
MINCE: Matching INstructions using Combinational Equivalence for Extensible
Processor

Newton Cheung†, Sri Parameswaran†, Jörg Henkel‡, Jeremy Chan†
†School of Computer Science & Engineering, University of New South Wales, Australia

‡NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540, USA
ncheung@cse.unsw.edu.au, sridevan@cse.unsw.edu.au, henkel@nec-labs.com, jeremyc@cse.unsw.edu.au

Abstract
Designing custom-extensible instructions for Extensible

Processors1 is a computationally complex task because of the
large design space. The task of automatically matching candi-
date instructions in an application (e.g. written in a high-level
language) to a pre-designed library of extensible instructions
is especially challenging. Previous approaches have focused
on identifying extensible instructions (e.g. through profiling),
synthesizing extensible instructions, estimating expected per-
formance gains etc. In this paper we introduce our approach
of automatically matching extensible instructions as this key
step is missing in automating the entire design flow of an ASIP
with extensible instruction capabilities. Since matching using
simulation is practically infeasible (simulation time), and tra-
ditional pattern matching approaches would not yield reliable
results (ambiguity related to a functionally equivalent code that
can be represented in many different ways), we adopt combi-
national equivalence checking. Our MINCE tool as part of
our ASIP design flow consists of a translator, a filtering al-
gorithm and a combinational equivalence checking tool. We
report matching times of extensible instructions that are 7.3x
faster on average (using Mediabench applications) compared
to the best known approaches to the problem (partial simula-
tions). In all our experiments MINCE matched correctly and
the outcome of the matching step yielded an average speedup
of the application of 2.47x. As a summary, our work repre-
sents a key step towards automating the whole design flow of
an ASIP with extensible instruction capabilities.

1 Introduction
Application Specific Instruction-set Processors (ASIPs) are de-
signed for specific applications or application domains in em-
bedded systems. ASIPs typically consist of a configurable base
processor core and a base instruction set plus the capability
of extending this instruction set through new extensible in-
structions that further enable to address more specifically per-
formance and power constraints. Using commercial and re-
search ASIP platforms [1, 2, 3, 4, 5, 6], it has been shown that
performance and power benefits can be orders of magnitudes
more efficient compared to general purpose processors when
deployed in the same embedded systems [8, 16, 17]. Within
the commercial platforms the steps of identifying, matching,
synthesizing and estimating (performance/power) of extensi-
ble instructions are mostly supported by tools that come with
the ASIP tool suite. However, the process of efficiently ex-
ploring the design space is up to the designer. Therefore recent
research (see related work) has focused on automating this pro-

1These are ASIPs, Application Specific Processor, with the capability to
extend their instruction sets. For brevity, we use the term ASIPs in the follow-
ing when we mean Extensible Processors.

cess. One of the most challenging and so far unsolved steps
in this process is that of automatically matching extensible in-
structions: given a library of pre-designed candidates for exten-
sible instructions that may or may not be included (depending
on the application and its constraints) within the final design
of the ASIP. The goal of matching is to automatically match
instructions in the library with code segments of the applica-
tion in order to automatically judge whether a specific code
segment (software) of the application might be replaced by an
extensible instruction or not. This is a complex task.

The traditional approach to instruction matching consists of
instruction simulation [28], and data control graph matching
techniques [14, 18, 21, 27]. In the simulation approach, a code
segment and the equivalent hand-designed instruction are sim-
ulated with the same set of input vectors, while comparing out-
put vectors. The drawback of this approach is the necessity to
simulate a complete set of data vectors in order to ensure that
the extensible instruction and the software code segment are
functionally equivalent. This makes the process not only time
computation intensive but also potentially error prone unless a
100% data set coverage is guaranteed.

Another technique, data control graph matching, enables the
matching of extensible instructions with a structurally equiva-
lent representation of the according code segment. Since the
same segment can be represented graphically in many differ-
ent ways, such a method will often result in a false negative.
The differences in the graphical representation can arise from
the level of granularity and the method of decomposition in a
function.

To overcome the shortcomings of the simulation and the
pattern matching techniques, we propose the MINCE tool.
MINCE consists of a translator, a filtering algorithm and a
combinational model equivalence checking tool. The transla-
tor converts a code segment described in a high-level language
(typically C/C++) to a combinational Verilog representation.
The filtering algorithm rapidly prunes candidate instructions
that cannot match any pre-designed extensible instructions. Fi-
nally, the combinational model equivalence checking tool is
used to ensure that the functionality of the code segment and
the extensible instruction are equivalent. The advantages of the
MINCE tool are:
• it automates the step of instruction matching and is supe-

rior to computation-intensive and error-prone simulation ap-
proaches.

