
Pattern Selection For Testing Of Deep Sub-Micron Timing Defects

Mango, C.-T. Chao, Li-C. Wang, Kwang-Ting Cheng
Department of ECE, UC-Santa Barbara

mango,licwang, timcheng@ece.ucsb.edu

Abstract

Due to process variations in deep sub-micron (DSM) tech-
nologies, the effects of timing defects are difficult to cap-
ture. This paper presents a novel coverage metric for esti-
mating the test quality with respect to timing defects under
process variations. Based on the proposed metric and a
dynamic timing analyzer, we develop a pattern-selection al-
gorithm for selecting the minimal number of patterns that
can achieve the maximal test quality. To shorten the run
time in dynamic timing analysis, we propose an algorithm
to speed up the Monte-Carlo-based simulation. Our exper-
imental results show that, selecting a small percentage of
patterns from a multiple-detection transition fault pattern
set is sufficient to maintain the test quality given by the en-
tire pattern set. We present run-time and accuracy compar-
isons to demonstrate the efficiency and effectiveness of our
pattern selection framework.

1. Introduction

With the continual scaling of manufacturing technolo-
gies, process variations on physical devices (such as gate
length fluctuation, sub-wavelength lithography and noise)
are exercising increasing influence over design timing char-
acteristics [1, 2, 3]. The timing effect from those variations,
therefore, can no longer be characterized by a determinis-
tic model such as a worst-case or nominal delay model. To
accurately model the timing characteristics of those varia-
tions, using statistical timing models for each single device
on a chip becomes mandatory for timing analysis in DSM
technologies.

However, the delay variance on each single device re-
sults in a huge number of possibilities for a circuit delay
configuration. This high computation cost associated with
statistical timing models heavily increases the difficulty of
their effective usage in delay testing, including applications
such as static timing analysis, dynamic timing analysis, de-
fect simulation, and timed ATPG.

Figure 1 compares the time complexities of some prob-
lems in the statistical timing domain. The static timing
analysis reports the structural worst-case delay of the cir-
cuit. The dynamic timing analysis reports the circuit delays
for each pattern. Hence, the complexity of dynamic analy-

Timed APTG

Defect Simulation

Dynamic Timing Analysis

Static Timing Analysis

time complexity problem

+ patterns

+ timing defects

Specify pattern to
maximize the

effect of faults
 extremely high

high

Figure 1: Comparison of time complexities in the statistical
timing domain.

sis can be an order-of-magnitude higher than that of static
analysis. Furthermore, the timing-defect simulation consid-
ers the effects of potential timing defects for each pattern
and hence is more complex than dynamic analysis. As for
timed ATPG, it needs to assign the patterns to maximize the
effects of timing defects. Authors in [8, 9] proposed timed
ATPG algorithms. However, due to their high complexity,
timed ATPGs have not been practical for large circuits.

Because of the complexity issues, in the statistical tim-
ing domain past researches have focused more on the area
of static timing analysis [4, 5, 6], which happens to be the
problem with the lowest level of complexity in the hierarchy
mentioned above. For dynamic timing analysis, the existing
method [7] remains too slow for practical use. Also, there
are no known efficient methods for timing-defect simula-
tion.

Since we can never afford a timed ATPG to generate
patterns specifically to target timing defects in the statis-
tical domain, we may have to utilize an ATPG considering
a less accurate timing model or one without timing (such as
an ATPG for transition faults). Without an accurate ATPG,
pattern selection becomes a mandatory step to obtain high-
quality test patterns for testing of DSM timing defects. In
this methodology, the job of ATPG is not to produce the fi-
nal test but to produce a superset of test patterns such that
they can be further processed in the pattern selection step.

The most intuitive way to do pattern selection for timing
defects in the statistical timing domain is to apply a timing-
defect simulator to evaluate the defect coverage for each
pattern, just as we do in traditional fault simulation in the
logic domain (i.e. transition fault simulation). After defect
simulation, we may rank the patterns by their defect cover-
ages and select the minimal pattern set that can achieve the
highest coverage. Unfortunately, as described above, defect

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/04 $20.00 (c) 2004 IEEE 



simulation in the statistical timing domain has a very high
complexity, and hence cannot be used in practice.

