software replication to achieve fault tolerance:
critical routines are replicated statically (at compile time) and
executed on separate ECUs and the processed data are routed
on multiple communication paths to withstand channel failures.

Example. Figure 3 illustrates a FTDF graph for a paradig-
matic feedback-control application, the inverted pendulum con-
trol system. The controller is described as a bipartite directed
graph G where the vertices, called actors and communication
media, represent software processes and data communication.
Figure 2 illustrates a possible platform graph PG, where ver-
tices represent ECUs and communication channels and edges
describe their interconnections.

The Core Idea. A failure pattern is a subset of vertices
of PG that may fail together during the same iteration. A set
of failure patterns identify the fault scenarios to be tolerated.
The following relations are the basis to derive a fault-tolerant
deployment of G on PG:

• fault-tolerance binding: for each failure pattern the exe-
cution of a corresponding subset of the actors of G must

FaultBehavior,
Constraints

Parse SynDEx

Merge

Arbiter
Best

Output

Act

Arbiter
Best

ECU0

ECU1

ECU2

CH0

CH1

Schedule

Input
A

rbiterB
est

O
utput

F
ineC

TR
L C

oarseC
TR

L
S

ens

S
ens

S
ens

A
ct

A
ct

Input
A

rbiterB
est

O
utput

E
C

U
0

E
C

U
1

E
C

U
2

C
H

0

C
H

1

C
oarseC

TR
L

Coarse
CTRL

Sens

Act

Act
Input Output

Fine
CTRL

Arbiter
BestSens

Sens

ActOutput

Coarse
CTRL

Coarse
CTRL

Fine
CTRLInput

Input

Sens

Sens

Sens

CH1

CH0

ECU0 ECU1 ECU2

Non-FT Mapping

Arbiter
Best

Output

ActECU0

ECU1

ECU2

CH0

CH1

Act

Coarse
CTRL

Fine
CTRL

Input

Sens

Sens

Sens

Non-FT Mapping

Arbiter
Best

Output

ActECU0

ECU1

ECU2

CH0

CH1

Act

Coarse
CTRL

Fine
CTRL

Input

Sens

Sens

Sens

Non-FT Mapping

Arbiter
Best

Output

ActECU0

ECU1

ECU2

CH0

CH1

Act

Coarse
CTRL

Fine
CTRL

Input

Sens

Sens

Sens

Figure 4. Proposed Design Flow.

be guaranteed. This subset is identified a-priori based on
the relative criticality assignment.

• functional binding: a set of mapping constraints and per-
formance estimates indicate where on PG each vertex of
G may be mapped and the corresponding WCET, see [11].

Design Flow. Figure 4 illustrates the proposed interactive
design flow where designers
• specify the controller (the top-left FTDF graph);
• assemble the execution platform (the top-right PG);
• specify a set of failure patterns (subsets of PG);
• specify the fault tolerance binding (fault behavior);
• specify the functional binding.

A synthesis tool automatically
• introduces redundancy in the FTDF graph;
• maps actors and their replicas onto PG;
• schedules their execution.

Finally, a verification tool checks whether the fault-tolerant be-
havior and the timing constraints are met1. If no solution is
found, the tool returns a violation witness that can be used to
revisit the specification and to provide hints to the synthesis
tool.

3 Fault Tolerant Data Flows
In this section we present the structure and general seman-

tics of the FTDF MoC. The basic building blocks are actors
and communication media. FTDF actors exchange data tokens
at each iteration with synchronous semantics [7].

An actor belongs to one of six possible classes: sensors,
actuators, inputs, outputs, tasks, arbiters. Sensor and actuator
actors read and update respectively the sensor and actuator de-
vices interacting with the plant. Input actors perform sensor
fusion, output actors are used to balance the load on the ac-
tuators, while task actors are responsible for the computation
workload. Arbiter actors mix the values that come from ac-
tors with different criticality to reach to the same output actor
(e.g. braking command and anti-lock braking system (ABS)2).

