
Modeling Shared Resource Contention Using a
Hybrid Simulation/Analytical Approach

Alex Bobrek Joshua J. Pieper Jeffrey E. Nelson JoAnn M. Paul Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University

{abobrek, jpieper, jnelson, jpaul, thomas}@ece.cmu.edu

Abstract
Future Systems-on-Chips will include multiple heteroge-

neous processing units, with complex data-dependent shared
resource access patterns dictating the performance of a de-
sign. Currently, the most accurate methods of simulating the
interactions between these components operate at the cycle-
accurate level, which can be very slow to execute for large
systems. Analytical models sacrifice accuracy for speed, and
cannot cope with dynamic data-dependent behavior well.
We propose a hybrid approach combining simulation with
piecewise evaluation of analytical models that apply time
penalties to simulated regions. Our experimental results
show that for representative heterogeneous multiprocessor
applications, simulation time can be decreased by 100 times
over cycle-accurate models, while the error can be reduced
by 60% to 80% over traditional analytical models to within
18% of an ISS simulation.

1. Introduction

To take advantage of billion transistor chips expected
within the next five years, most current views of Systems-
on-Chips (SoCs) involve multiple processing units, shared
resources, and networks-on-chip. The challenge posed to the
designers of such systems is to effectively juggle these SoC
design elements, producing systems with high performance,
but low power consumption, size, and cost. In these Pro-
grammable Heterogeneous Multiprocessor (PHM) systems,
complex interactions between processing elements, schedul-
ing strategies, memory access times, and communication
system latencies will emphasize the design and programma-
bility of the system as a whole, not just as a collection of
individual programmable units. Due to the importance of
these data-dependent element interactions, modeling them
in a complete system at a high level will play an important
role. This modeling will enable early system performance
estimation and efficient traversal of the design space, both
to optimize the performance of a programmable design and
to optimize an architecture for a given fixed performance.

Perhaps the most important characteristic of PHMs is the
system reliance on shared resources. Shared memory, the in-
terconnect between processing elements, and I/O interfaces
are all accessed by multiple processing elements, making

the contention for shared resources a significant influence on
the overall system performance and an important modeling
consideration. However, most simulation of shared resource
interaction is done at a cycle-accurate level. While the detail
of such models leads to accurate simulation, they suffer from
slow simulation speed as well as extensive up-front develop-
ment time. At a higher level, analytical models decrease the
model detail significantly by estimating performance based
on statistical interactions and average behaviors. But, these
average-based models do not perform well with applications
exhibiting irregular shared resource access behavior, incor-
rectly estimating the amount of contention and making the
analytical model of limited utility [2]. In general, while
lowering the model detail improves simulation speed, it be-
comes increasingly difficult to generate accurate models of
shared resource interaction.

We present an extension to the MESH [9] simulation
framework for modeling shared resource contention that is
faster and more abstract than a cycle-accurate simulation,
yet of higher utility to the designer than purely analytical
models. As such, this model is uniquely suited to be the
first timed model the designer considers immediately after
the system specification, thus enabling discovery of perfor-
mance at high level. This paper’s major contribution is a
simulation kernel implementing a novel hybrid shared re-
source model. The hybrid model applies analytic contention
models to groups of shared resource accesses derived from
system simulation. Thus, our approach combines the ability
of simulations to capture dynamic, data-dependent system
behavior with the superior speed of analytical approaches.

2. Prior Work

Historically, shared resource contention models fall into
either the simulation or analytical categories. Traditional
simulation approaches operate at the cycle-accurate level,
employing detailed contention models of shared resources at
the cost of execution time [4] [5]. On the other hand, the an-
alytical models, based on averages or statistical properties,
abstract away much of the detail in a system in exchange for
quick evaluation times [2].