• the usage of functional equivalence checking ensures that the
results (i.e. found candidates for extensible instructions) are
largely independent of the programming style of the applica-
tion that is to be accelerated.

MINCE is the automated tool for matching extensible instruc-
tion to the functional equivalence of code segments in an ASIP
environment.

1

1530-1591/04 $20.00 (c) 2004 IEEE

Design constraints
(Performance, Area,
Power Consumption)

Application written in C/
C++

Identifying the “hotspots” of the application
through simulation, profiling, and trace.

Designing extensible instructions for the
“hotspots” manually

Testing/Verifying the functionality, speedup, area,
power consumption of extensible instructions.

Selecting the extensible instructions based on the
design constraints.

ASIP

Matching designed extensible
Instruction to the code segment

(MINCE system)

Figure 1. A generic design flow for designing an ASIP and
how MINCE system fits in the design flow

The rest of the paper is organized as follows: Section 2
introduces the background as well as the goal of this work
whereas Section 3 describes related work. Then Section 4
presents the steps and flow of our MINCE tool. Experimen-
tal setups are described and results are presented for diverse
real-world applications (Mediabench) in Section 5. Finally, a
conclusion is given in Section 6.

2 Background
A generic design flow (see Fig. 1) for designing an ASIP (given
an application written in C/C++ and design constraints such
as performance, area etc) typically involves the following four
major steps:

1. identifying the “hot spots” (frequently executed code seg-
ments) of the application through simulations, profiling and
traces;

2. analyzing/designing functional equivalent extensible in-
structions manually for the identified code segments of the
embedded application;

3. estimating/verifying the latency, speedup, power consump-
tion and area of the extensible instructions;

4. selecting the extensible instructions based on the design con-
straints.

Some approaches use libraries of pre-designed extensible in-
structions in order to limit the design space and then efficiently
search within that space. Thus if an instruction is already de-
signed, then that instruction can be reused in another applica-
tion, as long as that instruction matches a code segment of the
application (see the grey section of Fig. 1). The MINCE ap-
proach focuses on this key problem of the ASIP design flow,
namely the matching – i.e. automatically matching candidate
instructions of an embedded application (given in a high-level
language like C/C++) to pre-designed library of extensible in-
structions that will enhance the core instruction set of the em-
bedded processor. This key step compliments our existing
ASIP framework.

The following describes some basics of binary decision dia-
grams (BDD) and gives a rough motivational idea on the tech-
niques used in the MINCE tool. A Reduced Ordered BDD
(ROBDD, but often simply referred to as “BDD”) is a canon-
ical data structure that uniquely represents a boolean function
with the maximal sharing of substructure [10]. Dynamic vari-
able ordering is often applied to change the order of the vari-
able continuously (without changing the original function be-
ing represented) while the BDD application is running in or-
der to minimize memory requirements [25]. There are many
derivatives of BDDs such as the multi-valued BDD (MDD) -

 \\ High-level Code Segment
 S = (a + b) * 16;

 \\ Extensible Instruction
 S = (a + b) << 4;

a1

b1

ci1 ci1

b1

ci1 ci1

10

S5

a1

b1

ci1 ci1

b1

ci1 ci1

10

S5

…

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S4

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S5

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S7

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S8

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S9

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S11 S6 S0…S31
……

…

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S4

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S5

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S7

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S8

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S9

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S11 S6 S0…S31
……

(a) Code Segment & Extensible Instruction \\ High-level Code Segment
 S = (a + b) * 2;

 \\ Extensible Instruction
 S = (a + b) << 4;

a1

b1

ci1 ci1

b1

ci1 ci1

10

S5

a1

b1

ci1 ci1

b1

ci1 ci1

10

S5

…

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S4

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S5

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S7

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S8

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S9

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S11 S6 S0…S31
……

…

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S4

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S5

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S7

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S8

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S9

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S10

a
i

b
i

c
i
i

c
i
i

b
i

c
i
i

c
i
i

10

S11 S6 S0…S31
……

(b) BDD representations

Figure 2. Code Segment & Extensible Instruction and the
BDD representations

which has more than two branches and potentially has a bet-
ter ordering etc. Using BDDs to solve combinational equiv-
alence checking problem was proposed by Madre et al. [22,
23]. In brief, if two functions have the same functionality (but
they have different circuit representations), then their BDDs
will still be identical.

