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Abstract

We show how to implement an arbitrary two-qubit uni-
tary operation using any of several quantum gate libraries
with small a priori upper bounds on gate counts. In anal-
ogy to library-less logic synthesis, we consider circuits and
gates in terms of the underlying model of quantum compu-
tation, and do not assume any particular technology. As
increasing the number of qubits can be prohibitively expen-
sive, we assume throughout that no extra qubits are avail-
able for temporary storage.

Using quantum circuit identities, we improve an earlier
lower bound of 17 elementary gates by Bullock and Markov
to 18, and their upper bound of 23 elementary gates to 18.
We also improve upon the generic circuit with six CNOT
gates by Zhang et al. (our circuit uses three), and that by
Vidal and Dawson with 11 basic gates (we use 10).

We study the performance of our synthesis procedures on
two-qubit operators that are useful in quantum algorithms
and communication protocols. With additional work, we
find small circuits and improve upon previously known cir-
cuits in some cases.

1 Introduction

In this work we deal with the processing of quantum in-
formation, that can be stored, e.g., in electron energy-levels,
nuclear spins, photon polarizations, or other quantum-
mechanical artifacts. Unlike most of the work on CMOS
and nano-technology, quantum information processing is
appealing not because of faster switching, lower power or
cheaper manufacturing, but rather because it offers gen-
uinely new opportunities at the logical level. Known appli-
cations can be broadly classified into computing and com-
munication. Quantum computers can, in principle, quickly
solve some computational problems considered hopeless
for classical (non-quantum) computers, such as number-
factoring [6]. Quantum communication promises to expose
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Gate libraries Lower and Upper Bounds
CNOT Overall CNOT Overall

{CNOT, Ry, Rz} 3 18 3 18
{CNOT, Ry, Rx} 3 18 3 18
{CNOT, Rx, Rz} 3 18 3 19
{CNOT, Rx, Ry, Rz} 3 18 3 18
Basic gates 3 9 3 10

Table 1. Constructive upper bounds on gate
counts for generic circuits using several gate
libraries. Each bound given for controlled-not
(CNOT) gates is compatible with the respec-
tive overall bound. These bounds are tighter
than those from [2, 8] in all relevant cases.
In particular, we never use input-independent
rotation gates. Bounds that may potentially
be tightened are shown in bold.

many eavesdropping attempts because quantum informa-
tion can only be read once and cannot be copied [6]. As in
the classical case, quantum communication involves some
computation or decoding.

Quantum computation can be modeled using quantum
Turing machines, quantum finite automata and quantum cir-
cuits. Circuits are much easier to analyze and, in fact, con-
stitute the dominant model in the field (see examples in Fig-
ure 1). All major quantum algorithms, including Shor’s for
number-factoring and Grover’s for search, are available in
this model [6]. Quantum circuits are useful in quantum
communication and cryptography — the fields where com-
mercialization of basic research has already started.1

As with conventional circuits, a quantum logic circuit
outlines how to implement a given computation in hard-
ware, and the type of hardware used may affect the choice
of gate library. This consideration motivates circuit synthe-
sis, i.e., finding circuits that implement given functionally-
specified computations. However, unlike conventional logic

1See company Web sites http://www.idquantique.com/ and
http://www.magiqtech.com/
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circuits, for which CMOS implementations dominate indus-
trial and academic agenda, quantum circuits have been im-
plemented in a variety of fundamentally different technolo-
gies. For example, in Nuclear Magnetic Resonance (NMR)
technologies, where number-factoring algorithms have been
demonstrated, quantum logic states are stored in nuclear
spins. In optical technologies, used for quantum commu-
nication and cryptography, quantum bits are encoded as po-
larizations of photons. Solid-state silicon-based quantum
technologies and electrons floating on liquid helium encode
quantum bits in electron spins. Trapped ions encode qubits
in orbital states of electrons. Other successful research uses
quantized currents in semi-conductors.