There have been other attempts at modeling embedded
systems higher than the instruction set level, but at a level
lower than purely analytical approaches. Ptolemy [7] is one

1530-1591/04 $20.00 (c) 2004 IEEE

such simulation framework, focusing on simulating systems
comprised of heterogeneous models of computation. Real-
time models [11] attempt to find worst case execution times
or verify software timing. Unlike these approaches, we look
to capture data-dependent concurrent performance of soft-
ware executing on hardware within PHM systems. Discrete
event simulations have been applied to PHM systems as well
[13], with all times described directly as physical numbers,
in contrast to our approach as described in Section 3.

Our system simulation method draws upon many tech-
niques from single processor software timing estimation to
determine the physical timing of software. The object-based
approach of [1] is similar to our technique for simulation
above the instruction set level, but has several differences.
In our approach, the annotations represent an abstract mea-
sure of computational complexity rather than physical times.
Also, we allow annotations to be spaced arbitrarily far apart,
instead of at the assembly or source code line level.

The work that most closely resembles the method de-
scribed in this paper for combining a simulation and ana-
lytical approach is [3]. They develop a model of shared net-
work lines for estimating large scale Internet performance at
a transfer level, rather than a packet level. However, their
approach is more limited since it is applicable only to net-
work topologies and specifies only one very simple method
of resolving contention. We consider the general case of
any shared resource, while allowing analytical models to be
interchanged for each individual shared resource within the
simulation.

3. Simulation Methodology

The MESH simulation framework is based on a layered
model composed of a theoretically unlimited number of dy-
namic logical threads (ThL) running on top of a scheduling
layer (UE) that interfaces with a physical thread layer (ThP)
as seen in Figure 1a. Logical and physical threads both con-
sist of an event set; in physical threads this set is totally or-
dered, in logical threads it is only partially ordered [10] [8].
These event orderings make logical threads uniquely suited
for modeling of software (e.g. instructions may be executed
out of order) where the physical threads are more suitable
for hardware models (e.g. it is not possible to reorder gates
within a chip). The scheduling layer resolves the partial or-
dering of events in logical threads to physical time. It also
models system-state-aware scheduling algorithms that can
affect the performance of a PHM system [9].

Logical threads are expressed by annotating arbitrary C
code withconsume calls, creatingannotation regions, and
thus indicating the computational complexity of software
within that region. Values associated with consume calls can
be derived from techniques such as profiling, designer expe-
rience, or software libraries. Consume call values are meant
to indicate software computational complexity, not physical
timing, and should not be confused with physical timing an-
notations such as Verilog’s “# delay”. Like the # delay, code
that lies in annotation regions between consume calls is ex-
ecuted in zero virtual time. Unlike the # delay or the general

ThP

ThL ThL

UE

. . .

. . .

Software

Schedulers

Hardware
Resources

. . . US

ThSThP

ThL ThL

UE

. . .

.

.

Traditional Layered View
of the System

Layered View of the System with
Shared Schedulers and Resources

a) b)

Figure 1. Adjustments to the Layered View

discrete event approach, after the code within the annotation
region is executed, our simulation determines the physical
timing of the region using the computational complexity val-
ues passed through the consume calls. Thus, the annotations
dictate the finest unit of timing resolution available. Because
of this, the spacing of annotations is the primary determinant
of simulation accuracy and run-time.

Physical threads are described by a computational power
(computation per unit time). The scheduling layer can use
this power to determine when and where logical threads
should execute, and the resulting advance in simulation time.
Modeling the scheduling layer separately captures its impor-
tance to the system as a whole. By regulating the access of
software threads to hardware resources, it provides a global
system control flow across resources. Thus, using the lay-
ered model described above, the MESH simulator can model
the behavior of heterogeneous processors executing parallel
software threads.

Significantly, this model can be seen as equivalent to
lower levels of modeling according to how annotations are
placed. For example, an ISS simulation is approached if
annotations occur after each assembly instruction. While
it is possible to use such a relatively low-level modeling
paradigm, MESH is designed to model PHM systems at
a much higher level and is most suited to quick and early
model development and design space exploration.

