
Supporting Cache Coherence

in Heterogeneous Multiprocessor Systems

Taeweon Suh, Douglas M. Blough, and Hsien-Hsin S. Lee

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, GA 30332

{suhtw, dblough, leehs}@ece.gatech.edu

Abstract
In embedded system-on-a-chip (SoC) applications, the

demand for integrating heterogeneous processors onto a sin-
gle chip is increasing. An important issue in integrating
multiple heterogeneous processors on the same chip is to
maintain the coherence of their data caches. In this pa-
per, we propose a hardware/software methodology to make
caches coherent in heterogeneous multiprocessor platforms
with shared memory. Our approach works with any combi-
nation of processors that support invalidation-based proto-
cols. As shown in our experiments, up to 58% performance
improvement can be achieved with low miss penalty at the
expense of adding simple hardware, compared to a pure
software solution. Speedup can be improved even further
as the miss penalty increases. In addition, our approach
provides embedded system programmers a transparent view
of shared data, removing the burden of software synchro-
nization.

1. Introduction
Shared memory multiprocessor architectures employ cache

coherence protocols such as MSI [2], MESI [16], and Dragon
protocol [14], to guarantee data integrity and correctness
when data are shared and cached within each processor.
For example, IBM’s PowerPC755 [10] supports the MEI
protocol (Modified, Exclusive, and Invalid), Intel’s IA32
Pentium class [4] processor supports the MESI protocol,
to name a few. Several variants of the MESI protocol are
used in modern microprocessors, e.g. the MOESI protocol
(Exclusive Modified, Shared MOdified, Exclusive Clean,
Shared Clean, and Invalid) from SUN’s UltraSPARC [15]
and a slightly different MOESI protocol (Modified, Owned,
Exclusive, Shared, and Invalid) from the latest AMD64 ar-
chitecture [1].

Conventionally, commercial servers and high-performance
workstations enable multiprocessing capability by integrat-
ing homogeneous processors on the platforms. For these
systems, it is straightforward to integrate several proces-
sors together using a shared bus since the bus interface
and the cache coherence protocol are completely compat-
ible. Once homogeneous processors are integrated with a
shared bus, the cache coherence is automatically guaran-
teed through the hardware so long as the cache controller
in each processor includes cache coherence functions. How-

ever, as system-on-a-chip (SoC) technology becomes preva-
lent and specific computing capability is demanded in em-
bedded applications, a highly integrated embedded system
starts to integrate heterogeneous processors with different
instruction set architectures onto a single chip to expedite
the processing speed for different algorithms, and hence
maximize the throughput. For instance, in real-time em-
bedded systems the MPEG and audio decoding efficiency
are essential while the TCP/IP stack processing speed is
also critical. Obviously, one general-purpose processor or a
single digital signal processor (DSP) alone cannot be suffi-
cient enough in managing the entire system and providing
the computational power required. Under such circum-
stances, one can employ a media processor or a DSP for the
MPEG/audio applications while a more general purpose
processor for the TCP/IP stack processing which tends to
be more control-intensive. To perform these heterogeneous
operations seamlessly, the cache coherence issues among
these heterogeneous processors should be studied, evalu-
ated, and analyzed.

The design complexity of integrating heterogeneous pro-
cessors on SoCs is not trivial since it introduces several
problems in both design and validation due to different
bus interface specifications and incompatible cache coher-
ence protocols. Sometimes it is even worse as some em-
bedded processors do not support cache coherence at all.
In this paper, we overcome these issues by proposing a
hardware/software methodology and demonstrate physical
design examples using three commercially available het-
erogeneous embedded processors — Write-back Enhanced
Intel486 [3], PowerPC755, and ARM920T [12]. Our hard-
ware design was based on Verilog Hardware Description
Language. Seamless CVE [9] from Mentor Graphics and
VCS [18] from Synopsys were used as the simulation tools.

The rest of this paper is organized as follows. Section 2
overviews prior work. Section 3 discusses our proposed
methodology for maintaining cache coherence in a hetero-
geneous multiprocessor platform. Section 4 presents two
implementations based on our methodology. Section 5
shows the performance evaluation, and finally we conclude
our work in Section 6.