For example, Fig. 2a shows the high level language repre-
sentation for a code segment (S = (a + b) ∗ 16) and an exten-
sible instruction (S = (a + b) << 4) (both are functionally
equivalent). Fig. 2b shows the BDD representation of the code
segment and the extensible instruction. Since there are 32 bits
in each variable (a, b, S), the BDDs of variable S (bit 11 to bit
4) are shown. One of these (bit 5 of variable S) is expanded out
for clarity. Note that the ci in the BDDs in Fig. 2b is the carry
in of each bit. The BDD representation of extensible instruc-
tion is identical to the BDD representation of the code segment,
which indicates, that both the code segment and the extensible
instruction are both functionally equivalent.

3 Related Work
Related work is twofold: first, there is work for automating
the one or the step of an ASIP design flow with extensible in-
struction capabilities. Secondly there is work related to au-
tomatically matching/identifying software language constructs
to equivalent hardware descriptions. We give a non-exhaustive
overview of both.

Starting with the first group, Lee et al. in [20] proposed a de-
sign flow with instruction encoding, complex instruction gen-
eration, and a heuristic design space exploration in order to
reduce the design-turn-around time for ASIPs. Their speedup
of complex instruction is mainly achieved through reducing the
size of the op-codes and operands and shortening the instruc-
tion fetch/decode time. Secondly, in [12], the design flow in-
cludes a methodology for rapidly selecting extensible instruc-
tions in a pre-designed instruction library. There, the extensi-
ble instructions are optimally but manually designed. In [29]
the design flow comprises the generating of instructions (au-
tomatically), inserting instructions, and performing a heuris-
tic design space exploration. Automatic instruction genera-
tion locates the regular templates derived from program depen-
dence graphs, and implements the most suitable ones as exten-
sible instructions. Automatic instruction generation is based
on matching regular templates in the graph only and then se-
lecting the combination of the regular templates using a graph
representation and algorithm.

On the other side, matching hardware to a software code
segment has been attempted in various forms during the last

2

Application
Software in

C/C++

Functional equivalence implementation

Extensible
Instruction Library

(Verilog HDL)

Translator

Combinational Equivalence Checking Tool

Filtering Algorithm

MINCE system
I

II

III

(a) The design flow of the MINCE approach

Code Segment

Assembly Code

Register Transfer List

Verilog Code

Compile

Convert

Map

Assembler
Instruction

Hardware Library

(Verilog HDL)

Application Software

Separate

(b) Translator flow

Figure 3. MINCE: an automated tool for matching extensible
instructions

decade and can be categorized into three research disciplines:
graph matching approaches [14, 18, 21, 27], extensive simula-
tion [28], and equivalence verification [13, 24, 26].

Graph matching approaches can be further divided into the
template/pattern matching [14, 18] and instruction-set match-
ing [21, 27]. These approaches are based on the concept of
graph representation such as control/data flow graphs (CDFG),
and then heuristic algorithms are applied to search the equiv-
alent pre-defined template instructions in the graph represen-
tation of the software application. The limitation of this ap-
proach is that only instructions with structurally equivalent
templates/patterns can be matched. Since extensible instruc-
tions often contain special modules to meet design constraints,
it is practically infeasible to find a structural match.

Extensive simulation using Instruction-Set Simulator (ISS)
enables the matching of functional equivalent instruction with
corresponding software code segments [1, 6]. However, this
approach requires the designer to locate the corresponding
software code segment manually. Furthermore, a large data
set is required to be simulated in order to ensure the functional
equivalence of an instruction. Hence, the simulation approach
is a very time-consuming process.

Several tools for verifying the combinational equivalence
between C/C++ code and an HDL description have recently
appeared [13, 24, 26]. In 1998, Pnueli, Siegel and Shtrich-
man introduced the idea of verifying the equivalence (safety-
critical) of a software implementation in C with a small BDD
transition model [24]. However, the C program is restricted
to a subset of C. Semeria et al. developed a tool for verifying
the combinational equivalence of RTL-C and an HDL in [26].
Once again, the C code is only limited to a subset of C, which
is very close to the hardware description (RTL code). In other
words, the C code needs to be written in a very similar way to
the RTL code. Recently, Clarke et al. presented a tool for ver-
ifying the behavioral consistency of C and Verilog HDL pro-
grams [13]. This tool translates both C and Verilog HDL to bit
vector equations, then the two bit vector equations are trans-
lated to SAT instances which are used to verify the equivalence
using a bounded model checker. In fact, our MINCE tool ex-
tends their approach to verify an extensible instruction and a C
software code segment which does not require the insertion of
extra functions in the C program.