1Joint work with Sam Williams, UC Berkeley
2We advocate running non-safety critical tasks, e.g. door controllers, on

separate HW. However some performance enhancement tasks, e.g. side-wind
compensation, may share sensors and actuators with critical tasks (steer-by-
wire). It may be profitable to have them share the execution platform as well.

Finally, state memories are connected to actors and operate as
one-iteration delays. With a slight abuse of terminology the
terms state memory and memory actor are used interchange-
ably in this paper.

Tokens. Each token consists of two fields: Data, the actual
data being communicated; Valid, a boolean flag indicating the
outcome of fault detection on this token. When Valid is “false”
either no data is available for this iteration, or the available data
is not correct. In both cases the Data field should be ignored.
The Valid flag is just an abstraction of more concrete and robust
fault detection implementations.

Communication Media. Communication occurs via unidi-
rectional (possibly many-to-many) communication media. All
replicas of the same source actor write to the same medium,
and all destination actors read from it. Media act both as merg-
ers and as repeaters sending the single “merged” result to all
destinations. More formally, the medium provides the correct
merged result or an invalid token if no correct result is deter-
mined.

Assuming fail-silence, merging amounts to selecting any of
the valid results; assuming value errors majority voting is nec-
essary; assuming Byzantine faults we need rounds of voting
(see the consensus problem [6]). Communication media must
be distributed to withstand platform faults, typically this means
having a repeater on each source ECU and a merger on each
destination ECU (using broadcasting communication channels
helps reduce message traffic greatly). Using communication
media, actors always receive exactly one token per input and
the application behavior is independent of the type of platform
faults. The transmission of tokens is initiated by the active ele-
ments: regular actors and memory actors.

Regular Actors. When an actor fires, its sequential code is
executed. This code is: stateless (state must be stored in mem-
ory actors), deterministic (identical inputs generates identical
outputs), non-blocking (once fired, it does not await for fur-
ther tokens, data, or signals from other actors) and terminating
(bounded WCET). The firing rule specifies which subsets of in-
put tokens must be valid to fire the actor, typically all of them
(and firing rule). However, the designer may need to specify
partial firing rules for input and arbiter actors. For example,
an input actor reading data from three sensors may produce a
valid result even when one of the sensors cannot deliver data
(e.g. when the ECU where the sensor is mapped is faulty).

Memory Actors (State Memories). A memory provides
its state at the beginning of an iteration and has a source ac-
tor, possibly replicated, that updates its state at every iteration.
State memories are analogous to latches in a sequential digi-
tal circuit: they store the results produced during the current
iteration for use in the next one.

3.1 Actor Compositions

The following rules specify the set of valid actor composi-
tions to obtain a legal FTDF graph. Some basic rules (e.g. all
input and output ports of an actor should be connected, data-
types should be matched, etc.) are common to most dataflow
models and are assumed implicitly here.

Definition 3.1.1 Given a set of actors A and communication
media M, a FTDF graph G is a pair (V,E) where V = A∪M
is the set of vertices and E ⊂ (A×M)∪ (M ×A) is the set of
directed edges.

Note that G is bipartite and active elements are always con-
nected via a communication medium (see Figure 3). We as-
sume the partition A = AS ∪AAct ∪AI ∪AO ∪AT ∪AA ∪AM of
actors in the six regular actor types and the memory actors.

Definition 3.1.2 Given a FTDF graph G , and a vertex v ∈ V,
the successor neighbors of v are denoted by neig+(v) = {w ∈
V s.t. (v,w) ∈ E}, the predecessor neighbors by neig−(v) =
{w ∈ V s.t. (w,v) ∈ E} and all the neighbors neig(v) are the
union of the two.