2. Related Work
Large scale heterogeneous multiprocessing systems con-

tain distributed shared memory. In such a system, a directory-

1530-1591/04 $20.00 (c) 2004 IEEE

Table 1: Heterogeneous Platform Classes
Cache coherence hardware

Platform inside each processor
(PF) Processor 1 (P1) Processor 2 (P2)

PF1 No No
PF2 Yes (No) No (Yes)
PF3 Yes Yes

based cache coherence [19] scheme can be used for co-
herency among distributed shared memory. Two major
classes of finding the source of directory information for a
block are flat directory schemes and hierarchical directory
schemes. Flat directory schemes can be divided into two
classes: memory-based schemes and cache-based schemes [6].
These directory-based protocols address the inter-cluster
coherence issues of a distributed shared memory system
while the bus-based snoop mechanism is used for main-
taining intra-cluster coherence. Even though the directory-
based protocol can address the coherence issue among ho-
mogeneous or heterogeneous clusters, the snoop-based bus
protocols, however, fail to address the coherence problem
for intra-cluster heterogeneous processors because of the
distinct nature of each individual coherence and bus pro-
tocol.

In the embedded SoC domain, design methodology for
an application specific multiprocessor SoC has been pro-
posed with the concept of a wrapper to overcome the prob-
lem of incompatible bus protocols [20, 21]. Wrappers allow
automatic adaptation of physical interfaces to a communi-
cation network. Generic wrapper architectures and auto-
matic generation method have been proposed to facilitate
the integration of existing components [13]. Our proposed
solution can be incorporated in the wrapper to manage the
data coherence among heterogeneous processors.

3. Proposed Approach
There are two main categories of cache coherence pro-

tocols: update-based protocols and invalidation-based pro-
tocols. In general, invalidation-based strategies are more
robust, therefore, most vendors use it as the default proto-
col [6]. In this paper, we focus our discussion on those pro-
cessors supporting invalidation-based protocols and study
the implication of integrating them with processors with-
out any inherent cache coherence support. Heterogeneous
processor platforms can be classified into three classes in
terms of the processors’ cache coherence support as shown
in Table 1, in which we simplify the scenario to a dual-
processor platform. Our proposed approach can be easily
extended to platforms with more than two processors. For
PF1 and PF2, special hardware is needed and there are
limitations in the resulting coherence mechanism. These
cases are discussed with an example in Section 4. For PF3,
the cache coherence can be maintained with simple hard-
ware. We discuss PF3 in this section and Section 4.

Integrating processors with different coherence proto-
cols restricts the use of the entire protocol states. Only
the states that are common from distinct protocols are pre-
served. For example, when integrating two processors with
MEI and MESI, the coherence protocol in a system must be
MEI. We present methods of integration according to the
combination of invalidation-based protocols. We assume

Table 2: Problem and Solution with MEI and MESI
seq. Read No Proposed With Proposed

Write Solution Solution
on C state C state C state C state
cache in P1 in P2 in P1 in P2
line C (MESI) (MEI) (MESI) (MEI)

a© P1 read I ⇒ E I I ⇒ E I
b© P2 read E ⇒ S I ⇒ E E ⇒ I I ⇒ E
c© P2 write S(Stale) E ⇒ M I E ⇒ M
d© P1 read S(Stale) M I ⇒ E M ⇒ I

Proc 1

Bus

Wrapper

Proc 2

Wrapper

 (MEI) (MESI)

Read/Write

Write

 Memory
Controller

Figure 1: Method to Remove the Shared State

that the cache-to-cache sharing is implemented only in pro-
cessors supporting the MOESI protocol, as most commer-
cial processors do.

In the subsequent sections, we will discuss protocol inte-
gration methods for four major protocols MEI, MSI, MESI,
and MOESI. The variations include (1) MEI with MSI/
MESI/MOESI, (2) MSI with MESI/MOESI, and (3) MESI
with MOESI. Scalability and DMA issues are also dis-
cussed in this section.