4. Shared Resource Modeling

Our proposed framework incorporates aspects of both
simulation and analytical modeling methodologies, result-
ing in the ability to decrease simulation time with mini-
mum impact on accuracy. It simulates parallel threads for
a period of physical time determined by software annota-
tions, temporarily ignoring contention for shared resources.
All accesses to any shared resources encountered during
these regions of time are grouped and sent to an analyti-
cal model which assigns time penalties to each competing
logical thread. Simulation continues, with future logical to
physical timing resolution including these penalties. The
time penalties shift the execution time of any logical threads
running on the penalized physical resource to a later phys-
ical time, effectively modifying the system state trajectory
(performance over time) and modeling the degraded perfor-

2

1 while (active Th L remain) { //main kernel loop
2 for each available Th P {
3 invoke U E to schedule a Th L to run
4 execute this region (R) until annotation
5 resolve logical to physical timing for region R
6 insert region R into priority queue sorted by

physical end times
7 }
8 grab annotation region R top from top of priority

queue (has lowest end time t i)
9 while (R top has unapplied penalty) {

10 add penalty to R top end time t i, zero out
penalty, and re-insert R top into queue

11 grab new R top

12 }
13 remove R top from queue
14 advance system time to t i from region R top

15 apply analytical model(s) for each shared
resource from t i−1 to t i

16 assign penalties according to analytical model
17 if (R top received a penalty)
18 add penalty to R top end time ti, zero out

penalty, and re-insert R top into queue
19 else mark R top ’s resource as available
20 }

Figure 2. Simulation kernel operation with shared
resource modeling

mance due to a contended shared resource. We describe our
approach in detail later in this section.

4.1 Layering

We extend our layered view from Figure 1a to include
shared resources and models for contention resolution. In
Figure 1b we introduce shared resource threads (ThS) to
contrast their behavior from the existing execution resource
threads (ThP). The function of eachThP is to resolve the
logical ordering of events in software (ThL) into physical
time based on the amount of computation the physical re-
source can perform in a given unit time. In contrast, the
function of each shared resource thread (ThS) is to apply
time penalties to eachThL that has accessed theThS . This
is done through the application of an analytical model(s) as-
sociated with each shared resource thread. This fundamen-
tal difference between execution and shared resource types
leads to their separation in Figure 1b.

To model access contention within shared resources we
make changes to our scheduling model as well. The shared
resources are managed by a new type of scheduler, the
shared resource scheduler (US). Each annotation may now
be a tuple, containing a value to pass to its UE and possibly
multiple additional values, one for each US ; this is a major
break from the discrete event approach. The shared resource
schedulers are responsible for allocating these shared access
requests onto shared resources much like execution sched-
ulers allocate software thread computation onto physical re-
sources. The key difference between the execution sched-
ulers and shared resource schedulers is that the former ar-
bitrates between the logical threadsprior to resource access
where the latter applies penaltiesafter the resource access is
completed; this permits us to consider annotation regions in
groups across shared resources.

Time

Resource 1

Resource 2

t0 t1 t2 t3 t4

Resource 3

Timeslice

Annotated Regions

A1

B1

C1

B2 B3

A2

Penalties Added
t5

Hatched Regions Contain
Shared Resource Accesses

t6

Figure 3. Timeline illustration of kernel operation

Since there is no entity that provides arbitration prior
to the access for a shared resource (as does the execution
scheduler), contention causes queueing delays within log-
ical threads waiting for service. Shared resource sched-
ulers implement post-access arbitration by applying penal-
ties to logical threads exhibiting shared resource access con-
tention. The amount of contention penalty is determined
by an analytic contention resolution function provided by
each shared resource model. Note that even though a logi-
cal thread can only be associated with one execution sched-
uler, the same thread can be associated with multiple shared
resource schedulers, representing that a thread can access
more than one type of shared resource (memory, communi-
cation medium, I/O devices, etc.).