4 Overview of MINCE
The MINCE tool (shown in Fig. 3a) for matching extensible
instructions consists of a translator, a filtering algorithm and

a combinational equivalence model checker. The instruction
library (containing pre-designed extensible instructions in Ver-
ilog HDL) and the application (in C/C++) are the input to our
tool. The initial step of the flow is to separate the application
into code segments which are suitable for matching with the in-
struction in the library. The choice of these segments is left to
the designer, though approaches to choose these segments have
been presented [7], for example. The next step of the flow is
to convert a code segment to a Verilog HDL using our transla-
tor. There are two reasons for converting a code segment to a
Verilog HDL:

1. the extensible instruction is designed in Verilog HDL and
hence no manipulation is required if the verification tool uses
Verilog HDL files as input as well;

2. the granularity even of small code segments in C/C++ is
high, and hence would slow down the verification time sig-
nificantly.

After that, we apply the filtering algorithm to eliminate instruc-
tions which will not match with any code segments. The in-
structions which pass through the filter are then compared one
by one with the code segment using a combinational equiva-
lence checking tool. The tool is called Verification Interfacing
with Synthesis (VIS), which was jointly developed by the Uni-
versity of California, in Berkeley and the University of Col-
orado, Boulder [9].

4.1 The Translator
The translator flow is illustrated in Fig. 3b. The input code
segments are obtained from a complete application written in
C/C++ which is profiled and then segmented, according to a
ranking criteria which is described in [12]. The assembler
instruction hardware library contains individual assembler in-
structions implemented in Verilog HDL. We refer to these in-
structions in hardware as “base hardware modules”. These
hardware modules are used for technology mapping in our
translator.

The C/C++ code segment is first translated into assembly
achieving the following objectives:
• it uses all of the optimization methods which are available to

the compiler to reduce the size of the compiled code;

• it converts the translated code into the same data types as the
instructions in the library;

• it also unrolls loops with deterministic loop counts in order
to convert the code segment to a combinational implementa-
tion.

An example of this step (code segment to assembler) is shown
in Fig. 4 step II. The software code segment in the exam-
ple contains addition, multiplication and shift right operations
(mult - multiplication, move - move register, sar - shift right,
and add - addition). The reason the assembly code contains
a move instruction is that the mult produces a 64-bit product,
and hence the move instruction is used to reduce the size of the
product to 32-bit data.

The assembler code is then transformed into a list of regis-
ter transfer operations. The translator converts each assembly
instruction into a series of register transfers. The main goal
of this conversion step is to convert any non-register transfer
type operations, such as pop and push instructions, into ex-
plicit register transfer operations. In this step MINCE renames
the variables in order to remove duplicate name assignments
automatically. Duplicate names are avoided as Verilog HDL is
a static single assignment form language [15]. In the example
given in Fig. 4, this is shown as step III. In this example, the

3

Compile (Step II)

Convert (Step III)

Map (Step IV)

Assembler Instruction Hardware
Library (Verilog HDL)

... …

module mult (product, input1, input2);
… …

endmodule

module add (sum, in1, in2);
… …

endmodule

module sfr (out1, in1, amt);
… …

endmodule

module sfl … ...

module cmpl … ...

Separate (Step I)

total

input2
input1

4

sum

mult

sfr

add

Application Software written in C/C++

// High-level code segment
int example (int sum, int input1, int input2) {

total = sum + (input1 * input2) >> 4;
return total;

}

// Assembly Code
mult R6, R1, R2
mov R4, R6
sar R4, $4
add R5, R4, R3

// Register Transfer List
R6 = R1 * R2;
R4 = R6;
R4_1 = R4 >> 4;
R5 = R3 + R4_1;

// Verilog Code
module example (total, sum, input1, input2);

output [31:0] total;
input [31:0] sum, input1, input2;
wire [31:0] r1, r2, r3, r4, r4_1, r5;
wire [63:0] r6;

r1 = input1;
r2 = input2;
r3 = sum;
mult (r6, r1, r2);
r4 = r6;
sfr (r4_1, r4, 4);
add (r5, r3, r4_1);
total = r5;

endmodule

module mult (product, in1, in2);
output [63:0] product;
input [31:0] in1;
input [31:0] in2;

… …
endmodule

module add (sum, in1, in2);
… …

endmodule

module sfr (out1, in1, amt);
… …

endmodule

Figure 4. An example for translating to Verilog in a form that
allows matching through the equivalence checker

translator converts each assembly instruction into a single reg-
ister transfer. The register transfer operations show the single
assignment statement of each register, R4, R4 1, R5 and R6,
where R4 1 is the variable renamed by our tool.