3.1 MEI with MSI, MESI, or MOESI
Integrating the MEI protocol with others requires the

removal of the shared state. To illustrate the problem with
the shared state, we use the example in Table 2 assuming
that Processor 1 supports the MESI protocol and Processor
2 supports the MEI protocol, with the operation sequence
a© b© c© d© executed for the same cache line C. Operation
a© changes the state from I to E in Processor 1 as a result
of the read. b© changes the state from I to E in Processor
2 and from E to S in Processor 1. Since C is in the state E
in Processor 2, transaction c© does not appear on the bus
even though Processor 1 has the same line in the S state.
It invokes the state transition from E to M in Processor 2.
However, the state of the cache line in Processor 1 remains
the same. Therefore, transaction d© accesses the stale data,
which should have been invalidated during c©.

Figure 1 depicts our proposed method to remove the
shared state. Since the transition to the shared state occurs
when the snoop hardware in the cache controller observes a
read transaction on the bus, the way to remove the shared
state is simply to convert a ”read” operation to a ”write”
operation within the wrappers of snooped processors. The
memory controller should see the actual operation in order
to access the memory correctly when it needs to.

Using the MESI protocol as an example, the state change
from E to S occurs only when the snoop hardware in the

cache controller sees a read transaction on the bus for the
cached line of the E state. Therefore, in order to remove
the shared state, it is sufficient for the wrapper to convert
every read transaction on the bus to a write during snoop-
ing. When the snoop hardware in the cache controller sees
a write transaction on a cache line in a modified or an
exclusive state, it drains out or invalidates the cache line
(”drain” means writing back the modified cache line to
memory and invalidating the cache line). In this way, the
shared state is excluded in the controllers’ state machines.

The last two columns of Table 2 illustrate the state
transitions with our proposed solution. The transaction
b© invokes the state transaction from E to I in Processor
1 since Processor 1 observes a write operation on the bus.
The transaction d© changes the state from M to I in Pro-
cessor 2 for the same reason. The following subsections
detail how the state machines are changed for different
invalidation-based protocols with the proposed approach.
With the techniques described below, the MSI, MESI, and
MOESI protocols are reduced to MEI.

3.1.1 MSI Protocol
In the MSI protocol, two transitions exist to reach the S

state: (1) I ⇒ S when the cache controller sees a read miss
to a cache line and (2) M ⇒ S when the snoop hardware
in the cache controller sees a read operation on the bus. In
case (1), the S state cannot be removed since this transition
is invoked by its own processor. However, even though it
is in the S state, only one processor owns a specific cache
line at any point in time because the S state changes to the
I state whenever other processors read or write the same
cache line. (Note that the wrapper converts a read into
a write.) Therefore, despite of the name, the S state is
equivalent to the E state. The state transition from M to
S cannot occur since the wrapper always converts a read
operation to a write operation. Only the M to I transition
is allowed with the operation conversion.

3.1.2 MESI Protocol
In the MESI protocol, there are three possible transi-

tions that reach the S state: (1) I ⇒ S when a read miss
occurs and the shared signal [19] is asserted, (2) E ⇒ S
when the snoop hardware in the cache controller sees a
read operation for a clean cache line on the bus, and (3)
M ⇒ S when the snoop hardware in the cache controller
sees a read operation for a modified (or dirty) cache line
on the bus. To remove the S state, the wrapper always de-
asserts the shared signal. This means transition (1) cannot
occur. Transitions (2) and (3) also cannot occur because
the wrapper informs the snooped caches of writes for read
operations. Therefore, the S state is completely removed.

3.1.3 MOESI Protocol
The same techniques used for the MESI protocol can be

applied to the MOESI protocol except the O state needs
to be handled. The O state can only be reached when the
snoop hardware in the cache controller observes a read op-
eration on the bus for a modified cache line. Nevertheless,
the O state is never entered since the cache controller never
sees a read operation on the bus when snooping.

3.2 MSI with MESI, or MOESI
In integrating MSI and MESI protocols, the E state

must be prohibited. Suppose that Processor 1 supports

Table 3: Problem and Solution with MSI and MESI
seq. Read No Proposed With Proposed