Definition 3.1.3 Given a FTDF graph G , and an actor v ∈
A, the successor actors of v are denoted by succ(v) =
neig+(neig+(v)), and the predecessor actors by pred(v) =
neig−(neig−(v)),

Definition 3.1.4 A FTDF graph G is “legal” if
• G contains no causality cycles i.e. if graph G ′ = (V ′,E ′)

where V ′ = V \AM, E ′ = E ∩ (V ′×V ′) is acyclic
• ∀v ∈ AI , pred(v) ⊂ AS ∪AM and ∀v ∈ AS, succ(v) ⊂ AI

• ∀v ∈ AAct , pred(v) ⊂ AO and ∀v ∈ AO, succ(v) ⊂ AAct ∪
AM

• ∀v ∈ AS, neig−(v) = /0 and ∀v ∈ AAct , neig+(v) = /0

Finally FTDF graphs can express redundancy, i.e. one or more
actors may be replicated. All the replicas of an actor v ∈ A are
denoted by R (v) ⊂ A. Note that any two actors in R (v) are of
the same type and must compute the same function. This basic
condition is motivated in Section 4.2 where replica determin-
ism is discussed.

4 Replication, Mapping, and Scheduling

Designers must provide the system specification tuple
(G ,Tmax,PG,F,χ,ψ,µ,τ), i.e.:
• FTDF graph G and its iteration period Tmax;
• platform graph PG =(P,C,D), where P is the set of ECUs,

C is the set of channels, and D ⊂ P×C is the set of edges
connecting them.

• set of failure patterns F ⊂ 2P∪C, including the empty fail-
ure pattern, i.e. F = { /0, f1, . . . , fk}.

• the fault behavior, i.e. a criticality assignment for actors
and failure patterns: χ : A → IN, ψ : F → IN. For any fault
of a failure pattern fi ∈F , at least one replica of each actor
a such that χ(a) ≥ ψ(fi) must be executed.

• mapping constraints µ : V → 2P∪C, i.e. on which vertices
of PG can a given vertex of G be mapped.3

• performance annotations, i.e. WCET of actors on ECUs
and worst case transmission time (WCTT) of data on
channels τ : V × P ∪C → IN, with the convention that
τ(v,r) = 0 ∀v ∈ M,∀r ∈ P.

3Some actors may require special resources not available at all ECUs. The
most notable examples are the sensor and actuator actors that clearly need di-
rect access to the I/O resources. Other examples are floating point unit, size of
the stack/RAM memories for temporary data, etc.

All this information contributes to specifying what the sys-
tem should do and drive how it should be implemented. The
replication of sensors and actuators is not performed automat-
ically because they may have a major impact on cost. For
consistency, their criticality is always set to the minimum, i.e.
∀s ∈ AS ∪AAct , χ(s) = 0. To guarantee execution of G in ab-
sence of faults it is recommended that ψ(/0) = 0.

4.1 Mapping and scheduling a graph G on PG

A mapping of G on PG is a directed graph L = (LV ,LE)
where vertices in LV are elements of (P∪C)×V . A vertex
l ∈ LV with l = (r,v) means that actor or medium v is mapped
to resource r. An edge e ∈ LE with e = (l1, l2), l1 = (r1,v1)
and l2 = (r2,v2), models data transfer from l1 to l2. Mappings
must satisfy edge consistency: edge e ∈ LE connects vertices
l1 = (r1,v1) and l2 = (r2,v2) only if the associated FTDF ele-
ments depend on one another (i.e. (v1 ∈ A ∧ v2 ∈ succ(v1)) ∨
(v1,v2) ∈ E) and the associated resources r1,r2 are adjacent
vertices in PG (i.e. (r1 = r2 ∈ P) ∨ (r1,r2)∈ D ∨ (r2,r1)∈D).
Since L preserves the dependencies in G , it contains no causal-
ity cycles. So, if we neglect memory actors, L defines a partial
order.

For a given v ∈V , the set `(v) = {r ∈ P∪C, s.t. (r,v) ∈ LV}
denotes the set of vertices of L where v is mapped.