After the assembly code is converted to register transfer op-
erations, the next step is the technology mapping (step IV of
Fig. 4). In this step the register transfer operations are mapped
to the base hardware modules given in the pre-designed assem-
bler instruction hardware library. Once each register transfer
has been mapped to a base hardware module, the translator cre-
ates a top-level Verilog HDL description interconnecting all the
base hardware modules together. The Verilog code, shown in
Fig. 4, is based upon the code segment and the register transfer
operations. There are three input variables (sum, input1 and in-
put2), one output variable (total), seven temporary connection
variables (r1, r2, etc.) and three hardware modules (addition,
multiplication and shift right) in this example. The top-level
Verilog HDL declares the corresponding number of variables
and contains the mapped code of the register transfer opera-
tions. The technology mapping step provides a system-level
approach to converting register transfer operations to a combi-
national hardware module. One of the drawbacks to this ap-
proach is that control flow operations such as branch and jump

Complex Module Implementation - Hardware Module
Multiplier (32-bit) Add, Shift
Multiplier (32-bit) Multiplier (16-bit), Adder, Multiplexor
Division (32-bit) Multiplier (32-bit), Reciprocal
Division (32-bit) Subtract, Shift

Square Root (32-bit) Multiplier (32-bit), Add, Subtract
Sine (32-bit) Multiplier (32-bit), Add, Subtract

Cosine (32-bit) Multiplier (32-bit), Add, Subtract

Table 1. A subset of complex module with limited imple-
mentations

Algorithm Filtering (v1, v2) {
if (Σ input(v1) != Σ input(v2)) return filtered;
if (Σ output(v1) != Σ output(v2)) return filtered;
if (Σ |input(v1)| != Σ |input(v2)|) return filtered;
if (Σ |output(v1)| != Σ |output(v2)|) return filtered;
for all modules v2 do {

if (modules(v2) == complex module)
cm list = implement(modules(v2));

}
for all element i in cm list do {

if (cm listi ⊆ Σ modules(v1)) return potentially equal;
}
return filtered;

}

Figure 5. Algorithm Filtering for eliminating the number
of extensible instructions into the equivalence checking
model

instructions might not directly map into a single base hardware
module. Those instructions map to more complex hardware
modules.

4.2 Filtering Algorithm in MINCE
Some code segments can be pruned as a non-match due to
• differing number of ports (the code segment might have two

inputs, while the extensible instruction only one);
• differing port sizes;
• insufficient number of base hardware modules (for example,

if the code segment just contained an XOR gate and an AND
gate, while the extensible instruction contained a multiplier,
then a match would be impossible).

The pruning filter greatly decreases the evaluation time of
MINCE.

Fig. 5 presents the pseudo code of the filtering algorithm. It
takes two Verilog HDL files as inputs: the converted software
code segment and the extensible instruction in the library. The
steps: First, it checks whether the number of the input/output
variables and the size of the input/output variables are equal
in both Verilog HDL representations. If not, it is pruned. In
the other case, the filtering algorithm then determines whether
the instruction contains any modules which are complex (see
Table 1, column 1, for a subset of such modules). If the code
segment does not contain the corresponding hardware modules
given in column 2 of Table 1, then the instruction is eliminated.
Note also that the matching may need to be recursive.

The complex modules in Table 1 were chosen, since these
require extremely large BDDs (i.e. uses 1Gb RAM) to repre-
sent them and thus represent a good test of MINCE. The com-
plexity of this filtering algorithm is O(mno), where m is num-
ber of ways to implement a complex module, n is the number
of complex instructions and o is the number of base hardware
modules in an extensible instruction.

4.3 Instruction Matching Through Combinational
Equivalence Checking

After filtering out unrelated instructions to the given code
segment in the library, MINCE checks whether the Verilog

4

HDL converted from the software code segment is function-
ally equivalent to an instruction written in Verilog HDL. The
checking is performed using VIS (Verification Interfacing with
Synthesis) [9]. This part of the work could have been carried
out with any similar verification tool.

We first convert both Verilog HDL files into an intermediate
format, called BLIF-MV which VIS operates on, by a stand-
alone compiler VL2MV [11]. The BLIF-MV hierarchy mod-
ules are then flattened to a gate level description. Note that VIS
uses both BDDs and its extension the MDDs (multi-valued de-
cision diagrams) to represent boolean and discrete functions.
VIS is also able to apply dynamic variable ordering [25] to im-
prove the possibility of convergence.