To be consistent with quantum mechanics [6] quantum
gates and circuits must be reversible. This means hav-
ing the same number of inputs and outputs, and also be-
ing able to reconstruct input values from output values. In
1980, Toffoli initiated the study of reversible circuits that
use purely classical gates and operate on purely classical
0-1 states. His work was motivated by low-power con-
siderations, following Bennett’s 1973 proof that informa-
tion loss implies energy loss. Work on synthesis of re-
versible circuits appeared at DAC and ICCAD in 2002 and
2003, and work on test generation at VTS 2003. How-
ever, “classical” reversible circuits discussed above that
consist of gates NOT, CNOT, TOFFOLI and their imme-
diate generalizations do not possess any more computa-
tional power than AND-OR-NOT circuits. A quantum al-
gorithm that outperforms best known classical algorithms
for the same task (e.g., Shor’s poly-time number-factoring
algorithm) cannot be implemented using only classical re-
versible gates. On the other hand, common gate libraries of
quantum circuits contain some gates with classical behav-
ior, such as the CNOT gate, and useful quantum circuits may
contain large “classical” reversible sub-circuits that can be
optimized without any knowledge of quantum mechanics.
Thus, while the study of classical reversible circuits may be
useful, one also has to study purely quantum gates [2].

The main difference between a purely quantum gate and
a classical reversible gate is the ability to produce a “su-
perposition” state such as (|0〉+ |1〉)/

√
2 out of a classical

(“basis”) input state such as |0〉. In this example, we are
dealing with one quantum bit, and the ability to store and
transmit a linear combination of zero and one is a quantum
property unavailable in textbook CMOS circuits. Moreover,
while recent work in the VLSI community on smaller tran-
sistors is beginning to use quantum effects for faster switch-
ing, no quantum wires are available to transmit quantum
states from a device to a device. Recent implementations of
quantum circuits by experimental physicists and chemists
imply several independent solutions to this problem. In-
deed, photons are convenient mobile carriers of quantum
information, and when stationary particles are used, quan-

tum gates are “brought to qubits” with tuned RF pulses.

Our work follows up on recently proposed synthesis al-
gorithms for generic quantum circuits [2] and applies to a
variety of implementation technologies. To discuss those
algorithms we recall that quantum bits are complex-valued
vectors. According to quantum mechanics, quantum com-
putations and quantum gates that operate on those bits are
represented by linear operators. They can be captured by
matrices. For example, a one-qubit gate operates on a com-
plex two-dimensional vector space with basis vectors |0〉
and |1〉, making it a 2×2 matrix.

Unlike classical logic gates that operate on bit-strings,
quantum logic gates operate on complex vectors that are
complex linear combinations (superpositions) of bit-strings.
The dimension of the respective linear space is the num-
ber of different bit-strings. As in classical circuit diagrams,
quantum circuits diagrams (see Figure 1) represent every
bit by a wire. However, one speaks of qubits instead of
bits in order to emphasize the availability of superpositions.
A two-qubit computation is thus represented by a matrix
acting on four-dimensional vectors. According to quantum
mechanics, all quantum computations (including gates and
circuits) act as unitary operators: in particular all matrices
are square and have inverses. This implies that any quantum
gate and any quantum circuit have as many input qubits as
output qubits. Furthermore, due to the no-cloning theorem
[6], non-trivial fan-outs are not allowed in quantum circuits.
Consequently, all vertical cuts that do not cross any gates
cross the same number of wires.

We demand that quantum measurements [6] only be ap-
plied after the quantum circuit under consideration, which
is typical. We make use of the fact that measurements are
unaffected by global phase, that is, by multiplication by a
scalar. That said, the reader can largely ignore measure-
ments from now on and focus on combinational circuits.

In our quantum circuit diagrams the more significant
qubits correspond to higher lines. Gates are applied left to
right and are chosen from the gate library below, known to
be universal [1]. The term “rotation” here refers to “Bloch
sphere rotations” from quantum mechanics.