4.2 Simulation Kernel Algorithm

The pseudocode in Figure 2 illustrates the simulation ker-
nel with shared resource modeling included and Figure 3
depicts a sample run of the algorithm graphically over time.
The kernel picks an available resource, invokes the appro-
priate UE to schedule an eligible thread on it (line 3), and
executes the thread until a user inserted annotation is en-
countered (line 4). The figure shows three threads named A,
B, and C running on three resources with any thread eligible
to run on any of the resources. In this simplified case threads
do not switch resources, however, in general UE schedulers
can handle arbitrary scheduling schemes. At t0 all resources
are available and the scheduler maps the A thread onto Re-
source 1, the B thread onto Resource 2, and the C thread
onto Resource 3. Computational complexity, specified by
the annotations in the logical threads, is resolved to physical
time by means of the computational power of each physical
resource (line 5). For example, in Figure 3, the first annota-
tion region of the B thread (B1) executes from t0 until t1 in
virtual physical time.

The physical end time of the executed annotated region
of each logical thread (t4 for A, t1 for B, and t6 for C) is
then pushed onto a priority queue. The priority queue en-
sures that the earliest physical end time is always available
on the top of the queue (line 6). We leave the explanation
of lines 8 through 12 until later in the section. The earliest
annotation iscommittedin line 13 by removing the annota-
tion end time from the top of the queue and advancing the
global simulation time to that point (line 14). In the fig-
ure, B1’s annotation region ends the earliest in physical time
(t1), so it is located on top of the priority queue where it

3

is retrieved and committed first. Shared resource accesses
are analyzed in line 15, but since only thread A accessed
the shared resource between t0 and t1, there is no contention
and no penalties are applied in line 16. Since no penalty was
applied, the resource is marked available in line 19.

The simulation time is now at t1 and Resource 2 is avail-
able and eligible to execute a thread. During the next itera-
tion of the kernel loop, B2 is scheduled, executed, retrieved
from the priority queue, and time advanced to t2. Since
annotation regions on different resources need not align in
physical time, the simulator performstimeslicing, that is
it considers only the time period between adjacent annota-
tions’ end times. The timeslice end times are represented
by the dashed lines associated with physical time locations.
If an annotation region with multiple shared resource ac-
cesses is broken into multiple timeslices, the shared resource
accesses are proportionately divided among the timeslices.
Once the quantity of shared accesses per timeslice per thread
is known, this information is passed to the analytical model
of each shared resource.

In the current iteration (slice t1-t2), both thread A1 and
B2 contend for the shared resource. The analytical model
assigns some queueing delay penalty to both contending
threads (line 15) , resulting in the actual physical time for
B2 being extended as well as that for A1. The assigned de-
lay can vary for each contending thread. For instance, if a
priority arbitration scheme is being modeled, the high prior-
ity thread may receive a lower average penalty. Here, since
B2 had a penalty applied, its resource is not marked avail-
able, and its physical end time is immediately re-inserted
into the priority queue (line 18). The other end times are
not updated instantly, instead penalties are accumulated un-
til the next end time is encountered. This behavior will be
illustrated when t4 is reached.

After the penalties are assigned, the main kernel loop ex-
ecutes again. However, this time no resources are available
so execution skips to line 8. Here the first region removed
from the priority queue is B2 at t3, and it has no penalties
remaining (they have been zeroed out once they have been
added to region end time in line 18). Thus this region is com-
mitted, and shared resource analysis is performed. Since all
of the region B2’s shared resource accesses were considered
during time slice t1 to t2, the penalty time assigned to B2

has no additional shared accesses contained within. There-
fore there is no contention in timeslice t2-t3, so no penalties
are applied.

The loop repeats, schedules B3, executes it, then looks
for the nearest physical end time. The nearest end time is
thread A at t4. Line 9 notes that this thread has unapplied
penalty (assigned during t1 to t2 timeslice), applies it, and
reinserts the end time (line 10 - 11). Notice that application
of a penalty does not create a new timeslice at t4 as was the
case in thet1 to t2 timeslice. Line 9 then grabs the new near-
est time, which happens to again be thread A, but now at t5.
Region A1 is committed, and shared resource access anal-
ysis is performed over t3-t5, with no further contention or
penalties being applied. Note that the physical time penalties
effectively shift the execution of any threads on that physi-

cal resource later in time by the amount of the penalty. In
Figure 3, penalties accrued during timeslice t1-t2 are added
after regions A1 and B2. Therefore, the timing of a soft-
ware region is not only dependent on the resolution of com-
putational complexity into physical timing, but on penalties
applied by the shared resource contention model as well.