The two flattened combinational gate level descriptions are
declared to be combinationally equivalent if they produce the
same outputs for all combinations of inputs and MINCE de-
clares the code segment and the extensible instruction to be
functionally equivalent.

5 Experimental Setup & Results
The target ASIP compiler and profiler used in our experiments
is the Xtensa processor’s compiler and profiler from Tensilica,
Inc. [6]. Our extensible instruction library is written in Verilog
HDL as well as the assembler instruction library (See Fig. 3).

To evaluate the MINCE tool we conducted two separate sets
of experiments. In the first, we created arbitrary diverse in-
structions and matched them against artificially generated C
code segments. These segments either: a) matched exactly
(i.e. they were structurally identical); b) were only function-
ally equivalent; c) the I/O ports match (i.e code segment passes
through the filter algorithm but is not functionally equivalent);
d) did not match at all. This set of experiment was conducted
to show the efficiency of functional matching as opposed to
finding a match through the simulation-based approach. In the
simulation-based approach, the C code segment is compiled
and is simulated to obtain results with a data set. The results
are compared with the pre-computed result of the extensible
instruction. The simulation was conducted with 100 million
data sets each (approximately 5e-10% of the full data set with
two 32-bit variables as inputs of the code segment). The reason
for choosing 100 millions as the size of the data set is that the
physical limits of the hard-drive. Each data set and each pre-
simulated result of the instruction require approximately 1Gb
of memory space. If more than n (n = 1 million (1% of the
data set) for our experiments) differences occur in the simula-
tion results, computation is terminated, we state that a match is
non-existent.

The second set of experiments used real-life C/C++ applica-
tions (Mediabench) and automatically matched code segments
to our pre-designed library of extensible instructions. We ex-
amined the effectiveness of the filtering algorithm by compar-
ing the complete matching time including and excluding the
filtering step. We selected the following applications, adpcm
encoder, g721 encoder, g721 decoder, gsm encoder, gsm de-
coder, mpeg2 decoder from Mediabench site [19] and com-
plete voice recognition system. All experiments were con-
ducted on a Sun UltraSPARC III running at 900MHz (dual)
with 4Gb of RAM.

5.1 Obtained Results and Discussion
Table 2 summaries the results of our first experiment. The
first column indicates the type of instruction and the hardware
modules it contains. The second column displays the type of
software code segment (as compared to the instruction being
matched) while the third column shows the number of cor-
responding code segments used in the experiment. The fol-
lowing column represents the average matching time of the

Instruction Software No of Simulation MINCE
(Hardware Code Code Time Time
module) Segment Segt. [min.] [min.]
Instruction 1 Exact Match 1 79 2
(Add, Functional Equ. 3 82 3
logical AND) I/O Match only 3 < 1 < 1

Do Not Match 3 < 1 < 1
Instruction 2 Exact Match 1 46 2
(Shift right, Functional Equ. 3 46 2
logical XOR) I/O Match only 3 < 1 < 1

Do Not Match 3 < 1 < 1
Instruction 3 Exact Match 1 65 2
(Add, Rotate Functional Equ. 3 65 3
shift right) I/O Match only 3 < 1 < 1

Do Not Match 3 < 1 < 1
Instruction 4 Exact Match 1 86 2
(Add, Shift Functional Equ. 3 87 3
left) I/O Match only 3 < 1 2

Do Not Match 3 < 1 < 1
Instruction 5 Exact Match 1 41 2
(Add, Shift Functional Equ. 3 42 3
right, logical I/O Match only 3 < 1 2
AND) Do Not Match 3 < 1 < 1
Instruction 6 Exact Match 1 49 10
(Add, shift, Functional Equ. 3 55 20
extra register) I/O Match only 3 < 1 12

Do Not Match 3 < 1 < 1
Instruction 7 Exact Match 1 85 60
(Shift right, Functional Equ. 3 90 85
multiplier) I/O Match only 3 < 1 15

Do Not Match 3 < 1 < 1
Instruction 8 Exact Match 1 102 70
(add, Functional Equ. 3 105 75
multiplier) I/O Match only 3 < 1 20

Do Not Match 3 < 1 < 1
Instruction 9 Exact Match 1 64 2
(Comparator, Functional Equ. 3 65 10
Shift left) I/O Match only 3 < 1 7

