
Workload Characterization Model for Tasks with Variable Execution Demand ∗

Alexander Maxiaguine Simon Künzli Lothar Thiele
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
E-mail: {maxiagui, kuenzli, thiele}@tik.ee.ethz.ch

Abstract

The analysis of real-time properties of an embedded
system usually relies on the worst-case execution times
(WCET) of the tasks to be executed. In contrast to that,
in real world applications the running time of tasks may
vary from execution to execution, e. g. in multimedia appli-
cations. The traditional worst-case analysis of the system
then returns overly pessimistic estimates of the system per-
formance. In this paper we propose a new effective method
to characterize tasks with variable execution requirements,
which leads to tighter worst-case bounds on system perfor-
mance and better use of available resources. We show the
applicability of our approach by a detailed study of a mul-
timedia application.

1. Introduction

Minimization of cost and power consumption are im-
portant objectives in real-time embedded system design.
Scheduling of tasks on processors has a great influence on
these goals. The selection of the scheduling policy relies on
the proper knowledge of task characteristics.

For real-time systems, a number of task models have
been developed for schedulability analysis. In such models,
behavior of a task is abstracted by a set of timing parame-
ters. Typically, a task is characterized by an arrival pattern
(sporadic, periodic etc.), deadlines and the execution time.
Combined with other constraints, the parameters are used in
schedulability tests to determine whether the system satis-
fies a set of given real-time requirements or not.

In schedulability tests for hard real-time systems, for
which missing a deadline is regarded as a system failure,
assumptions about a task’s behavior must be made. In par-
ticular, in many existing analysis frameworks each instance
of a task is assumed to take the worst case execution time
(WCET) to finish. This assumption, although save, turns out
to be too pessimistic for a large class of realistic applica-

∗ Supported in part by the Swiss Innovation Promotion Agency
(KTI/CTI) under project numbers KTI 5500.2 and KTI 5845.1.

tions. Loose bounds, obtained from the schedulability anal-
ysis under such an assumption, may lead to system imple-
mentations overprovisioned with resources and, as a result,
having unreasonably high costs and/or power consumption.

There are many examples of applications (see e. g. [7]),
in which task execution times have a great variability. In
many cases, the worst case processing requirement happens
rarely resulting in a high ratio of WCET to the average ex-
ecution time of a task [9]. Scheduling such tasks, using, for
instance, the rate-monotonic policy [8] under the WCET-
assumption, results in a significant slack time.

To overcome this problem, some researchers (e.g. in
[11], [3]) have proposed to model execution time of a task
as a random variable. Using these models can improve pro-
cessor utilization, but at the expense of permitting a certain
(controlled) level of missed deadlines. It precludes employ-
ing these models for analysis of hard real-time systems.

In this paper, we propose a new approach to character-
ize the processing load produced by a task. On one hand,
in comparison to the model assuming WCET for each task
instance, our model provides tighter bounds on processing
load generated by the task. This is because it can account for
the variability of task execution time, i.e. it represents corre-
lation between task execution times. On the other hand, in
contrast to probabilistic approaches, our method provides
guaranteed bounds on the task’s processing load, since it
still considers the worst case (and the best case) load, which
is produced by a sequence of task executions. To achieve
this, the model implicitly includes information about all
possible request sequences for the task. The task behavior
(with respect to the generated processing load) is abstracted
by so called workload curves, which we introduce and for-
mally define in Section 2. The proposed model is generic
enough to be easily incorporated into existing scheduling
frameworks, which we show in Section 3.

Related Work. Early task models for real-time analysis
were annotated with a fixed WCET per job issued [8]. Then
several new task characterization models were introduced
to cope with variable task execution times. Using the Sys-
tem Properties Interval (SPI) model proposed in [13], a task

1530-1591/04 $20.00 (c) 2004 IEEE

is characterized by its WCET and in addition with its best-
case execution time (BCET). Every execution of a task will
therefore have an execution time somewhere between its
WCET and BCET. In the SPI model, as in the work of
Wolf in [12], processes can have different modes with dif-
ferent intervals for execution times. Our research mainly re-
lies on these concepts. We propose a method to character-
ize sequences of such process activations (i.e. modes) with
bounds and show how these bounds can be used in the anal-
ysis.