In this paper, we define a novel coverage metric to eval-
uate the test quality with respect to timing defects. The ob-
jective of this coverage metric is to guide pattern selection
for finding a minimal set of patterns that can capture the
maximal number of timing defects. More importantly, this
coverage metric allows us to avoid using defect simulation
in pattern selection. Only a dynamic timing analysis is re-
quired. To further shorten the runtime in the dynamic timing
analysis, we also propose a speedup method for the Monte-
Carlo-based dynamic timing analyzer to efficiently collect
the timing information for computing the coverage metric
from a large number of patterns. After the dynamic tim-
ing analysis, we propose a deterministic algorithm to select
patterns based on the coverage metric.

2. Problem definition
2.1. Statistical timing models

In our statistical timing analysis, a cell-based approach
is used to model the timing [7]. It requires a cell library of
the output arrival time and output transition time for each
pin-to-pin segment of each type of cell. In this library, the
output arrival time is modeled as a pdf (probability density
function). The input transition time and the output loading
will be the indices to load the corresponding pdfs.

2.2. Timing defect model

The timing defect model in our pattern-selection frame-
work is similar to a gate delay fault model. We call our
model a pin-to-pin timing defect model. A pin-to-pin tim-
ing defect is notated by (d, s(g1,g2)), where d represents the
delay size of the timing defect, gi represents the gate out-
put, and segment (g1,g2) represents the defect location. As
shown in Figure 2, a timing defect between g and e could
be a slow transition on the cell pin-to-pin, �g�g1�, or a slow
transition on the interconnect, �g1�e�.

a
b
c
d

e

f
g hg

1

Figure 2: An example of a pin-to-pin timing defect.

2.3. Pattern selection problem

The primary idea of this paper is to select an applicable
number of patterns from a given pattern set and, at the same
time, to achieve the requirement for detecting timing de-
fects. The best measurement of the capability for detecting
timing defects is the fail rate (# of faulty instances detected
over total # of faulty instances). Since the pattern selec-
tion is based on a given pattern set, the relative value of fail
rates is more important than the absolute value. We define
the term, EPC, (effective pattern coverage), to represent the

percentage of capability of detecting timing defects for the
selected patterns compared with the total given patterns.

EPC �
fail rate detected by the selected patterns

fail rate detected by the total given patterns
(1)

In this paper, we first focus on the pattern selection for
fixed-size timing defects. Then we will explain how to re-
peatedly apply our pattern selection for fixed-size timing
defects to consider all timing defects.

The pattern selection problem based on the statistical
timing model has the following as inputs:

� a netlist, Net,

� a statistical cell delay library, Lib,

� a set of patterns, Pgiven,

� a clock period, clock,

� an artificial defect size d size given by the user, and

� a desired effective pattern coverage, EPC.

The objectives of the pattern selection is the following:

� achieve the effective pattern coverage, and

� minimize the number of patterns.

3. The coverage metric
In this section, we first define CPi�s�, the critical proba-

bility of a pin-to-pin segment s under pattern i.

� CPi�s�: the probability that the pattern i can generate
a circuit delay exceeding the clock period if there is a
timing defect on the pin-to-pin segment s.

To consider the topological overlap of detecting timing
defects for a set of patterns, we further define CPP�s�, the
critical probability of a pin-to-pin segment s under a set of
patterns P.

� CPP�s�: the probability that at least one pattern among
the set of patterns P can generate a circuit delay ex-
ceeding the clock period if there is a timing defect on
the pin-to-pin segment s.

The CPP�s� can be obtained by the following equation.

CPP�s� � 1�∏
i�P
�1�CPi�s�� (2)

We assume that timing defects may locate uniformly
over all pin-to-pin segments. Therefore, the critical prob-
ability of each pin-to-pin segment should be treated with
equal importance. Hence, the coverage metric of a set of
patterns P, Cov�P�, can be formulated as the summation of
each CPP�s�.

Cov�P� �∑
s

CPP�s� (3)



In our pattern-selection algorithm, we use this coverage
metric, Cov�P�, to guide the pattern selection process. To
maximize the coverage metric, a new selected pattern needs
not only to achieve maximum CPi�s� over all pin-to-pin seg-
ments, but also to avoid the topological overlap of pin-to-
pin segments on which the existing patterns have already
generated a high CPP�s�.