Like in [8], we define a schedule S as a pair of functions
(f (·),h(·)) with f : P → A∗ and h : C → M∗ where A∗ and M∗

are the sets of sequences over A and M. For each ECU p ∈ P,
f (p) denotes the sequence of actors that must be executed on
p, thereby defining a total order on actors mapped on p. Simi-
larly ∀c ∈C, h(c) defines a total order on data communication
mapped on channel c. A pair (L ,S) is called a deployment.

To avoid deadlocks, the total orders defined by S must be
compatible with the partial order in L . To avoid causality prob-
lems, memory actors are scheduled before any other actor, thus
using the results of the previous iteration. Schedules based on
total orders are called static: there are no run-time decisions
to make, each ECU and each channel controller simply follows
the schedule. However, in the context of a faulty execution plat-
form an actor may not receive enough valid inputs to fire and
this may lead to starvation. Like in [8], we solve this problem
by skipping an actor if it cannot fire and by skipping a commu-
nication if no data is available.

4.2 Replica determinism

Given a mapping L , we want to preserve replica determin-
ism: if two actors in R (v) fire, they produce identical results.
For general MoCs the order of arrival of results must also be
the same for all replicas. Synchrony of FTDF makes this check
unnecessary. Clearly a synchronization algorithm must be im-
plemented in the execution platform, see in example [17].

Replica determinism in FTDF can be achieved enforcing
two conditions: (1) all actors in R (v) compute the same func-
tion, and (2) for any failure pattern, if two replicas get a firing
subset of inputs they get the same subset of inputs. Condi-
tion (1) is enforced by construction by allowing only identi-
cal replicas. Condition (2) amounts to a consensus problem
and it can either be checked at run-time (like for Byzantine
agreement rounds of voting), or it can be analyzed statically at

compile time (if the fault model is milder). Our interest in de-
tectably faulty execution platforms makes the latter approach
appear more promising and economical. Condition (2) is triv-
ially true for all actors with the “and firing rule”. For input and
arbiter actors the condition must be checked and enforced. We
derive procedure extend(L) that transforms a mapping L to en-
force condition (2). Its basic step is the following: if a failure
pattern may lead to two different firing sets for two replicas,
extend the mapping with routings of the results to the replica
that lacks them. If there is enough connectivity in PG, repeat-
ing this step will eventually stabilize the mapping and achieve
replica determinism.

Memory actors invalidate their state after transmitting it at
the beginning of an iteration and before other actors may fire.
Hence, they can be treated as stateless. Further, condition (2)
is trivially true for them because they have a single input.

4.3 Synthesis

Given the system specification, a synthesis algorithm should
derive a fault tolerant deployment (i.e. a redundant mapping
LFT and its associated schedule SFT).

First consider the following auxiliary mapping problem

Problem 1 Given G , PG, and a set of constraints µ′, find an
edge-consistent mapping L ′ = (L′

V ,L′
E), such that:

• ∀v ∈ A, (`(v) = {p}) ∧ p ∈ µ′(v)

• ∀v ∈ M, `(v) ⊂ µ′(v)

A solution to Problem 1 is a non-fault-tolerant mapping. The
following synthesis algorithm uses the solutions to a number
of instances of Problem 1 to derive a fault-tolerant deployment
(LFT ,SFT).

Algorithm 1 Consider the tuple (G ,Tmax,PG,F,χ,ψ,µ,τ)
1. let L /0 be the solution to Problem 1 using µ′ ≡ µ

2. for each fi ∈ F \{ /0} do

(a) build a set of constraints µ fi such that

µ fi(v) =

{

` /0(v), i f v ∈ A ∧ χ(v) < ψ(fi)
µ(v)\ fi, otherwise

(b) let L fi be the solution to Problem 1 using µ′ ≡ µ fi
3. merge the resulting L /0,L f1 , . . . ,L fk into a redundant map-

ping L ′
FT =

⋃

fi∈F L fi = (LVFT ,LEFT)

4. enforce replica determinism: LFT = extend(L ′
FT)

5. derive a schedule SFT for the execution of LFT

In step 3 the redundant mapping is simply given by:
L′

VFT
=

⋃

fi∈F LVfi
, L′

EFT
=

⋃

fi∈F LE fi
.