Do Not Match 3 < 1 < 1
Instruction 10 Exact Match 1 35 5
(Combine, Functional Equ. 3 45 9
logical XOR, I/O Match only 3 < 1 6
logical OR) Do Not Match 3 < 1 < 1

Table 2. Experimental results on hardware instructions on
different kinds of software code segments

simulation-based approach for finding whether or not the ex-
tensible instruction is functionally equivalent with the corre-
sponding software code segment. Finally, the last column dis-
plays the average matching time of MINCE. In our first ex-
periment, we show that MINCE matches various quite diverse
(since generated) software code segments successfully (in both
experiments the correct result for all the software code seg-
ments were obtained). Our tool performed on average 8.8x
(up to 39.5x) faster than the simulation-based approach. On
the examples with complex instructions, our MINCE slowed
down due to memory resource explosion during the creation of
BDDs. Despite this observation, MINCE by far outperformed
the simulation approach. Fig. 6 summaries the matching time
of simulation vs. MINCE. Note that the simulation does not
guarantee a match and is only a necessary condition, whereas
the MINCE tool guarantees a match.

Table 3 summaries the results for matching instructions
from the library to code segments in six different, real-life mul-
timedia applications. We compare the number of instruction
matched and time of matching extensible instructions with a
reasonably experienced human ASIP designer and simulation-
based approach. The ASIP designer selects the code segments
manually and simulates code segments using 100 million data
sets. The first column of table 3 indicates the application. The
second column shows the speedup achieved by the ASIP de-
signer and our MINCE tool. The third and forth columns rep-
resent the number of instructions matched and the matching
time used by the ASIP designer & simulation-based approach

5

Simulation MINCE
Instruction 1 EM 79 2

FE 82 3
DM 1 1
TW 1 1

Instruction 2 EM 46 2
FE 46 2
DM 1 1
TW 1 1

Instruction 3 EM 65 2
FE 65 3
DM 1 1
TW 1 1

Instruction 4 EM 86 2
FE 87 3
DM 1 2
TW 1 1

Instruction 5 EM 41 2
FE 42 3
DM 1 2
TW 1 1

Instruction 6 EM 49 10
FE 55 20
DM 1 5
TW 1 1

Instruction 7 EM 85 60
FE 90 80
DM 1 15
TW 1 1

Instruction 8 EM 102 70
FE 105 75
DM 1 18
TW 1 1

Instruction 9 EM 64 2
FE 65 10
DM 1 7
TW 1 1

Instruction 10 EM 35 5
FE 45 9
DM 1 6
TW 1 1

Simulation vs MINCE (Time on H/W instruction with different kinds of S/W code segment)

0

20

40

60

80

100

120

EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW EM FE DM TW

Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5 Instruction 6 Instruction 7 Instruction 8 Instruction 9 Instruction 10

Time
(minute)

Simulation
MINCE

EM - Exact Match
FE - Functional Equivalent
DM - Do Not Match (I/O only)
TW - Totally Wrong (Do Not Match at all)

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

1

1

1

1

Figure 6. Results in terms of computation time for the instruction matching step: Simulation vs. MINCE
Application Speedup ASIP Designer & Simulation MINCE (w/o filtering alg.) MINCE

Software [x] No of Inst. Time No of Inst Time No of Inst. Time
matched [hour] matched [hour] matched [hour]

Adpcm encoder 2.2 3 80 3 25 3 10
g721 encoder 2.5 4 75 4 20 4 8
g721 decoder 2.3 4 74 4 20 4 9
gsm encoder 1.1 4 105 4 40 4 25
gsm decoder 1.1 4 95 4 35 4 15

mpeg2 encoder 1.3 4 115 4 21 4 18
voice recognition 6.8 9 205 9 40 9 25

Table 3. Number of instructions matched, matching time used and speedup gained by different systems

respectively. The next two columns show the number of in-
structions matched and time used by MINCE (without the fil-
tering algorithm). Finally, the last two columns displays the
same characteristics by the MINCE tool. Our automated tool
is on average 7.3x (up to 9.375x) faster than manually match-
ing extensible instructions. We show that the effectiveness of
the filtering algorithm, which reduces the equivalence check-
ing time by more than half (compare column six and eight).
In addition, we show the speed-up of the embedded applica-
tion that could be achieved through the automatic matching,
which is 2.47x on average (up to 6.8x). Note also that the iden-
tical matches were made by both the human designer and our
MINCE system.