4.3 Additional Features

For systems with numerous threads and resources, phys-
ical time misalignments of annotation regions can create
a large number of small timeslices, increasing the runtime
of the simulation. We combat this problem by introducing
a parameter limiting the minimum timeslice size to a de-
signer specified minimum. The algorithm avoids creation
of timeslices smaller than the minimum by accumulating
shared resource accesses of undersized slices and perform-
ing the analysis together with the next large timeslice. By
moving the analysis of small timeslice shared resource ac-
cesses to a later time, the designer can choose to trade off
small amounts of accuracy to keep the number of timeslices
down.

In addition to the ability to limit the timeslice size, we
provide the designer a full set of synchronization primitives
commonly found in threaded programming libraries (mu-
texes, semaphores, condition variables). These allow the
inter-thread data dependencies to be observed. If a syn-
chronization primitive is encountered that requires block-
ing, the executing annotation region is shelved and the re-
source marked available until synchronization can be re-
solved. Since a blocked logical thread frees up the resource,
the scheduler is capable of scheduling other tasks onto the
resource. Once the event that a blocked thread is waiting
on occurs, the shelved annotation region is allowed to con-
tinue. Since the simulator only knows the annotation region
that the unblocking event occurred in, the restarted region
is placed at the end of the unblocking event region’s phys-
ical time. This is a pessimistic assumption and can cause
errors with coarsely annotated threads requiring continuous
synchronization. How to avoid fine grained annotation, or
when to relax our assumptions in this case, is an area of fu-
ture work.

5. Example

We explore the validity of MESH’s hybrid simula-
tion/analytical approach by considering two examples. In
the first example, we will compare our approach to an an-
alytical model used to estimate bus contention on a tradi-
tional homogeneous multiprocessor running an FFT appli-
cation. This example will show our model’s ability to adjust
to changing program behavior over time while running sig-
nificantly faster than cycle-accurate simulations. In the sec-
ond example, we will apply our approach to a scenario more
suitable to a SoC: a heterogeneous system executing various
kernels from the MiBench [6] embedded benchmark suite.
This example will show how execution of multiple programs
across heterogeneous architectures necessitates the use of
piecewise analytical models as opposed to traditional ones.

4

FFT, 512KB Cache

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 4 8 12 16 20 24 28 32 36

of Processors

Q
u

e
u

in
g

 C
y
cl

e
s

Analytical
MESH
ISS

FFT, 8KB Cache

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 4 8 12 16 20 24 28 32 36

of Processors

Q
u

e
u

in
g

 C
y
cl

e
s

Analytical
MESH
ISS

Figure 4. Modeling of SPLASH-2 FFT Benchmark

5.1 SPLASH-2 FFT

In the first example, we compare our hybrid approach to
an analytical model developed by Chen and Lin in [2] when
applied to the SPLASH-2 [12] FFT benchmark. The FFT
application was chosen because it exhibited irregular shared
bus behavior over time, causing the analytical model to have
a large queuing cycle (number of cycles spent waiting due
to bus contention) estimation error. In the other SPLASH-2
benchmarks the Chen-Lin model performs well, as does the
corresponding MESH model. To focus on the benefits of our
hybrid model, we used the same Chen-Lin model within our
simulation kernel to apply penalties to timeslices. Thus, the
only difference between the traditional Chen-Lin model (re-
ferred to as “analytical” in the figures) and the MESH hybrid
model is that the MESH simulation performs a piecewise
evaluation of the Chen-Lin model over periods of execution
time where the traditional Chen-Lin model is applied in one
step across the whole runtime of the program.