3.1. Computing the coverage metric

3.1.1 Notations and Terminologies

First, we define two terms, controlling-transition input
and non-controlling-transition input, on a gate under a 2-
vector pattern �i1� i2�. A gate input is called a controlling-
transition input (or conversely, a non-controlling-transition
input) if there is a transition on the input and the logic
value given by i2 is the controlling (or non-controlling)
value of the gate. For example, in Figure 4, a is a
controlling-transition input of the NAND gate, and e is a
non-controlling-transition input of the AND gate.

Then, we define the notations for a gate with an output
pin, out, and n input pins, in1, in2� � � � � inn.

� MEDR�out�: The minimum extra delay required for
output pin out to result in a delay exceeding the clock
(the slack).

� MID�out� in j�: The maximum possible increase of de-
lay on the segment s�out� in j�.

� arrival�p�: The arrival time of pin p.

� delay�out� in j�: The pin-to-pin delay on segment
s�out� in j�.

The other notations in this section follows the notations
defined in Section 2.3.

3.1.2 General trace-back method

The most crucial part of computing the coverage metric is
to obtain the CPi�s� of each pin-to-pin segment s and each
pattern i. For each pattern i, a Monte-Carlo-based timing
analyzer is applied to generate timing configuration samples
based on the statistical timing model shown in section 2.1.
The timing analyzer will stop sampling once the sampled
mean and variance of the circuit delay converge. For each
timing configuration sample, a trace-back method is applied
to decide which pin-to-pin segment is critical (which means
that lumping a timing defect on the segment will generate
a circuit delay exceeding the clock period). Then a vari-
able, called critical counter, is used to record the number
of timing configuration samples where the particular pin-
to-pin segment is considered to be critical. CPi�s� is just the
critical count of s over the number of total timing configu-
ration samples in the Monte-Carlo simulation for pattern i.
Figure 3 shows the flow of this Monte-Carlo-based timing
analysis for a pattern i.

Procedure: Monte-Carlo-Based Timing Analysis for Pattern i
Input: Net , Lib, d size, clock, Pattern i;
Output: Circuit Delay Distribution, CPi�s� �s;
�� Meannew, Varnew–New sampled mean and variance of circuit delay
�� Meanold , Varold–Old sampled mean and variance of circuit delay
�� t–Precision threshold
�� arrival�p�–Output arrival time of pin p
�� c counter�s�–Critical counter of segment s
1 while (�Meannew �Meanold �� t or �Varnew �Varold� � t)�
2 generate a timing configuration sample based on lib;
3 for(all PO)�
4 if arrival�PO�� clock�d size�
5 trace back and increase c counter�s� for each critical s
6 �
7 �
8 update Meannew , Varnew, Meanold , and Varold
9 �

Figure 3: Procedure of Monte-Carlo-based timing analysis
for pattern i.

On each timing configuration sample in the Monte-Carlo
simulation (shown in Figure 3), we check to see whether the
arrival time on each PO is larger than the clock period mi-
nus the given artificial defect size. If yes, then we trace
back the segments from the PO to locate which pin-to-pin
segments contribute to this delay, mark those segments as
critical, and then increase the critical counts of those critical
segments by 1. Figure 4 shows a simple example of locat-
ing critical segments. The number on each input transition
represents the input arrival time, and the number on each
pin-to-pin dash line represents the sampled pin-to-pin de-
lay. Segments �h�g�, �g�e�, and �e�a� contribute to the delay
on the primary output h. Since arrival�h��d size � clock,
�h�g�, �g�e�, and �e�a� are critical on this timing configura-
tion sample.

a
b

0

7

3

cons 0

c
d

e

f

6

80

0

0

6

9

14
g h

16
2

clock: 18

d_size: 5
3

Figure 4: A example of our trace-back method. �h�g�, �g�e�,
and �e�a� are critical segments.

However, the general trace-back method is not sufficient.
Two more rules have to be listed in Sec 3.1.3 and Sec 3.1.4

3.1.3 Mark more non-controlling-transition inputs

First, we show how to compute MEDR�out� for a
gate output, out. From a primary output PO where
arrival�PO��d size � clock, MEDR�PO� is the clock mi-
nus arrival�PO�. Then we propagate the MEDR�PO� along
the the segments contributing the delay. For any other gate
other , we first set MEDR�other� as 0. For example, in
Figure 4, MEDR�h�=MEDR�g�=MEDR�e�=2. The other
MEDRs are all set as 0 initially.