The resulting fault tolerant deployment (LFT ,SFT) is guar-
anteed by construction to meet the fault behavior (χ(·),ψ(·)).
The schedule SFT can be derived using a list scheduling al-
gorithm driven by any heuristic cost function [25]. Heuristics
minimizing the worst case iteration time are excellent candi-
dates. The algorithm terminates successfully if the timing con-
straint Tmax is satisfied for each failure pattern in F . It may ter-
minate earlier if the solution to one of the auxiliary problems
in step 2b cannot be found or if extend(·) fails.

0 200 400 600 800 1000

 r SystemC/tempsens_medium[0]

 r SystemC/tempsens_medium[1]

 r SystemC/tempsens_medium[2]

 r SystemC/actorout

 r SystemC/coarseout

 r SystemC/finecontroller.out_0

 r SystemC/fineout

 r SystemC/SelectOut

 r SystemC/torque_actuator[0].out_0

 r SystemC/torque_actuator[1].out_0

C0

C1

C2

Figure 5. Closed loop behavior of the pendulum
controller, sudden “0-flat” lines indicate injected
faults.

5 Design Environment

We embedded the tools that support the design flow in the
METROPOLIS [4] design environment. Using its modeling lan-
guage, Metropolis Meta Model, designers can specify, analyze,
and synthesize systems at several levels of abstraction, from
purely functional description (with heterogeneous MoCs) to
mapped behavior on an micro-architecture. We developed a
library for the specification of FTDF graphs [21] that makes
possible to simulate the closed loop system, perform fault in-
jection simulations, and generate waveforms like in Figure 5.
The synchronous and periodic semantics of FTDF makes un-
derstanding and analyzing the behavior of the distributed sys-
tem quite easy. The rest of the toolkit consists of an imple-
mentation in C of Algorithm 1 that uses SYNDEX to solve the
auxiliary Problems 1 in the inner step. While it does not deal
with fault tolerance 4, SYNDEX effectively schedules homoge-
neous synchronous data flows on a distributed platform, given
a set of mapping constraints and WCET/WCTT [1]. Further,
as it solves the mapping problem, SYNDEX tries also to min-
imize the worst case iteration time by efficiently parallelizing
the execution of actors on the distributed platform. These well-
parallelized mappings are merged into LFT , which inherits the
parallelism, thus making it easier to derive a schedule SFT with
a small worst case iteration time. We tested our design flow on
the simple drive-by-wire model of Figure 6, developed at the
BMW Technology Office in Palo Alto.

Interactivity. Designers can either provide a loose speci-
fication and let the tool derive a solution, or specify a partially
replicated and mapped design to be completed by the tool. If
they provide a FTDF G where some actors are already repli-
cated, the tool will only replicate the remaining ones, by sim-
ply modifying step 2a so that all replicated actors can only be
mapped as in L /0 from step 1. By using mapping constraints
and adding dummy data dependencies, designers can guide the
construction of a deployment to any desired degree (including
a single solution of their choosing). The designer’s guidance
can compensate for cases where the mapping and scheduling
heuristics yield poor results. Designers can also easily modify

4In [13] the authors implemented an efficient scheduling heuristic within
SYNDEX to tolerate ECU failures but not channel failures.

channel1
o channel2

o channel3
o

ECU0L0L1L2 ECU1L0L1L2

ECU2L0L1L2
ECU3L0L1L2

ECU4L0L1L2

ECU5L0L1L2

root L0L1L2

C1SENAcqSig_109_pedal!DigitalOut!Digitalpip
C1SENAcqSig_110_pedal!DigitalOut
C1SENAcqSig_111_pedal!DigitalOut
C1SENAcqSig_112_pedal!DigitalOut