We placed annotations at every synchronization point
(barrier statement) in the original SPLASH-2 FFT algo-
rithm. This level of granularity is sufficient to capture the
irregular behavior of shared resource accesses in this appli-
cation and greatly improves the performance of the purely
analytical model. In Figure 4 we compare the percentage
of queuing cycles estimated by the purely analytical and
MESH hybrid approaches to the baseline case, the cycle-
accurate ISS simulation. As can be seen in the figure, the
piecewise application of the Chen-Lin model through the
MESH framework decreases the percent error of predicted
queuing cycles for the 512KB cache case from an average
of about 70% for a purely analytical model to an average of
14.5% for the hybrid MESH model. The 8KB cache average
percent error is also decreased from 44% to 18%. Note that
even though the MESH hybrid model raises the level of ac-
curacy compared to the fully analytical model, the runtime

of FFT 512KB FFT 8KB
Procs. MESH ISS MESH ISS

32 0.12 12.29 0.13 13.08
16 0.09 10.32 0.08 11.16
8 0.06 9.95 0.07 10.43
4 0.07 10.77 0.07 10.32
2 0.08 12.03 0.08 10.93

Table 1. Simulation runtimes (in seconds) for the
SPLASH-2 FFT Benchmark

of the MESH simulation is at least 100 times faster than a
corresponding instruction set accurate simulation (Table 1).
The MESH performance advantage would especially be ev-
ident with large and more complex models where the pro-
hibitively large ISS simulation and model generation times
would hamper rapid design exploration.

5.2 PHM SoC

Piecewise application of analytical models is especially
useful when architectures or workloads are heterogeneous.
Interleaving of applications on PHM systems generates ir-
regular regions of high or low contention for shared re-
sources depending on which applications are currently exe-
cuting. Additionally, data dependencies or user interactions
may result in available regions between execution of appli-
cations on SoCs, further unbalancing the usage of system-
wide shared resources. Due to these reasons, purely analyt-
ical approaches, which are good at estimating performance
of homogeneous multiprocessor systems running balanced
workloads, are not well suited for PHM SoCs.

To demonstrate our approach’s utility for PHM applica-
tions, we developed a PHM ISS for a shared bus 2 proces-
sor system [9], using the ARM and Renesas M32R proces-
sor simulators freely available in the GNU GDB distribu-
tion. To provide applications representative of future SoC
workloads, we extracted several application kernels from the
MiBench [6] benchmark suite. Results from the ISS were
compared with our MESH model and with the purely ana-
lytical model as the bus access time was varied. We used
the same Chen-Lin model from the first example, modified
to work with 2 processors. Within the MiBench suite, we
extracted several kernels from GSM encoding (telecomm),
blowfish encryption (security), and mp3 encoding (multi-
media) that are representative of their respective applica-
tions’ behaviors. Unlike the SPLASH-2 FFT application
used earlier, all these kernels have uniform levels of shared
resource accesses across their runtimes, making purely an-
alytical approaches accurate when considering each kernel
individually. However, when these kernels are sporadically
executed in a random fashion on two heterogeneous proces-
sors mimicking data-dependent behavior, the resulting con-
tention patterns are irregular and unpredictable.

To illustrate decreasing performance of purely analytical
models with unbalanced shared resource access loads, we
kept the first processor busy (only 6% idle) while applying
a light load to the second processor (90% idle). The idle
periods here are used to introduce an extreme case of un-
balance, or burstiness in shared resource accesses. Similar

5

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

1 2 3 4 5 6 7 8

Bus Delay (cycles)

Q
u

e
u

in
g

 C
y
cl

e
s

MESH
ISS
Analytical

Figure 5. Queuing cycles predicted for various bus
delays with second processor idle 90% of the time.

results can be gained with one application exhibiting much
lower shared resource access rate than another application
on the system. Figure 5 shows the percentage of queuing
cycles given by each of the models as bus access time is
varied. Because the analytical model is unable to recognize
unbalanced workloads, it greatly overestimates the number
of queuing cycles. To further quantify this behavior, Figure
6 shows the average error experienced by the MESH and
the pure analytical models as the load on the second proces-
sor is varied. As can be seen, when application interactions
exhibit relatively uniform shared resource access behavior,
pure analytical models are acceptable. However, as one of
the processors exhibits over 60% less shared resource ac-
cesses than the other, the purely analytical approach breaks
down and is outperformed by the MESH hybrid model.