For a gate with multiple non-controlling-transition in-
puts, the output arrival time is determined by the segment
�out� in j� having the longest arrival time. To mark the seg-
ment �out� in j� as critical is correct. However, any other
segment �out� ink� with a non-controlling transition may
also be critical in the case when a timing defect occurs. In
this case, MEDR�ink� is not 0 and can be obtained by the
following equation.

MEDR�ink� � arrival�out��arrival�ink�

�delay�out� ink��MEDR�out� (4)

If the size of a timing defect, d size, is larger
than MEDR�ink�, another trace-back will be performed
from ink with MEDR�ink� in equation 4. For ex-
ample, in Figure 5, segment �out� in1� contributes to
the output arrival time of 14. According to equa-
tion 4, MEDR�in1�=2, MEDR�in2�=8, MEDR�in3�=5.
MEDR�in1� and MEDR�in3� are both less than d size, 6.
Segment �out� in1� and �out� in3� are hence critical, so a
trace-back will be performed from each of in 1 and in3.
MEDR�in2� is larger than d size. Segment �out� in2� is
hence not critical, so no further trace-back will be per-
formed from in2.

6

3
7

14

MEDR(out)=2  

8
5
4

in
in

in

out
d_size=61

3

2

Figure 5: A example of marking another non-controlling-
transition input.

3.1.4 Block some controlling-transition inputs

If a gate has more than one controlling input transition, the
shortest arrival time among the input controlling transitions
will dominate the output arrival time. Let this input fall on
the segment s�out� in j� where out is the gate output and in j

is the input. If a defect falls on s�out� in j� to make the new
arrival time on s�out� in j� exceed the second shortest arrival
time among the controlling input transitions, then the seg-
ment with the second shortest arrival time, s�out� ink�, will
dominate the gate arrival time. It implies that the maxi-
mum possible increase of delay on s�out� in j� is limited by
s�out� ink�. Hence, we have

MID�out� in j� � arrival�out��arrival�ink�

�delay�out� ink� (5)

During the trace-back, we check to see whether
MID�out� ini� is larger than MEDR�out�. If yes, we keep on
tracing back from ini; if no, we stop tracing. For example,
in Figure 6, segment s�out� in3� contributes to the output
arrival time of 9. However, MID�out� in3�=(6+4)-(4+5)=1
is less than MEDR�out�. So the segment s�out� in3� is not
critical, and no further trace-back is performed from in 3.

6

8
4

9

MEDR(out)=3 

4
7
5

in

in

in

out
d_size=6    1

3

2

Figure 6: A example of blocking a controlling-transition
input. s�out� in3� contributes to the output arrival time but is
not critical

With all the trace-back rules in this section, the critical
segments in Figure 4 should be �h�g�, �g�e�, �g� f �, and
� f �c�.

4. Pattern-selection algorithm
In this section, we propose a pattern-selection algorithm,

named PSFTD, for fixed-size timing defects. In PSFTD, the
proposed coverage metric is used to guide each selection of
a pattern by measuring the capability of detecting timing de-
fects. Basically, the PSFTD uses a greedy method to select
patterns. For each selection, the non-selected pattern which
can generate the largest increase in the coverage is selected.
The PSFTD stops when the ratio of the computed coverage
of selected patterns over the computed coverage of the total
patterns reaches the given effective pattern coverage EPS.

The PSFTD can be repeatedly applied to select patterns
based on a sequence of artificial defect sizes in order to
achieve the balance of detecting both small-size and large-
size defects. In essence, a small artificial defect size favors
the selection of patterns that focus on the coverage of long
paths. A large artificial defect size favors the selection of
patterns that can cover a wide region of the circuit (increase
topological coverage). Whether to cover more long paths
or to achieve higher topological coverage depends on the
user. In any case, the control of the artificial defect size in
our pattern selection scheme controls the tradeoff between
these two.