Write Solution Solution
on C state C state C state C state
cache in P1 in P2 in P1 in P2
line C (MSI) (MESI) (MSI) (MESI)

a© P1 read I ⇒ S I I ⇒ S I
b© P2 read S I ⇒ E S I ⇒ S
c© P2 write S(Stale) E ⇒ M I S ⇒ M
d© P1 read S(Stale) M I ⇒ S M ⇒ S

the MSI protocol and Processor 2 supports the MESI pro-
tocol and the operations in Table 3 are executed for the
same cache line. a© changes the state from I to S in the
Processor 1. b© causes the state transition from I to E in
the Processor 2 while the cache line status of Processor
1 remains unchanged because Processor 1 does not assert
the shared signal. c© invokes only the E to M transition in
Processor 2. As a result, Processor 1 reads the stale data in
d© due to a cache hit indicated by the S state. Therefore,
the E state should not be allowed in the protocol. Our
technique to remove the E state from the MESI protocol
is to assert the shared signal whenever a read miss occurs.
With this technique, the transaction b© invokes the state
transaction from I to S in Processor 2 and the transaction
d© changes the state from M to S in Processor 2

The same method can be applied to the integration of
MSI and MOESI protocols with one additional constraint
imposed. In MOESI, the M to O transition occurs when
the processor observes a read transaction on the cache line
of the M state. Then, a cache-to-cache transition occurs.
Since the cache-to-cache sharing is not allowed in the MSI
protocol, the M to O transition should not occur. To pre-
clude this transition, the same technique used for elimi-
nating the shared state can be used, i.e. ”read”-to-”write”
conversion within wrappers. Since the shared signal is
always asserted and the read to write conversion should
be employed, the E and O state transition never occurs.
Therefore, the MOESI protocol is reduced to the MSI pro-
tocol.

With these techniques described above, the MESI and
MOESI protocols are reduced to MSI.

3.3 MESI with MOESI
To prohibit cache-to-cache sharing while integrating MESI

and MOESI protocols, read-to-write conversion can again
be employed. This precludes the transitions from E to S
and from M to O in MOESI protocol. However, the I to
S transition is allowed. Therefore, the MOESI protocol is
reduced to MESI even though not all of the transitions in
MESI are allowed.

3.4 Scalability
Scalability is a function of available bus bandwidth,

delay, and implementation cost. For a shared bus sys-
tem, so long as the bus bandwidth is constant, adding
additional processors to the system, regardless of homo-
geneous or heterogeneous, the scalability will be always
constrained by the available bus bandwidth. With re-
spect to the extra delays incurred in our proposed approach
against its homogeneous counterparts, they are associated
with the wrapper and the arbiter and can be implemented
rather inexpensively. In the wrappers, only read-to-write

PowerPC755
 (MEI)

ASB

Intel486
 (MESI)

Arbiter

Wrapper Wrapper

BR_BAR

BG_BAR

ARTRY

BREQ

BOFF

HITM

INV

Figure 2: PowerPC755, Intel486 coherence

conversion and/or shared signal assertion/de-assertion are
needed. The arbiter is designed to coordinate and man-
age the bus ownership for the requests upon a snoop-hit
from these wrappers. It uses a prority-based decision logic
to grant the bus for the snoop-hit processor. Our prelim-
inary synthesized design using 0.35µm technology shows
a merely 0.74ns increase of the delay for an arbiter with
4 heterogeneous processors. This timing impact is fairly
marginal, thus will not impede the scalability.

3.5 DMA
In general, memory-mapped I/Os are allocated in un-

cacheable memory space. Therefore, DMA should not cause
any coherence issue. For some unconventional systems
that allow DMA to transfer data between cacheable re-
gions, however, the coherence problem can be resolved by
allowing DMA controller to concede the bus mastership
whenever a snoop hit occurs during DMA operations and
reclaim it after writeback if the corresponding cache line is
dirty.

4. Case Study
In this section, we present two implementations using

commercially available embedded processors: PowerPC755,
Write-back Enhanced Intel486 (hereafter, Intel486 is used
for Write-back Enhanced Intel486), and ARM920T. Pow-
erPC755 uses the MEI protocol, Intel486 supports a mod-
ified MESI protocol, and no cache coherence is supported
in ARM920T. A multiprocessor platform employs a shared
bus for data transactions between main memory and pro-
cessors. Several bus architectures for SoC were proposed
by industry, for example, IBM’s CoreConnect bus architec-
ture [5], Palmchip’s CoreFrame [8], and ARM’s Advanced
Microcontroller Bus Architecture (AMBA) [11]. A com-
mon characteristic among these architectures is that they
use two separate pipelined buses: one for high speed de-
vices and one for low speed devices. In this paper, we
study the Advanced System Bus (ASB), an AMBA bus,
as the shared bus protocol. The AMBA is one of the most
popular bus protocols in embedded system design [7].