6. Conclusions

We present a hybrid approach for estimation of shared
resource accesses in PHM SoC systems, combining ele-
ments of simulation and purely analytical modeling tech-
niques. The MESH kernel implements this hybrid approach,
evaluating analytical models in a piecewise fashion across
the simulation runtime and applying time penalties to sim-
ulated regions. Through our examples, we show that the
piecewise application of analytical models is superior when
faced with systems exhibiting irregular shared accesses pat-
terns, behavior commonly found in PHM systems. For these
cases, simulation speed increased 100x versus instruction set
simulation, with accuracy up to 80% better than the corre-
sponding purely analytical models. The piecewise applica-
tion presented in this paper is especially useful when ana-
lytical models assuming constant steady state system behav-
ior are applied to systems with several distinct and unique
modes of operation. The MESH kernel and the hybrid mod-
eling technique present a first step towards a general method
for abstractly but accurately modeling the shared resource
contention within a PHM SoC.

7. Acknowledgments

This work was supported in part by ST Microelectron-
ics, General Motors Collaborative Research Lab at Carnegie
Mellon University, an NSF Graduate Research Fellowship,

0.00%

40.00%

80.00%

120.00%

160.00%

200.00%

10 20 30 40 50 60 70 80 90 100

Percent of Idle Time

A
v
e
ra

g
e
 P

e
rc

e
n

t
E
rr

o
r MESH Error

Analytical Error

Figure 6. Degradation of the purely analytical model
as shared resource access unbalance increases.

and the National Science Foundation under Grant 0103706.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

References

[1] J. Bammi, W. Kruijtzer, L. Lavagno, E. Harcourt, and
M. Lazarescu. Software performance estimation strategies
in a system-level design tool.CODES, 2000.

[2] C. Chen and F. Lin. An Easy-to-Use Approach for Practical
Bus-Based System Design.IEEE Transactions on Comput-
ers, August 1999.

[3] S. Gadde, J. Chase, and A. Vahadat. Coarse-grained network
simulation for wide-area distributed systems.Communica-
tion Networks and Distributed Systems Modeling and Simu-
lation Conference, 2002.

[4] S. Goldschmidt and H. Davis. Multiprocessor simulation and
tracing using Tango.Proceedings of the 1991 International
Conference on Parallel Processing, August 1991.

[5] R. Gupta and S. Liao. Using a programming language for
digital system design.IEEE Design and Test of Computers,
April-June 1997.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A free, commerically representa-
tive embedded benchmark suite.IEEE 4th Annual Workshop
on Workload Characterization, December 2001.

[7] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. Lee, et al.
Overview of the Ptolemy Project. ERL Technical Report
UCB/ERL No. M99/37, dept EECS, Berkeley, July 1999.

[8] E. Lee and A. Sangiovanni-Vincentelli. A Framework for
Comparing Models of Computation.IEEE Transactions on
CAD, Vol 17, pp. 1217-1229, December 1998.

[9] J. Paul, A. Bobrek, J. Nelson, J. Pieper, and D. Thomas.
Schedulers as model-based design elements in pro-
grammable heterogeneous multiprocessors.Design Automa-
tion Conference, 2003.

[10] J. Paul and D. Thomas. A layered, codesign virtual machine
approach to modeling computer sytems.DATE, 2002.

[11] K. Richter, M. Jersak, and R. Ernst. A Formal Approach to
MpSoC Performance Verification.IEEE Computer, Volume
36, Number: 4, April 2003.

[12] S. Woo, M. Ohara, E. Torrie, J. Sing, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations.International Symposium on Computer Ar-
chitecture, June 1995.

[13] B. Zeigler, H. Praehofer, and T. Kim.Theory of Modeling
and Simulation. Academic Press, 2000.

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