4.1. Experimental results for pattern selection
In our experiment, the statistical timing models were ob-

tained through pre-characterization of cell libraries using
a Monte-Carlo-based SPICE simulator (ELDO) [10] based
on a 0.25µm, 2.5V CMOS technology. The patterns to be
selected are the test patterns for 15-detection of transition
faults generated by a commercial ATPG tool. A defect sim-
ulator is applied for each pattern set to simulate 1000 cir-
cuit instances, each with a random-location fixed-size tim-
ing defect. With the defect simulation results, the fail rate
of each pattern set can be calculated and hence, the actual
EPC for each pattern set can be obtained by Equation 1.
The dynamic timing analyzer used for computing the cov-
erage metric in pattern selection is a speedup version of
a Monte-Carlo-based timing analyzer, which will be dis-
cussed in Section 5.The unit for clock period and defect size
in this section is 10ps.

Table 1 shows the number of patterns and the actual EPC
for each pattern set on benchmark circuit s1488 with a clock



Table 1: Actual EPC of each selected pattern set. Circuit s1488, clock 220.
desired EPC 0.2 0.4 0.6 0.8 0.9 0.99 0.999 0.9999 1 eff. pttn Pgiven

d size # of pttn 1 2 3 4 9 40 61 69 89 133 6229
20 actual EPC of PSFTD 0.318 0.545 0.795 0.886 0.932 1 1 1 1 1 1

actual EPC of RPS 0.045 0.500 0.250 0.455 0.727 0.932 0.977 0.955 1 1 1

# of pttn 1 2 4 7 13 54 103 139 251 593 6299
d size actual EPC of PSFTD 0.317 0.485 0.634 0.842 0.950 0.950 0.970 0.990 1 1 1

40 actual EPC of RPS 0.158 0.099 0.347 0.554 0.743 0.743 0.931 0.970 0.970 1 1

d size # of pttn 1 3 5 14 25 88 163 206 485 1802 6299
60 actual EPC of PSFTD 0.271 0.517 0.662 0.860 0.952 0.981 0.981 0.981 0.995 1 1

actual EPC of RPS 0.130 0.251 0.420 0.609 0.725 0.865 0.923 0.918 0.952 1 1

of 220 and three different artificial defect sizes. The nine
columns with labels from 0.2 to 1 show the results by setting
the desired EPC equal to the label. The last two columns
correspond to the results based on the effective patterns (eff.
pttn) and the original patterns (Pgiven). The effective patterns
are selected using our coverage metric. An effective pattern
here means a pattern i which might contribute an increase
to our coverage metric, i.e., generating at least one non-zero
CPi�s� for any segment s.

From column “0.2” to column “1,” the “# of pttn” rows
show the numbers of patterns selected by PSFTD based on
the effective patterns. To evaluate PSFTD, we also select
patterns randomly from the effective patterns. The results
are labeled with the term RPS. In RPS, we randomly select
the same number of patterns as that by PSFTD.

For the selected defect size of 20, 133 effective patterns
can be first selected out of the 6228 patterns and achieve an
actual EPC of 1, i.e, exactly the same capability of defecting
timing defects as the 6229 patterns. With a desire EPC of
1, we can select 89 out of the 133 effective patterns, and
still achieve an actual EPC of 1. Then, with a desired EPC
of 0.9, we can select 9 out of 89 patterns, and achieve an
actual EPC of 0.932. Furthermore, the pattern sets selected
by PSFTD always achieve higher actual EPCs than those
achieved by RPS. This indicates that the PSFTD indeed has
used a good metric for pattern selection.

Table 2 reports the number of patterns and actual EPC of
each pattern set selected by PSFTD on some other bench-
mark circuits. We arbitrarily choose the defect size for each
circuit, and the similar trends among the actual EPCs of
pattern sets can be observed on each circuit as well.