• The x-axis rotation: Rx(θ) =

(

cosθ/2 isinθ/2
isinθ/2 cosθ/2

)

• The y-axis rotation Ry(θ) =

(

cosθ/2 sinθ/2
−sinθ/2 cosθ/2

)

• The z-axis rotation Rz(α) =

(

e−iα/2 0
0 eiα/2

)

• The CNOT gate Ci
j, flips the i-th bit if the j-th is 1.
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(Here, i 6= j.) For example, on two qubits,

C2
1 =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






C1

2 =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







In some technologies, an arbitrary one-qubit operator
may be just as easy to implement as the specific ones
shown above. Therefore, we will also consider the basic-
gate library, which consists of arbitrary one-qubit opera-
tors and the CNOT. It is easy to change from one library
to the other: using Euler angles to describe rotations in

� 3 gives a decomposition of an arbitrary one-qubit gate U
into eiΦRz(θ)Ry(φ)Rz(ψ) [1, Lemma 4.1]. For example, the
Hadamard gate H can be expressed as

H =
1√
2

(

1 1
1 −1

)

=
i√
2

(

1 −1
1 1

)(

−i 0
0 i

)

or, in symbols, H = eiπ/2Rz(0)Ry(π/2)Rz(π). Our work
proposes analogous minimal decompositions for arbitrary
two-qubit operators.

In general, given the matrices of individual gates, the ma-
trix of the circuit is computed bottom-up using the follow-
ing linear algebra operations. First, when two gates (A and
B) with equal numbers of input/output wires are composed
sequentially (A on the left and B on the right), their matri-
ces are multiplied (BA). Second, when two gates (no con-
straints here) act on on disjoint inputs, i.e., are composed in
parallel, the respective composite gate is represented by the
tensor (Kronecker) product of two matrices. In particular, if
we wish to augment the gate A by a wire whose value does
not change, the resulting matrix can be A⊗ I or I⊗A, where
I is the 2×2 identity matrix.

Note that two gates composed in parallel can be instead
“moved apart”, augmented with unchanged wires, and then
viewed as composed sequentially. This is captured by the
equation A⊗B = (A⊗ I)(I ⊗B) with identity matrices of
appropriate dimensions. Augmenting with identity allows
one to capture sequential composition of gates with differ-
ent numbers of inputs, and mixed sequential-parallel com-
position when only some of the wires are read by both gates.
A simple way to simulate a quantum computation on an in-
put vector is to compute matrix-vector products.

Recent empirical work on quantum communication,
cryptography and computation [6] resulted in a number
of experimental systems that can implement two-qubit cir-
cuits [4]. Thus, decomposing arbitrary two-qubit operators
into fewer gates from a universal library may simplify such
physical implementations. Two-qubit synthesis is also in-
teresting because it can be used in the context of peephole
optimization to simplify larger circuits. Additionally, quan-
tum communication protocols usually transmit one qubit

at a time, and encoding/decoding circuits typically require
only two or three qubits.

While the universality of various gate libraries has been
established in the past [3, 1], the minimization of gate
counts has only been studied recently. To this end, Zhang
et al. [8] propose a generic quantum circuit with six CNOT
gates that can implement an arbitrary two-qubit operator.
Bullock and Markov [2] show that two CNOT gates are
required and four suffice in similar circumstances. When
counting one-parameter rotations and CNOT gates they
show a lower bound of 17 and a constructive upper bound of
23. More recently, Vidal and Dawson [7] proved that three
CNOT gates are necessary and sufficient, and proposed an-
other generic quantum circuit. Our work improves or broad-
ens each of the above results, as summarized in Table 1.
When applying our results to specific useful computations,
we discovered that a decomposition that is inferior in the
worst-case sense sometimes produces smaller circuits.