Baruah [2] uses demand-bound functions to characterize
variable workload imposed by sequences of tasks with con-
ditional execution. This characterization model is orthogo-
nal to our model in a sense that we do not try to model tim-
ing relations within tasks caused by conditional execution,
but we are interested only in event sequences, where events
of different types trigger tasks. Both models can be easily
combined into a powerful analytical framework.

2. Characterization Model for Tasks
2.1. The Workload Curves

Let us consider a task, τ , that is executed on a processor.
[E1, E2, E3, ...] is a sequence of events, that trigger the task
τ . Each event Ei in that sequence is tagged with a certain
type t ∈ T , where T denotes a finite set of all possible event
types. The function type(Ei) returns the type of ith event in
the sequence.

Similar to [13], we can characterize the execution re-
quirement imposed by an event type t with an interval
[bcet(t), wcet(t)] ∈ R>0, where bcet(t) and wcet(t) de-
note BCET and WCET of t.

The following functions will tell us how many processor
cycles will be consumed in the best case and in the worst
case by any subsequence of k events starting from jth event
in the event sequence:

γb(j, k) =
j+k−1∑

i=j

bcet(type(Ei)) j, k ∈ Z>0

γw(j, k) =
j+k−1∑

i=j

wcet(type(Ei)) j, k ∈ Z>0

Further, we define γb(j, 0) = 0 and γw(j, 0) = 0 ∀j. See
Figure 1 for an example of sequence of events of different
types. For this example event sequence type(E3) = a and
γb(3, 4) = 5.

The relations are not yet very useful for task character-
ization in general, because we will have to keep track of
all possible triggering sequences. Therefore, we provide the
following upper and lower bounds on the requested process-
ing resources:

Definition 1 Workload Curves
An upper (or lower) workload curve γu(k) (or γl(k)) gives

type

event #

a b caaccab

1 2 3 4 5 6 7 8 9 time

WCET BCET

a
b
c

4
5
2

2
1
1

� �
b w
(3,4)= 5, (3,4) = 13

Figure 1. Event sequence with events of dif-
ferent types.

an upper (or lower) bound on the number of cycles that are
needed to process any k consecutive activations of a task τ

γu(k) = max
∀j∈Z≥0

γw(j, k) (1)

γl(k) = min
∀j∈Z≥0

γb(j, k) (2)

In other words, any k consecutive executions of a task
originate a processing demand of at most γu(k) and at least
γl(k) processor cycles.

From the definition of workload curves, we can deduce
some important properties:

• The workload curves are strictly increasing sequences.

• We can define the pseudo inverse γu−1(e) =
maxk∈Z≥0{k : γu(k) ≤ e} and γl−1(e) =
mink∈Z≥0{k : γl(k) ≥ e}. Then one can
show that γu(k) ≤ e ⇔ γu−1(e) ≥ k and

γl(k) ≥ e ⇔ γl−1(e) ≤ k and γu/l−1
(γu/l(k)) = k.

• The worst case and best case execution times of a task
equal γl(1) and γu(1), respectively.

The workload curves capture in a compact way all dif-
ferent possible sequences of task executions that can occur
in an application. In that sense, the workload curve does not
stand for an instance of task execution sequence, but for a
class of execution sequences.

Note that the workload curves only take task activations
into account. They are not based on any form of event tim-
ing. In order to include timing, we have to combine them
with event models, which describe the temporal behavior of
task activation.

To be applicable in hard real-time analysis the curves
shall represent guaranteed bounds. It means that they shall
be obtained by analytical means based on information avail-
able about the analyzed real-time application. This informa-
tion may be explicitly contained in a specification of system
and its environment and/or be derived from various con-
straints, which always hold true for all application’s event
patterns. In Subsection 2.2 we will show an example of how
the workload curves can be obtained analytically.

Another way to construct the workload curves is by anal-
ysis of event traces (e.g. obtained from system’s environ-
ment). It shall be used when it is not possible to guaran-
tee constraints for the event patterns. In this case, the work-
load curves represent guaranteed bounds for this trace only
(and therefore cannot be used for hard real-time analysis
in general). However, they still can be very useful in many
high-level analytical design exploration frameworks for sys-
tems with soft real-time constraints. This is because they
provide a more precise abstraction of task behavior com-
pared to single-valued and interval-based characterizations
of task execution requirements. We will demonstrate this
property in Subsection 3.2.