Table 2: Actual EPC of each PSFTD-selected pattern set for
c880, c1355, s5378, and s35932 with clocks in Table 3.

desired EPC 0.2 0.6 0.9 0.999 1 eff. pttn Pgiven

c880 # of pttn 1 4 16 41 61 239 3008
d size 80 actual EPC 0.311 0.651 0.866 0.956 0.969 0.992 1

c1355 # of pttn 2 8 24 58 90 1715 4911
d size 40 actual EPC 0.289 0.671 0.927 1 1 1 1

s5378 # of pttn 2 14 36 80 224 385 11035
d size 50 actual EPC 0.324 0.69 0.915 0.958 0.986 1 1
s35932 # of pttn 1 2 9 424 865 1341 2769

d size 50 actual EPC 0.396 0.680 0.971 0.991 0.997 1 1

Table 3 shows the runtime of the PSFTD and the run-
time of defect simulation over the total given patterns Pgiven.
Both the PSFTD and defect simulation deal with the same
number of patterns, and the defect simulation only consider

Table 3: Runtime of pattern selection and defect simulation.
circuit c880 c1355 s1488 s5378 s35932

clock (10ps) 240 240 220 275 210
d size (10ps) 80 40 40 50 50

runtime of PSFTD (s) 77 796 278 2875 7084
runtime of defect sim (s) 5659 17632 19869 166383 447664

1000 instances. As the results, the runtime of the defect
simulation is from 22X to 73X longer than the PSFTD. This
big gap in runtime implies that applying our pattern selec-
tion is more efficient than using a defect simulator directly.
Also, the inefficiency of defect simulation prevents us from
simulating more faulty instances for large circuits. For ex-
ample, the number of total pin-to-pin segments in s35932
is 33773. If the number of instances in defect simulation is
the same as the number of pin-to-pin segments, the defect
simulation will take 15118956 seconds (almost 175 days) to
finish. This is exactly why we need the proposed pattern se-
lection that depends on dynamic timing analysis rather than
defect simulation.

5. Fast dynamic timing analysis

Most of computation in our pattern select framework
comes from the statistical dynamic timing analysis. The
original Monte-Carlo timing analysis in [7] requires simu-
lating a large sample of instances in order to reach the stop-
ping point where both the sampled mean and variance have
converged. Monte-Carlo simulation is inherently expensive
for selecting patterns from large pattern sets. In this section,
we propose an efficient method to speed up the Monte-Carlo
timing analysis to be used in our pattern-selection frame-
work.

The purpose of the original dynamic timing analysis is
to capture the circuit delay distribution for each pattern.
Therefore, in Figure 3, line 1, the Monte-Carlo simulation
for each pattern stops until the sample mean and variance
converge. However, in our pattern-selection framework, the
critical probability CPi�s� for each pattern i and each seg-
ment s is the real target. It means that we may stop sam-
pling earlier, as long as the critical probability CPi�s� has
converged.

In Figure 3, line 4, only a delay on a PO larger than
clock� d size could affect the critical probability CPi�s�.
Hence, we set the reference line as clock� d size. If the
sampled circuit delays are always far below (or above) this
reference line, then the sampling can stop much earlier. In



Table 4: Comparison of average runtime and average difference of critical probabilities.
OLD k � 10 k � 20 k� 40

circuit # of total avg avg avg avg avg avg avg
patterns runtime(s) accuracy(%) runtime(s) accuracy(%) runtime(s) accuracy(%) runtime(s)

c880 3008 468 0.107 43 0.100 57 0.093 84
c1355 4911 4922 0.202 389 0.158 462 0.141 563
s1488 6229 1639 0.147 171 0.123 219 0.119 292
s5378 11035 21325 0.186 2831 0.168 3408 0.162 4285

this case, a small number of samples is enough to determine
that CPi�s� is 0 (or 1).

To quickly determine the range of a distribution so that
we can decide if the Monte-Carlo sampling should stop ear-
lier, a 3-sigma bound measurement is used. That is, after
the first k samples, we test to see whether the 3rd standard
deviation above the mean is smaller than the value of the
reference line (likewise, we test to see whether the 3rd stan-
dard deviation below the mean is larger than the value of the
reference line). If yes, we stop sampling. If no, we keep on
sampling until the sampled mean and variance converge.

5.1. Experimental results

In this section, we compare the speedup version of the
Monte-Carlo-based timing analyzer with the original ver-
sion, denoted as OLD. We set the different default numbers
of samples, k, to 10, 20, and 40. All versions in this experi-
ment use the same precision threshold (shown in Figure 3),
t � 0�001. We use the same delay library and pattern set
(15-detection of transition faults) in Section 4.1.