The remainder of the paper is structured as follows. Sec-
tion 2 provides background on quantum circuits. Construc-
tive upper bounds are proven in Section 3, and lower bounds
outlined in Section 4. Our algorithms for synthesis of quan-
tum circuits are applied to useful operators in Section 5, and
Section 6 summarizes our results. Many proofs are omitted,
but can be found in our pre-print at the Los Alamos site
http://xxx.lanl.gov/abs/quant-ph/0308033

2 Preliminaries

The Bloch sphere isomorphism [6] identifies a unit vec-
tor~n = (nx,ny,nz) with N = nxσx +nyσy +nzσz, where

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

are the Pauli matrices. Under this identification, rotation
by the angle θ around the vector ~n is given by the special
unitary operator Rn(θ) = e−iNθ/2. It is from this identifica-
tion that the decomposition of an arbitrary one-qubit gate
U = eiΦRz(θ)Ry(φ)Rz(ψ) arises. In fact, one may take any
pair of orthogonal vectors in place of~y,~z.

Lemma 2.1 Let~n,~m ∈ � 3 ,~n•~m = 0, and U ∈ SU(2). Then
there exist θ,φ, and ψ such that U = Rn(θ)Rm(φ)Rn(ψ).

Moreover, the product Rn(θ)Rm(φ)Rn(−θ) is again a ro-
tation through the angle φ around the axis ~p, where ~p is the
image of ~m under the rotation Rn(−θ). In the special case
of~n⊥ ~m and θ = π/2, we have ~p =~n×~m. For convenience,
we define Sm = Rm(π/2), and note that S∗

m = S−m. The Sz

gate is the same (up to phase) as the usual S gate.
Given a one-qubit gate, e.g., Rx, a superscript defines the

wire on which it is applied, e.g., R j
x. As for two-qubit gates,

Ca
b denotes the controlled-not (CNOT) gate that inverts wire
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Circuit identities Descriptions

Ck
jC

k
j = 1 CNOT-gate cancellation

χ j,kχ j,k = 1 SWAP-gate cancellation
Ck

jC
j
k = χ j,kCk

j CNOT-pair elimination

C j
k R j

x(θ) = R j
x(θ)C j

k , C j
kS j

x = S j
xC j

k move Rx, Sx via CNOT ⊕
C j

k Rk
z(θ) = Rk

z(θ)C j
k , C j

k Sk
z = Sk

zC j
k move Rz, Sz via CNOT •

Ck
j χ

j,k = χ j,kC j
k move CNOT via SWAP

V jχ j,k = χ j,kV k move 1-bit gate via SWAP
Rn(θ)Rn(φ) = Rn(θ+φ) merging Rn gates
~n ⊥ ~m =⇒ SnRm(θ) = Rn×m(θ)Sn changing axis of rotation

Table 2. Circuit identities used in our work.

a (target) when wire b 6= a (control) carries |1〉. χ j,k repre-
sents the two-qubit SWAP gate that interchanges wires j and
k. It satisfies C j

kCk
jC

j
k = χ j,k = Ck

jC
j
kCk

j . Table 2 summarizes
circuit identities used in our work.

The canonical decomposition of SU(4) [5] states that for
any U ∈ SU(4) there exist a,b,c,d ∈ SU(2) and δ diagonal
in the magic basis such that U = (a⊗ b)δ(c⊗ d). We im-
plement δ in two steps. First, the following implementation
is known for a generic diagonal matrix in SU(2) [2].







eiθ 0 0 0
0 eiφ 0 0
0 0 eiψ 0
0 0 0 e−i(θ+φ+ψ)






=

a

b

s

h c

s

h
(1)

where a = R∗
z (θ + φ), b = R∗

z (θ + ψ), and c = Rz(φ + ψ).
Second, we implement the change-of-basis matrix.

E =

√
2

2







1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0






=

Sz

S∗x

h

s S∗z
(2)

This circuit is much smaller than the 7-gate circuit given for
E in [2], that includes three CNOT gates.

3 Minimal two-qubit circuits
This section details the results summarized in Table 1.

Theorem 3.1 Any two-qubit operator can be simulated by
eighteen gates in the {Ry, Rz, CNOT} gate library.