2.2. Illustrative Example

Example 1 (Polling Task) Consider a task periodi-
cally polling for some event. If the event is detected, the
task processes it with execution time ep. Otherwise, the pro-
cessing step is skipped (resulting in a shorter execu-
tion time ec). The minimum, θmin, and maximum, θmax,
inter-arrival times of the event stream, as well as the
polling period T are known. T is smaller than θmin, be-
cause we want to achieve a small response time for the
task. For simplicity, let us assume that the task always fin-
ishes its execution before the next activation.

For this problem setup we will now analytically derive
the upper and lower workload curves. The maximum num-
ber of events detected in any k consecutive activations of

the task is given by nmax(k) = 1 +
⌊

k·T
θmin

⌋
, and the mini-

mum number is given by nmin(k) =
⌊

k·T
θmax

⌋
.

With these formulas we can easily find upper and lower
bounds on the number of processor cycles that will be re-
quested by the task in any k consecutive executions, by con-
sidering the execution requirements for the event processing
ep and ec, respectively:

γu(k) = nmax(k)ep + (k − nmax(k))ec

γl(k) = nmin(k)ep + (k − nmin(k))ec

We can give tighter bounds than what would be achiev-
able under the pessimistic assumption that all requests take
WCET ep to complete. In Figure 2 we can see the gain im-
plied by the use of workload curves as grey-shaded areas.
The uppermost curve named WCET shows the execution
requirement if we perform a traditional worst-case analysis
(with only single value for WCET), where the curve named
BCET, represents the result of a best-case analysis (where
all requests take ec to compute). Using the upper and lower
workload curve γu,l we are therefore able to characterize
a task execution behavior more precise than we could us-
ing the execution time interval-based approach.

execution
requirement

of executions

�
u

�
l

WCET only

BCET only

1 2 3 4 5 6 ...

ec

ep

Figure 2. Workload curves for the polling task
with θmin = 3T , θmax = 5T

3. Applications of Workload Curves
In this section we demonstrate how the workload curves

can be applied for system-property analysis of real-time
systems. We give two examples. The first example is
based on a classical scheduling policy, the rate-monotonic
scheduling algorithm [8]. We show how a well-known
schedulability test for the rate-monotonic scheduler can be
improved by using the workload curves. The second ex-
ample shows how the workload curves can be applied in
conjunction with a framework for performance evalua-
tion of streaming applications to provide tighter bounds on
buffer backlogs and delays of processed streams [5].

3.1. Rate-monotonic Schedulability Analysis

A rate-monotonic scheduler (RMS) uses a fixed-priority
preemptive scheduling algorithm to schedule periodic task
sets. The priorities are assigned to tasks based on their peri-
ods.

Lehoczky et al. [6] define a necessary and sufficient
schedulability condition for RMS as follows. Given n pe-
riodic tasks τ1,. . ., τn and the following expressions

Wi(t) =
i∑

j=1

Cj · �t/Tj� (3)

Li = min
0<t≤Ti

Wi(t)/t, L = max
1≤i≤n

Li

with Ci and Ti denoting WCET and period of task τi re-
spectively, RMS can schedule τi iff Li ≤ 1. The whole task
set is schedulable iff L ≤ 1. Tasks are labeled with index
i such that T1 ≤ T2 ≤ . . . ≤ Tn, and have relative dead-
lines equal to their respective periods. (Refer to [6] for ex-
act formulation and proofs of the schedulability condition.)

(3) gives the cumulative execution requirement gener-
ated by tasks τ1,. . ., τi in the interval [0, t]. The term
Cj · �t/Tj� denotes the execution requirement produced by
a single task τj . It simply counts the number of arrivals of τj

in the interval [0, t] and multiplies this number by WCET of

the task. To achieve a tighter schedulability bound we need
to replace the term Cj · �t/Tj� with the workload curve
γu

j (.), and pass the number of arrivals of τj given by �t/Tj�
as a parameter to the function.