C1SENAcqSig_113_handBR!DigitalOut

C1SENAcqSig_264_speed!DigitalOut
C1SENAcqSig_265_speed!DigitalOut
C1SENAcqSig_266_speed!DigitalOut
C1SENAcqSig_267_speed!DigitalOut

C0IN1DiagnosisBrakePedalch1
?i0
?i1
?i2
?i3
?i4

!o0

C0FUNComputeBrakeCommandch1?i1 !o0!o1

C0AR1Mixer_Brakech1
?i0
?i1
?i2
?i3
?i4
?i5

!o0
!o1
!o2
!o3 C1ACTManip_Brake_fl?i0

C1ACTManip_Brake_fr?i0

C1ACTManip_Brake_rl?i0

C1ACTManip_Brake_rr?i0

C1ACTManip_Steer1?i0

C1ACTManip_Steer2?i0

C1ACTManip_HandW1?i0

C1ACTManip_HandW2?i0

C1FUNComp_Cmd_ABS_Brch1
?i0
?i1
?i2
?i3
?i4

!o0
!o1
!o2
!o3

C1FUNM_Ctrl_ch1

?RackPosition1Fil
?RackPosition2Fil
?RackPosition3Fil
?RackPosition4Fil
?TieRodForce1Fil
?TieRodForce2Fil
?TieRodForce3Fil
?PedalSensor1Fil
?PedalSensor2Fil
?PedalSensor3Fil
?ClampForceFLFil
?ClampForceFRFil
?ClampForceRLFil
?ClampForceRRFil
?SpeedFLFil
?SpeedFRFil
?SpeedRLFil
?SpeedRRFil
?StirWheelAngle1Fil
?StirWheelAngle2Fil
?StirWheelAngle3Fil
?StirWheelAngle4Fil
?HandBrakeSwitchFil
?BrakeSwitchFil
?YawRateFil
?LateralAccelerationFil
?StirWheelTorque1Fil
?StirWheelTorque2Fil
?StirWheelTorque3Fil

!BrakeActuatorFL

!BrakeActuatorFR

!BrakeActuatorRL

!BrakeActuatorRR

!HandWheelTorqueActuator

!StirActuator

C0AR1Arb_Br_ch1

?force_clp_fl_base_des
?force_clp_fr_base_des
?force_clp_rl_base_des
?force_clp_rr_base_des
?Master_BrakeForceFL
?Master_BrakeForceFR
?Master_BrakeForceRL
?Master_BrakeForceRR

!BrakeForceOutFL
!BrakeForceOutFR
!BrakeForceOutRL
!BrakeForceOutRR

C0AR1Arb_Stir_ch1?StirBaseIn?Master_StirIn !StirOut1!StirOut2

C0AR1Arb_Handwheel_ch1?BaseTorque?Master_Torque !TorqueOut1!TorqueOut2

C0OU3_Br_ch1
?force_clp_fl_base_des?force_clp_fr_base_des?force_clp_rl_base_des?force_clp_rr_base_des

!BrakeForceOutFL!BrakeForceOutFR!BrakeForceOutRL!BrakeForceOutRR

C0OU1_Stir_ch1?StirBaseIn?Master_StirIn !StirOut1!StirOut2

C0OU1_Handwheel_ch1?BaseTorque?Master_Torque !TorqueOut1!TorqueOut2

C0FUNComputeStirCommand_ch1?InStirAngle !Out?InRackPosition

C0FUNComputeStirTorqueComm?InStirWheelTorque !Out?InTieRodForce

C0IN1Diagnosis_Lateral_Sens

?RackPosition1Fil
?RackPosition2Fil
?RackPosition3Fil
?RackPosition4Fil
?StirWheelAngle1Fil
?StirWheelAngle2Fil
?StirWheelAngle3Fil
?StirWheelAngle4Fil