Proof: Let U ′ = eiπ/4χ1,2U , so that det U ′ = 1. Label the
canonical decomposition U ′ = (a⊗ b)E∆E∗(c⊗ d), where
∆ is diagonal in the computational basis. Using the ex-
pression for a diagonal two-qubit operator from Equation
1 yields the following circuit for U ′:

d

c

Sz

h

s Sx

S∗z

R∗
z

R∗
z

s

h Rz

s

h S∗x

Sz h

s S∗z b

a

d’

c h

s R∗
y

R∗
z

s

h Ry

h

s a

b’

Figure 1. Our generic circuit with three CNOT
gates can implement an arbitrary two-qubit
operator. It requires ten basic gates [1] or
eighteen gates from the library {CNOT, Ry, Rz}.

We set bS∗z = b′ and Szd = d′ to absorb the outermost S
gates. Remaining S gates get absorbed by moving Sx and Sz

through CNOT gates, by merging Sz and Rz gates, and by the
“changing axis of rotation” identity from Table 2.

d’

c h

s R∗
y

R∗
z

s

h Ry

s

h

h

s b’

a

Furthermore, we replace the pair of adjacent CNOT gates
with a CNOT and a SWAP (the CNOT elimination rule), and
push the SWAP to the end of the circuit. As we started by
computing U ′ = eiπ/4χ1,2U , the two SWAP gates cancel out.
Thus the circuit in Fig. 1 computes U up to the global phase
constant eiπ/4. Finally, the gates a,b′,c, and d′ may each be
decomposed into three one-qubit rotations, so this circuit
requires eighteen gates. 2

We now extrapolate Theorem 3.1 to other gate libraries.
Conjugation by the Hadamard gate interchanges the {Ry,
Rz, CNOT } and the {Ry, Rx, CNOT} gate libraries. Thus,

Proposition 3.2 Any two-qubit operator can be simulated
by eighteen gates in the {Ry, Rx, CNOT} gate library.

We do not have a sharp result for the{Rx, Rz, CNOT}
library, but fall short by one gate.

Proposition 3.3 Any two-qubit operator can be simulated
by nineteen gates in the {Rz, Rx, CNOT} gate library.

Proof: Use the decomposition of Theorem 3.1, and expand
the a,b′,c,d′ gates using the RzRxRz decomposition. Move
the bottom-line Rz gates inward, and combine them with the
Ry gates. Next, re-expand the conglomerated Ry,Rz gates
using the RxRzRx decomposition, and combine neighboring
Rx gates to obtain

Rz Rx

c h

s Rx Rz Rx

Rz s

h Rz Rx

h

s Rx Rz

b′

This circuit has nineteen Rx, Rz, and CNOT gates. 2

Finally, it may be that in a given quantum technology,
it is just as easy to implement any one-qubit operator as to
implement the Rz and Ry gates. We count gates in Fig. 1.

Proposition 3.4 Using the gate library consisting of arbi-
trary one-qubit rotations and the CNOT gate, an arbitrary
two-qubit operator can be decomposed into ten gates.
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4 Lower bounds

In this work we distinguish two types of gate libraries
for quantum operator. that are universal in the exact sense
(cf. the Solovay-Kitaev theorem). The basic-gate library
[1] contains the CNOT, and all one-qubit gates. Libraries of
the second type also contain the CNOT gate and one-qubit
gates, but we additionally require that such libraries contain
only finitely many one-parameter subgroups of SU(2). We
call these elementary-gate libraries, and Lemma 2.1 indi-
cates that if such a library includes two one-parameter sub-
groups of SU(2), corresponding to rotations Rn(t) around
orthogonal axes, then the library is universal. Below, we
derive gate-count lower bounds for both library types.