6 Conclusions
We have presented the MINCE tool as part of an ASIP de-
sign framework. MINCE translates selected code segments
of an embedded application to a hardware description, filters
out those code segments that would not match and eventually
matches code segments to a pre-defined library of extensible
instructions using functional equivalence checking. We have
shown in experiments using the applications of the Media-
bench suite that our approach is feasible as the tool was able
to automatically match application code segments to extensi-
ble instructions in the library. Thereby, the time for matching
was on average 7.3x faster than a simulation based approach
that has been the state-of-the-art in ASIP design so far. We
have also evaluated the speedup of the embedded application
that could be achieved through the automatic matching which
is 2.47x on average and therefore identical to a hand-optimized
design (optimum solution).

It is therefore the first computationally feasible approach to
fully automate an ASIP design flow by filling the missing gap
of instruction matching.

What is currently not yet solved in our system is the match-
ing of complex code segments that include not only data op-
erations but also control statements. This will be part of our
future work.

7 References
[1] Arctangent processor. ARC International. (http://www.arc.com).
[2] Asip-meister. (http://www.eda-meister.org/asip-meister/).
[3] Jazz dsp. Improv Systems Inc. (http://www.improvsys.com).
[4] Lexra processor. Lexra Inc. (http://www.lexra.com).
[5] Lisatek. CoWare Inc. (http://www.coware.com).
[6] Xtensa processor. Tensilica Inc. (http://www.tensilica.com).
[7] K. Atasu, L. Pozzi, and P. Lenne. Automatic application-specific instruction-set ex-

tensions under microarchitectural constraints. In DAC, 2003.
[8] N. Binh, M. Imai, and Y. Takeuchi. A performance maximization algorithm to de-

sign asips under the constraint of chip area including ram and rom size. In ASP-DAC,
1998.

[9] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, et al. Vis: a system for verifi-
cation and synthesis. In CAV, 1996.

[10] R. B. Bryant. Graph-based algorithms for boolean function maipulation. In IEEE
Transactions on Computers, August, 1986.

[11] S. Cheng, R. Brayton, G. York, et al. Compiling verilog into timed finite state ma-
chines. In Verilog HDL Conference, 1995.

[12] N. Cheung, J. Henkel, and S. Parameswaran. Rapid configuration & instruction se-
lection for an asip: A case study. In DATE, 2003.

[13] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of c and verilog pro-
grams using bounded model checking. In DAC, 2003.

[14] M. Corazao, M. Khalaf, et al. Instruction set mapping for performance optimization.
In ICCAD, 1993.

[15] R. Cytron, J. Ferrante, B. Rosen, et al. An efficient method of computing static
single assignment form. In TOPLAS, 1989.

[16] T. V. K. Gupta, P. Sharma, M. Balakrishnan, and S. Malik. Processor evaluation in
an embedded systems design environmen. In VLSI Design, 2000.

[17] M. K. Jain, L. Wehmeyer, S. Steinke, P. Marwedel, and M. Bal-akrishnan. Evaluat-
ing register file size in asip design. In CODES, 2001.

[18] K. Kang and K. Choe. On the automatic generation of instruction selector using
bottom-up tree pattern matching, 1995.

[19] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for eval-
uating and synthesizing multimedia and communica-tons systems. In International
Symposium on Microarchitecture, 1997.

[20] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for automatic instruction
set desifn of configurable asips. In ICCAD, 2002.

[21] C. Liem, T. May, and P. Paulin. Instruction-set matching and selection for dsp and
asip code generation. In EDAC, 94.

[22] J. C. Madre and J. P. Billion. Proving circuit correctness using formal comparison
between expected and extracted behaviour. In DAC, 1989.

[23] J. C. Madre, O. Coudert, and J. P. Billion. Automating the diagnosis and the rectifi-
cation of design errors with priam. In ICCAD, 1989.

[24] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (cvt) - automatic
verification of a compilation process. In Int. Journal of Software Tools for Technol-
ogy Transfer (STTT), 1998.

[25] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IC-
CAD, 1993.

[26] L. Semeria, A. Seqwright, et al. Rtl c-based methodology for designing and verify-
ing a multi-threaded processor. In DAC, 2002.

[27] J. Shu, T. Wilson, and D. Banerji. Instruction-set matching and ga-based selection
for embedded-processor code generation. In VLSI-Design, 1996.

[28] M. Stadler, T. Rower, H. Kaeslin, et al. Functional verification of intellectual prop-
erties (ip): a simulation-based solution for an application-specific instruction-set
processor. In ISSS, 1999.

[29] F. Sun, S. Ravi, A. Raghunathan, and N. Jha. Synthesis of custom processors based
on extensible platforms. In ICCAD, 2002.

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