!VotedRackPosition

!VotedStirWheelAngle

C0IN1Diagnosis_Feedback_Sens
?TieRodForce1Fil

!VotedStirWheelTorque

!VotedFieRodForce

?StirWheelTorque3Fil
?StirWheelTorque2Fil
?TieRodForce3Fil
?StirWheelTorque1Fil
?TieRodForce2Fil

C1SENAcqSig_114_clampforce!DigitalOut
C1SENAcqSig_115_clampforce!DigitalOut
C1SENAcqSig_116_clampforce!DigitalOut
C1SENAcqSig_117_clampforce!DigitalOut

C1SENAcqSig_105_angle!DigitalOut

C1SENAcqSig_106_angle!DigitalOut

C1SENAcqSig_107_angle!DigitalOut

C1SENAcqSig_108_angle!DigitalOut

C1SENAcqSig_159_rack!DigitalOut

C1SENAcqSig_160_rack!DigitalOut

C1SENAcqSig_161_rack!DigitalOut

C1SENAcqSig_162_rack!DigitalOut

C1SENAcqSig_227_rod!DigitalOut

C1SENAcqSig_228_rod!DigitalOut

C1SENAcqSig_229_rod!DigitalOut

C1SENAcqSig_224_torque!DigitalOut

C1SENAcqSig_225_torque!DigitalOut

C1SENAcqSig_226_torque!DigitalOut

C1SENAcqSig_262_latacc!DigitalOut
C1SENAcqSig_263_yaw!DigitalOut

SynDExV5 application: /vol/hyper/hyper2/pinello/syndex51/boom/newdbwex3/newdbwex3

Figure 6. Drive-By-Wire example in SynDEx, plat-
form graph is at the bottom-left corner.

the platform graph PG and τ to vary its performance, redun-
dancy and ultimately its cost. Finally, various design alterna-
tives can be evaluated fairly quickly thanks to the automatic
synthesis algorithm.

6 Concluding Remarks

The proposed approach for the deployment of control algo-
rithms on distributed fault-tolerant platforms enables designers
to explore rapidly the design space. They can make informed
decisions about changing/restructuring the algorithms, the exe-
cution platform, and the fault behavior. The approach is based
on a model of computation (FTDF) that represents an interest-
ing paradigm for programming safety-critical control applica-
tions. In particular, FTDF exposes task-level parallelism and
formalizes tasks interaction, simplifying the analysis and dis-
tribution of the control programs. FTDF also deals with redun-
dancy explicitly and is fault-model independent.

An important extension of this MoC will be multi-rate
FTDF, where actors execute at different rates (similarly to
Signal’s MoC [14]). We are currently developing a run-time
library in C to support FTDF semantics on a network of
Linux/UDPIP hosts. Finally, we are planning to improve the
scheduling optimization heuristics to minimize the worst case
iteration time because presently they do not exploit the no-
tion of criticality nor the de-allocation of unneeded replicas as
in [2, 22].

Acknowledgments. Inspiration for this research comes
primarily from the work the first author performed as an in-
tern at INRIA Rĥone Alpes during Summer 2000. In particular
the continued feedback from Cătălin Dima and Alain Girault
is gratefully acknowledged. The authors would like to thank
Yosinori Watanabe, Luciano Lavagno, Felice Balarin from Ca-
dence Berkeley Labs, for their useful feedback, Thilo Dem-
meler from BMW Technology Office in Palo Alto for numerous
technical discussions and Mark McKelvin from UC Berkeley
for his work on the runtime library.

References

[1] SynDEx webpage. http://www-rocq.inria.fr/syndex/.

[2] K. Ahn, J. Kim, and S. Hong. Fault-tolerant real-time scheduling using passive repli-
cas. In Proc. Pacific Rim Int.nal Symp. on Fault-Tolerant Systems, Taipei, Taiwan,
1997.