As shown in Figure 2, the schematic diagram integrates
a PowerPC755 and an Intel486, representing a case of the
PF3. Wrappers are needed for the protocol conversions
between the processors’ buses and the ASB, in addition
to read operation conversion. On the PowerPC755 side,
the conversion from a read operation to a write operation
is not needed since the S state is not present in the state
machine, whereas the S state should be removed on the
Intel486 side by asserting the INV input signal, a cache
coherency protocol pin. It is sampled on snoop cycles by

PowerPC755
 (MEI)

ASB

Arbiter

Wrapper ARM920T
 (None)

BREQ

BGNT

ARTRY
Snoop
 logic

nFIQ

BR_BAR

BG_BAR

Figure 3: PowerPC755, ARM920T coherence

the Intel486 cache controller. If it is asserted, the cache
controller invalidates an addressed cache line if the cache
line is in the E or S state. If it is in the M state, the line is
drained out to memory. Normally, INV is de-asserted on
read snoop cycles and asserted on write snoop cycles. To
remove the S state, it should be asserted on both read and
write snoop cycles. In the Intel486’s cache, cache lines are
defined as write-back or write-through at allocation time.
Only write-through lines can have the S state, and only
write-back lines can have the E state. Therefore, the pro-
tocol for write-through lines is the SI protocol while the
protocol for write-back lines is the MEI protocol. When
a snoop hit occurs on the M state line of the Intel486
cache, the HITM output signal is asserted and the wrapper
around the PowerPC755 informs the core of a snoop hit by
asserting the ARTRY (Address Retry) input signal. Then,
the PowerPC755 immediately yields the bus mastership to
the Intel486 so the cache controller in the Intel486 drains
out the modified line to memory. When a snoop hit occurs
on the M state line of the PowerPC755 data cache, the
PowerPC755 asserts the ARTRY output signal and the ar-
biter immediately asserts BOFF so the Intel486 yields the
bus mastership to the PowerPC755. Then, the cache con-
troller in the PowerPC755 drains out the modified line to
memory.

Figure 3 shows another example of a heterogeneous plat-
form using PowerPC755 and ARM920T representing a case
of PF2. The same methodology used in ARM920T is ap-
plicable to PF1. The wrapper in the figure converts the
PowerPC bus protocol to the ASB protocol, and vice versa.
It also allows the PowerPC755 to monitor the bus trans-
actions generated by the ARM920T. The snoop logic pro-
vides snooping capability for the ARM920T, which does
not have any native cache coherence support. It keeps all
the address tags of the ARM920T’s data cache inside a
content addressable memory (or TAG CAM) watching bus
transactions initiated by the ARM920T. When the tag of a
requested address generated by the PowerPC755 matches
an entry of the TAG CAM, it triggers a snoop hit to the
ARM920T by asserting a fast interrupt (nFIQ). An inter-
rupt service routine is responsible for draining the snoop-
hit cache line if the line is modified or invalidating it if the
line is clean.

Even though this architecture can make caches coher-
ent, the delay in responding to interrupts can have an ef-
fect on how the coherence protocol executes. Depending
on the processors and bus protocols used, this could result
in some limitations of the approach. For example, we had
to impose restrictions on the way locks were implemented
by the system and used by the programmer in order for

Table 4: Simulation Environment
Simulators • Seamless CVE

• VCS
• PowerPC755: 100MHz

Operating frequencies • ARM920T: 50MHz
• ASB: 50MHz

Instruction caches Enabled
• Private data: Enabled

Data caches • Shared data: Selectively
enabled

Memory Single Word 6 cycles
access Burst • 6 cycles for 1st word
time (8 words) • 1 cycle for each

subsequent word

this platform to work properly.