W ∗
i (t) =

i∑
j=1

γu
j (�t/Tj�) (4)

L∗
i = min

0<t≤Ti

W ∗
i (t)/t, L∗ = max

1≤i≤n
L∗

i

Since by the definition the function, γ u
i (k) returns the worst

case execution requirement for any k consecutive instances
of τi, and this requirement is less than or equal to kCi, the
following relations hold true

W ∗
i (t) ≤ Wi(t) , L∗

i ≤ Li , L∗ ≤ L (5)

From (5) we can conclude that by using the workload
curves in the RMS test we can obtain schedulability bounds
that are at least as good as the bounds produced under the
assumption of WCET for every task instance.

3.2. System-Level Performance Analysis of
Streaming Architectures

Streaming architectures usually contain a number of pro-
cessing elements (PEs) interconnected by buffers through
which the PEs exchange streams of processed data. When
such systems are designed, natural questions to answer are:
How should the buffers be sized? How fast should the
PEs be? System-level performance analysis aims at provid-
ing answers to these questions. Here we use an analytical
framework which is based on the theory initially developed
for analysis of integrated services networks, called ”Net-
work Calculus” (see [5] and references therein). The two
central concepts of the framework are arrival and service
curves.

An arrival curve, denoted by α(∆), gives an upper
bound on the number of packets seen in the flow within any
time interval ∆. A service curve, denoted by β(∆), gives a
lower bound on the amount of service that a flow is guaran-
teed to receive at a network node within any time interval
∆. Given the arrival and service curves of a flow processed
by a node in the network (as shown in Figure 3a), it is possi-
ble to compute the upper bound on the backlog B produced
by the flow in the queue in front of the node [5]:

B ≤ sup
∆≥0

{α(∆) − β(∆)} (6)

Figure 3b gives an intuitive interpretation of (6).
In what follows, we take (6) as an example to demon-

strate how the workload curves can be combined with
arrival and service curves to enable a system-level per-
formance analysis of architectures with multiple pro-
grammable elements (PEs). The application of work-
load curves to other results of the Network Calculus theory

����

����

B

PE

B

�

�

�

processing
units

(a) (b)

Figure 3. (a) A System consisting of a queue
and a processing node (b) Graphical interpre-
tation of (6) determining the upper bound on
the backlog in front of a processing node

is straight forward and can be easily inferred from the pro-
vided example.

The idea of applying the Network Calculus theory to the
analysis of real-time systems is not new. In [4] the authors
have shown how the theory can be extended and used to ad-
dress specific problems in system-level analysis of hetero-
geneous platform-based architectures. The notion of arrival
curves is generalized to model event flows. (An event can
be interpreted here in a wide sense: be it a packet, a sam-
ple of audio/video data or any other unit of work for a task
executed on a processing resource.) A natural way to de-
fine the service curve for a task running on a programmable
PE (like embedded processor) is to use minimum number of
processor cycles supplied to the task by a processor sched-
uler in any time interval ∆.

The framework presented in [4] directly uses (6) to ob-
tain the upper bound on the backlog in front of a PE. The
backlog is expressed in terms of processor cycles (as op-
posed to number of packets, samples etc.) and denotes max-
imum amount of work waiting in the queue to be performed
by the PE. We also note that, since in (6) the service curve
is subtracted from the arrival curve, both curves shall be de-
fined in common units i.e., processor cycles. To achieve this,
in [4] the authors simply scale the event-based arrival curve
(denoted by ᾱ) by a constant factor w i.e., α = wᾱ. For the
worst-case analysis, we shall take w to be equal to WCET of
a task. As we will show later in this section by experimental
evaluation of an MPEG-2 decoder application, such an as-
sumption may lead to substantial overestimation of needed
processing resources.

In order to improve the bounds we employ workload
curves for the conversion between number of events and as-
sociated processing cycles. The conversion and backward
conversion for an arrival curve of a flow is shown in Fig-
ure 4.

We recast (6) in the following way.