[3] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. J.
Pappas, and O. Sokolsky. Hierarchical Modeling and Analysis of Embedded Sys-
tems. Proc. of the IEEE, 91(1):11–28, January 2003.

[4] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous systems. Technical Report
2001/01 Cadence Berkeley Laboratories, November 2001.

[5] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini. Fault-tolerant platforms for automotive safety-critical applications. In
Proc. of the Intl. Conf. on Compilers, Architectures and Synthesis for Embedded
Systems, pages 170–177. ACM Press, 2003.

[6] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault-tolerant
computing. ACM Computing Surveys, 25(2):171–220, June 1993.

[7] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The Synchronous Language Twelve Years Later. Proc. of the IEEE, 91(1):64–
83, Jan. 2003.

[8] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel. Off-line real-time fault-tolerant
scheduling. In Euromicro 2001, Mantova, Italy, Feb. 2001.

[9] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of em-
bedded systems: Formal methods, validation and synthesis. Proc. of the IEEE,
85(3):266–290, March 1997.

[10] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity—the ptolemy approach. Proc. of the IEEE,
91(1):127–144, January 2003.

[11] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Re-
liable and precise WCET determination for a real-life processor. Lecture Notes in
Computer Science, 2211:469–485, 2001.

[12] Brasileiro FV, Ezhilchelvan PD, Shrivastava SK, Speirs NA, and Tao S. Imple-
menting fail-silent nodes for distributed systems. IEEE Transactions on Computers,
45(11):1226–1238, November 1996.

[13] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for automatically
obtaining distributed and fault-tolerant static schedules. In Int. Conf. on Dependable
Systems and Networks, San-Francisco, USA, June 2003. IEEE.

[14] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming real time
applications with SIGNAL. Proc. of the IEEE, 79(9):1321–1336, Sep 1991.

[15] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded control systems devel-
opment with GIOTTO. In Proc. of Languages, Compilers, and Tools for Embedded
Systems, pages 64–72. ACM Press, 2001.

[16] H. Kopetz and D. Millinger. The transparent implementation of fault tolerance in
the time-triggered architecture. In Dependable Computing for Critical Applications,
San Jose, CA, 1999.

[17] Lamport L. and Melliar-Smith P. Byzantine clock synchronization. In 3rd ACM
Symposium on Principles of Distributed Computing, pages 68–74, New York, 1984.
ACM.

[18] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. on Progr. Languages and Systems, 4(3):382–401, July 1982.

[19] J.C. Laprie, editor. Dependability : basic concepts and terminology in English,
French, German, Italian and Japanese, volume 5 of Series title: Dependable com-
puting and fault-tolerant systems. Springer–Verlag, New York, 1992.

[20] E. A. Lee. What’s ahead for embedded software? Computer, 33(9):18–26, 2000.

[21] C. Pinello. FT lib, a metamodel library for fault tolerant applications design. Tech-
nical Report Cadence Berkeley Laboratories, August 2002.

[22] Ghosh S., Melhem R., and Mosse D. Fault-tolerant scheduling on a hard real-time
multiprocessor system. In Proc. Eighth Int. Parallel Processing Symp., pages 775–
82, Los Alamitos, CA, 1994.

[23] H.S. Siu, Y.H. Chin, and W.P. Yang. Reaching strong consensus in the presence of
mixed failure types. Trans. Parallel and Distr. Systems, 9(4), April 1998.

[24] A. J. Wellings, L. Beus-Dukic, and D. Powell. Real-time scheduling in a generic
fault-tolerant architecture. In Proc. of RTSS’98), Madrid, Spain, Dec 1998.

[25] T. Yang and A. Gerasoulis. List scheduling with and without communication delays.
Parallel Computing, 19(12):1321–1344, 1993.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