0 5 10 15 20 25 30 35
1.0

1.5

2.0

2.5 #iteration=4

#iteration=2

#iteration=1

S
p

ee
d

u
p

 o
ve

r
B

as
el

in
e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 4: Worst Case Results

5. Performance Evaluation
Simulations were performed using a worst-case scenario

(WCS), a typical-case scenario (TCS), and a best-case sce-
nario (BCS) microbench programs. In the microbench pro-
grams, one task runs on each processor. Each task will try
to access a critical section (i.e. shared memory), which is
protected by a lock mechanism. Once a task acquires the
lock, it accesses a number of cache lines and modifies them
for different number of iterations before exiting the crit-
ical section. The microbench program was implemented
with each task acquiring the lock alternately, which means
the simulation assumes the worst-case situation for lock
acquisition and releasing.

First, we use a machine that disables the data caches
for the shared area as our baseline system. Also note that
the coherence can be achieved via software synchroniza-
tion, a complete software solution, for a shared-memory
system with caches. As such, the programmers are respon-
sible for draining or invalidating all the used cache lines
in the critical section before exiting the critical section.
The simulation environment and the hardware configura-
tions are summarized in Table 4. The platform with the
PowerPC755 and ARM920T is used to quantify the per-
formance. The Intel486 and PowerPC755 platform1 should

1Due to some unavailable capability in our simulation
tools, the results of a PowerPC755/Intel486 system are not
reported. This will be in our future work.

0 5 10 15 20 25 30 35
1.0

1.5

2.0

2.5 #iteration=4 #iteration=2 #iteration=1

S
p

ee
d

u
p

 o
ve

r
B

as
el

in
e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 5: Best Case Results

0 5 10 15 20 25 30 35
1.0

1.5

2.0

2.5

#iteration=4

#iteration=2

#iteration=1

S
p

ee
d

u
p

 o
ve

r
B

as
el

in
e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 6: Typical Case Results

outperform the PowerPC755 and ARM920T platform due
to the absence of an interrupt service routine.

Simulations of each alternate solution were performed
for each scenario to evaluate the performance of our ap-
proach. Lock variables are not cached in all simulations.
Figure 4 to 6 show the speedup of the software solution and
our proposed hardware approach normalized to the base-
line for different numbers of iterations. Figure 4 shows
the WCS results. In the WCS, two tasks keep accessing
the same blocks of memory. Our proposed solution shows
136% performance improvement compared to the baseline
when #iterations=4. It also shows better performance than
the software solution by at least 2.56% for all WCS simu-
lations.

In the BCS, the ARM920T accesses the critical section
whereas the PowerPC755 does not. The ARM920T drains
out the used blocks before exiting the critical section in
the software solution, but it does not need to drain out the
used blocks in the proposed solution. The results in Fig-
ure 5 show that the speedup increases as the number of
accessed cache line increases. Simulation with 32 cache
lines shows 58.2% improvement over the software solution
with #iterations = 1.

In the TCS, each task randomly picks up shared blocks
of memory among 10 blocks before getting into the critical
section. Figure 6 shows the simulation results. Simulation
with 32 cache lines shows 29.5% speedup compared to the
software solution with #iterations = 1.

0 20 40 60 80 100

1.0

1.5

2.0

2.5

3.0

3.5

4.0 # of accessed cache line = 32

of accessed cache line = 1

S
p

ee
d

u
p

 o
ve

r
S

W
 S

o
lu

ti
o

n

Miss penalty (cycle)

 WCS
 TCS
 BCS

Figure 7: Results according to Miss Penalty

So far, we have assumed that memory access time is
fixed to 6 cycles for a single word access, and 13 cycles for
a burst access as shown in Table 4. Figure 7 shows the
performance results as the miss penalty (memory access
time) increases. Note that the software solution is used as
the baseline in this figure. As the miss penalty increases,
the performance difference also increases in favor of our ap-
proach with a few exceptions in the WCS. These exceptions
come from cache line replacements and/or interrupt pro-
cessing overheads that vary as the miss penalty changes.
These exceptions are expected to be removed in PF3 since
the interrupt service routine is not needed. The BCS re-
sult with 32 cache lines shows a 4.24x speedup compared
to the software solution when the miss penalty is increased
to 96 cycles.