B̄ ≤ sup
∆≥0

{ᾱ(∆)) − γu−1(β(∆))} (7)

where B̄ denotes the maximum backlog measured in terms

� �
��

� �()

�()� � �()

eventscycles cycles

� �’() �’()�

� �’()

curve
processing

events

Figure 4. The composition of processing
node and arrival curve conversion.

of number of events to be processed by a PE. We use the
pseudo inverse of the upper workload curve γ u−1(.) to ob-
tain the event-based service curve from the cycle-based ser-
vice curve β(∆).

We demonstrate the impact from applying the workload
curves to performance analysis of streaming architectures
by giving a case study of a realistic application.

Case Study. For the case study we selected an MPEG-2 de-
coder application. We consider an implementation of the
MPEG-2 decoder on a streaming architecture consisting
of two parallel embedded processors connected by a FIFO
buffer. Figure 5 shows the architecture and the partitioning
of the MPEG-2 decoder algorithm into two subtasks run-
ning on the respective processing elements (PEs). The sub-
task running on PE1 performs the VLD and IQ functions
on the incoming compressed video bitstream. Partially de-
coded macroblocks of video data on the output of PE 1 are
sent via the FIFO buffer to the PE2 running the second sub-
task, which performs the IDCT and MC functions on the in-
coming stream of macroblocks. We assume that no other
tasks are executed by PEs, i.e. the MPEG-2 decoder sub-
tasks receive the full processor capacity available on the
PEs.

PE1

VLD,
IQ

PE2

IDCT,
MC

F ?CLK

compressed
CBR video

decoded
video

Be

VLD: variable length decoding
IQ: inverse quantization

IDCT: inverse discrete cosine transform
MC: motion compensation

Figure 5. The architecture and mapping of the
MPEG-2 decoder application on to it

Given the system described above, our goal is to deter-
mine the minimum required clock frequency of PE 2, Fmin,
such that the FIFO buffer between two PEs never overflows.
We assume that the FIFO buffer size in macroblocks, b, is
fixed and known. We also assume that the macroblock ar-
rival process on the output of PE1 is known and can be
characterized by an arrival curve ᾱ(∆).

To avoid overflow of the FIFO buffer we require that
our target cycle-based service curve β satisfies the follow-
ing constraint.

β(∆) ≥ γu(ᾱ(∆) − b) , ∀∆ ≥ 0 (8)

In (8) we use the upper workload curve to obtain the worst-
case processing requirement imposed by the the stream of
macroblocks and ”relaxed” by the buffer b.

Since we assume that the full processor resource is de-
voted to the decoding subtasks, the shape of the service
curve β at PE2 is given by β(∆) = F∆, where F de-
notes processor clock frequency. It follows that

F γ
min = max

∆>0

{
γu(ᾱ(∆) − b)

∆

}
(9)

If we knew only the WCET w of the task running on
PE2, then the upper workload curve would be determined
as γu

w(k) = wk. Hence, if we characterize the task only
with WCET, (9) can be written as

Fw
min = max

∆>0

{
w(ᾱ(∆) − b)

∆

}
(10)

To see the impact from using the workload curves, we
computed both values, F γ

min and F w
min. To get input data

for the computations we had to use a simulator and obtain
ᾱ(∆) and γu(k) curves by trace analysis. Using the simu-
lator was necessary, because it is hard to derive analytically
any useful constraints for a generic MPEG-2 stream of mac-
roblocks. Patterns of macroblocks within the stream are not
constrained (enough) by the MPEG-2 standard and depen-
dent on a particular encoder implementation and on proper-
ties of the encoded video information.

We have performed simulations of the MPEG-2 decoder
for 14 video clips. All the video clips were encoded with the
following parameters: constant bit rate of 9.78 Mbit/s, main
profile at main level, 25 fps, and resolution of 720×576 pix-
els.

of events

e
x
e
c
u
ti
o
n

re
q

u
ir
e

m
e

n
t

2.5

2

1.5

1

0.5

0
0 50 100 150

x 10
6

WCET

BCET

�
u

�
l

Figure 6. Workload curves

To determine ᾱ(∆) and γu(k), we analyzed traces ob-
tained from the simulator using a window corresponding

to 24 full video frames. The resulting arrival and workload
curves were obtained by taking maximum over all respec-
tive curves of individual video clips. Figure 6 shows the
workload curves together with the WCET and BCET.

w was derived by taking w = γu(1). Computed from the
traces ᾱ(∆), γu(k), and w were plugged into (9) and (10)
to calculate minimum clock frequency Fmin of the PE2 for
the buffer size b = 1620 macroblocks (1 frame).