For each circuit and each speedup method, we compare
the runtime and accuracy over 8 different reference lines
(clock� d size). The accuracy is measured by the aver-
age difference in the calculated critical probabilities over
all patterns using the answer from the OLD version as the
true answer. Table 5 shows the runtime for benchmark cir-
cuit s5378. The runtime of each speedup method changes
with a different reference line. For large or small reference
lines, dramatic speedup can be achieved. For example, with
k� 10, if the reference line is set as 260, the runtime is 639.
If the reference line is set as 180, the runtime is 6682.

Table 5: Comparison of runtime(sec). Circuit s5378.
reference line (10ps)

method 260 240 220 200 180 160 140 120

OLD 21426 21305 21328 21271 21348 21358 21332 21230
k � 10 639 846 943 1870 6682 6437 3771 1457
k � 20 1014 1285 1318 2479 7410 7267 4459 2033
k � 40 1829 2063 2214 3365 8275 8259 5359 2916

Table 4 shows the average runtime and the average ac-
curacy for each circuit, also based on 8 different reference
lines. For example, with k � 40 on circuit c880, the average
runtime is 84, and the average accuracy is 0.093%, i.e., the
average difference of the calculated probabilities for each
pattern between the speedup method and the OLD method.
Compared with the runtime of OLD, method k � 40 can
gain about a 5.6X speedup while sacrificing 0.093% in ac-

curacy. A tradeoff between the accuracy and runtime by
assigning a different k can be observed in Table 4. The
smaller the k is, the faster the runtime will be but the less
the accuracy will be.

As the results show, versions of dynamic timing analysis
can attain at least 5X speedup on average with a limited loss
in accuracy. Therefore, the speeded-up version of dynamic
timing analysis can significantly shorten the pattern selec-
tion process and still maintain high accuracy. In PSFTD, we
assign k to 40.

6. Conclusion
In this paper, we have proposed an effective coverage

metric to guide pattern selection for detecting timing de-
fects in the statistical timing domain. Instead of using a
timing-defect simulator directly for pattern selection, our
approach utilizes a dynamic timing analysis with less com-
plexity than that of a timing-defect simulator. In addition, a
speedup method is proposed to further shorten the runtime
of dynamic timing analysis. We have demonstrated the ef-
fectiveness of the proposed approaches through various ex-
periments based on benchmark circuits.

References
[1] A. Kahng, and Y. Pati, Subwavelength lithography and its potential impact on

design and EDA. ACM/IEEE Design Automation Conference, pp. 799-804,
June 1999

[2] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu, Impact of Spatial
Intrachip Gate Length Variability on the Performance of High-Spead Digital
Circuits. IEEE Transactions on Computer-Aided Design, pp. 544-553, May,
2002.

[3] K.-T. Cheng, S. Dey, M. Rodgers, and K. Roy, Test Challenges for Deep
Sub-Micron Technologies, ACM/IEEE Design Automation Conference 2000.

[4] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, Fast Statistical Timing
Analysisby by Probabilistic Event Propagation, ACM/IEEE Design Automa-
tion Conference, pp. 661-666, June 2001.

[5] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, Statistical Timing Anal-
ysis using Bounds, ACM/IEEE Design, Automation and Test in Europe Con-
ference and Exhibition, pp. 62-67, March 2003.

[6] M. Orshansky, J. Chen, and C. Hu, A Statistical Performance Simulation
Methodology for VLSI Cirucits, ACM/IEEE Design, Automation and Test in
Europe Conference and Exhibition, pp. 62-67, March 2003.

[7] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, Path Selection and Pattern
Generation for Dynamic Timing Analysis considering power supply noise
effects, ACM/IEEE International Conference on Computer Aided Design, pp.
493-496, Nov 2000.

[8] W.-Y. Chen, S. K. Gupta, and M. A. Breuer, Test Generation for Crosstalk-
Induced Delay in Integrated Circuits. ITC, pp. 191-200, Oct. 1999.

[9] Y-M. Jiang, A. Krstic, K.-T. Cheng, Estimation for Maximum Instantaneous
Current Through Supply Lines for CMOS Circuits. IEEE Tran. on VLSI, Vol.
8 No. 1, Feb, 2000. pp. 61-73

[10] Eldo v4.4.x User’s Manual. 1996.


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