6. Conclusions
In this paper, we presented a methodology to maintain

the coherence of data caches in heterogeneous processor
platforms. Cache coherence can be guaranteed simply by
implementing wrappers in platforms where processors sup-
port any invalidation protocol. Read to write operation
conversion and/or shared signal are used within wrappers
to maintain coherence depending on combination of coher-
ence protocols. The integrated coherence protocol will at
most consist of all the common states from various proto-
cols in a system. Using commercial embedded processors as
the experimental platforms, our simulation results showed
58% performance improvement for low miss penalties and
324% performance improvement for higher penalties at the
expense of simple hardware, compared to a pure software
solution. Platforms without need for a special interrupt
service routine would perform even better. As the miss
penalty increases, the speedup also increases in favor of our
approach. As heterogeneous processor SoCs become more
prevalent in future system design, our methodology will
be very useful and effective for integrating heterogeneous
coherence protocols in the same system. In the future, we
plan to apply our approach to emerging technologies that
tightly integrate between a main processor and specialized
I/O processors such as network processors [17].

7. References
[1] AMD. AMD64 Technology.

http://www.amd.com/usen/assets/content

type/white papers and tech docs/24593.pdf.

[2] F. Baslett, T. Jermoluk, and D. Solomon. The 4D-MP
Graphics Superworkstataion: Computing+Graphics=
40MIPS+40MFLOPS and 100,000 Lighted Polygons per
Second. In Proceedings of the COMPCON’88, pages
468–471, 1988.

[3] Intel Corp. Embedded Intel486 Hardware Reference
Manual. http://www.intel.com/design/intarch
/manuals/273025.htm.

[4] Intel Corp. The IA32 Intel Architecture Software
Developer’s Manual. http://developer.intel.com/design/
pentium4/manuals/245472.htm.

[5] IBM Corporation. CoreConnect Bus Architecture.
http://www.chips.ibm.com/ products/coreconnect.

[6] D. E. Culler, J. P. Singh, and A. Gupta. Parallel
Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann Publishers, 1999.

[7] Embedded.com. http://www.embedded.com/
story/OEG20021204S0005.

[8] B. Gordan. An Efficient Bus Architecture for
System-on-a-Chip Design. In Proceedings of the IEEE
Custom Integrated Circuits Conference, pages 623–626,
May 1999.

[9] Mentor Graphics. Hardware/Software Co-Verification:
Seamless. http://www.mentor.com/seamless.

[10] Motorola Inc. MPC 750A RISC Microprocessor Hardware
Specification. http://www.mot.com/SPS/PowerPC
/library/750 hs.pdf.

[11] ARM Ltd. AMBA Specification Overview.
http://www.arm.com/ Pro+Peripherals/AMBA.

[12] ARM Ltd. ARM920T Technical Reference Manual.
http://www.arm.com/arm/
documentation?OpenDocument.

[13] D. Lyonnard, A. Baghdadi S. Yoo, and A. A. Jerraya.
Automatic Generation of Application-Specific
Architectures for Heterogeneous Multiprocessor
System-on-Chip. In Proceedings of the 38th Conference
on Design Automation, 2001.

[14] E. McCreight. The Dragon Computer System: An Early
Overview. Technical report, Xerox Corp., 1984.

[15] Sun Microsystems. UltraSPARC User’s Manual.
http://www.sun.com/processors/manuals
/802-7220-02.pdf.

[16] M. Papamarcos and J. Patel. A Low Overhead Coherence
Solution for Multiprocessors with Private Cache
Memories. In Proceedings of the 11th Annual
International Symposium on Computer Architecture,
pages 348–354, 1984.

[17] D.-S. Sun and D. M. Blough. I/O Threads: A Novel I/O
Approach for System-on-a-Chip Networking. Technical
report, CERCS, Georgia Institute of Technology, 2003.

[18] Synopsys. VCS Data Sheet.
http://www.synopsys.com/products/simulation
/vcs ds.html.

[19] C. K. Tang. Cache Design in the Tightly Coupled
Multiprocessor System. In AFIPS Conference Proceedings
of National Computer Conference, pages 749–753, 1976.

[20] S. Vercauteren, B. Lin, and H. De Man. Constructing
Application-Specific Heterogeneous Embedded
Architectures from Custom HW/SW Applications. In
Proceedings of the 33rd Conference on Design
Automation, June 1996.

[21] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and
A. A. Jerraya. A Generic Wrapper Architecture for
Multi-Processor SoC Cosimulation and Design. In
CODES/CASHE, 2001.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