The results of the computations show that workload
curves achieve significantly tighter bounds in comparison to
conventional WCET-based characterization of tasks. We ob-
tained F γ

min ≈ 340MHz, while F w
min ≈ 710MHz. This

corresponds to over 50% of savings.
We have also performed system-level simulations with

PE2 running at the computed clock frequency F γ
min. In

Figure 7 we give the maximum backlogs that have been
registered in the FIFO buffer in front of PE2 during sim-
ulations. The backlogs are normalized to the FIFO buffer
size. The plot shows results for all 14 video clips used in
the experiments. Some of the bars in the plot are close to
the maximum, which shows that the bounds obtained with
our method, although based on worst-case analysis, repre-
sent sensible assumptions for system designers.

Our simulator consists of a transaction-level model of
the architecture written in SystemC [10]. We used mod-
els of PEs based on sim-profile configuration of the Sim-
pleScalar [1] instruction set simulator. Both PEs have an
instruction sets similar to that used in MIPS3000 proces-
sors without floating point support. PE1 is enhanced with
special hardware support for video bitstream access, while
PE2 uses hardware acceleration of IDCT function and a
special block-based memory access mode.

4. Conclusions

In this paper, we have presented a new characterization
method for tasks with variable execution demand. We have
shown the application of this method in context of two dif-
ferent frameworks for real-time embedded systems analy-
sis. In both cases, the application of the proposed task char-
acterization method led to improved results compared to the
conventional WCET-based analysis. The concept of work-
load curves is not restricted to the applications presented in
this paper, but is generic enough to be embedded into other
frameworks for real-time system analysis.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling. IEEE Computer,
35(2):59–67, 2002.

[2] S. K. Baruah. Dynamic- and static-priority scheduling of re-
curring real-time tasks. Real-Time Systems, 24(1):93–128,
2003.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

video sequence nr.

m
ax

. b
ac

kl
o

g

Figure 7. Maximal backlogs registered in the
FIFO buffer in front of PE2 running at com-
puted clock frequency F γ

min

[3] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of
probabilistic hard real-time systems. In Proceedings of the
23rd IEEE Real-Time Systems Symposium (RTSS’02), pages
279–288. IEEE Computer Society, 2002.

[4] S. Chakraborty, S. Künzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. In Proc. 6th Design, Automation and
Test in Europe (DATE), pages 190–195, Munich, Germany,
March 2003.

[5] J. Le Boudec and P. Thiran. Network Calculus - A Theory
of Deterministic Queuing Systems for the Internet. LNCS
2050, Springer Verlag, 2001.

[6] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings of the Real-Time Systems
Symposium – 1989, pages 166–171. IEEE Computer Soci-
ety Press, 1989.

[7] Y.-T. S. Li and S. Malik. Performance analysis of embed-
ded software using implicit path enumeration. In Proceed-
ings of the 32nd ACM/IEEE conference on Design automa-
tion conference, pages 456–461. ACM Press, 1995.

[8] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[9] Y. Shin and K. Choi. Power conscious fixed priority schedul-
ing for hard real-time systems. In Proceedings of the 36th
ACM/IEEE conference on Design automation conference,
pages 134–139. ACM Press, 1999.

[10] SystemC homepage. http://www.systemc.org.
[11] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.

Wu, and J. W.-S. Liu. Probabilistic performance guaran-
tee for real-time tasks with varying computation times. In
Proceedings of the IEEE Real Time Technology and Appli-
cations Symposium, pages 164 – 173. IEEE Computer Soci-
ety, 1995.

[12] F. Wolf. Behavioral Intervals in Embedded Software: Timing
and Power Analysis of Embedded Real-Time Software Pro-
cesses. Kluwer Academic Publishers, 2002.

[13] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich.
SPI – A System Model for Heterogeneously Specified Em-
bedded Systems. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 10(4):397 – 389, August 2002.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