A circuit topology is a circuit diagram (a graph) with
CNOT gates and placeholders for one-qubit gates. As in Fig.
1, the placeholders are labelled so as to specify a subset of
one-qubit operators; in this work, the only such subsets are
one-parameter subgroups of SU(2) and all of SU(2). We
say a circuit topology (of n wires) is universal if it can com-
pute any operator in U(2n), up to a global phase. We have
dim[U(2n)] = 22n, which for two qubits yields 16. Ignoring
phase decreases dimension by one, hence T needs at least
15 one-parameter placeholders or at least 5 arbitrary-one-
qubit placeholders.2

To produce a sharper lower bound on the total number
of gates required, we use identities from Table 2 to prove
that three CNOT gates are additionally required to prevent
cancellation and absorption of one-parameter placeholders.
Indeed, it is clear that a circuit with n wires and k CNOT
gates needs no more than n + 2k one-qubit gates. One can
further eliminate redundant parameters by observing that an
Rz gate can pass through the control of a CNOT, and an Rx

may pass through the target.

Proposition 4.1 Take either the basic-gate library or an
elementary-gate library. A circuit topology T in this library
that implements all n-qubit operators up to phase must con-
tain at least d 1

4 (4n −3n−1)e CNOT gates.

Corollary 4.2 For an elementary-gate library, an arbitrary
two-qubit operator requires at least three CNOT gates and
fifteen one-qubit gates.

For the {CNOT, Ry, Rz} and {CNOT, Ry, Rx} gate li-
braries, this matches the upper bound given by the construc-
tive procedure of Section 3. For the {CNOT, Rx, Rz} gate
library, there is still a one-gate gap.

Proposition 4.3 Using the basic-gate library, an arbitrary
two-qubit operator requires at least three CNOT gates, and
at least nine gates total.

2A rigorous argument uses Sard’s lemma from differential topology.

Proof: Proposition 4.1 implies that at least three CNOT
gates are necessary in general; at least five one-qubit place-
holders are required for dimension reasons. The result-
ing overall lower bound of eight basic gates can be im-
proved further by observing that given any placement of
five one-qubit gates around three CNOTs, one can find two
one-qubit gates on the same wire, separated only by a
CNOT. Using the RzRxRz or RxRzRx decomposition as nec-
essary, the 5 one-qubit gates can be replaced by fifteen one-
parameter gates in such a way that the closest parameter-
ized gates arising from the adjacent one-qubit gates can be
combined. Thus, if five one-qubit placeholders and three
CNOTs suffice, then so do fourteen one-parameter place-
holders and three CNOTs, which contradicts dimension-
based lower bounds. 2

5 Synthesis of useful operators
In the generic case, our constructions are optimal or near-

optimal. However, practical circuits need not expose worst
cases, and our synthesis techniques can benefit from addi-
tional optimization. In this section, we examine how our
synthesis procedure can be modified to better handle useful
circuits from the literature.

Example 5.1 Consider the operator H ⊗H obtained by
applying the Hadamard gate to both lines of a two-qubit
circuit. This operator is used to create superpositions, and
appears in Grover’s quantum search and Shor’s number-
factoring algorithms [6]. While it is clear that H⊗H can be
implemented using only two basic gates and no CNOTs, the
decomposition process of Theorem 3.1 yields the following
highly suboptimal circuit.

H

H

Sz

h

s S∗y

S∗z s

h Sy

h

s

S∗z

The excess gates occur because the decomposition process
of Theorem 3.1 begins by replacing U with U ′ = eiπ/4χ1,2U ,
thus obscuring the tensor-product structure. On the other
hand, the original operator H ⊗H appears prominently at
the beginning of the circuit. It can be shown that this hap-
pens in general; that is, that if U = X ⊗Y , then the matri-
ces c,d of the proof of Theorem 3.1 satisfy c⊗d = X ⊗Y ,
and the remainder of the circuit computes the identity. This
suggests a general optimization to find such contiguous sub-
circuits and remove them. In our case, it would ensure the
automatic discovery of small circuits. 3

Another way to recognize tensor products is to decom-
pose U directly instead of replacing U with eiπ/4χ1,2U . In
general, this yields one additional CNOT as the CNOT-pair
elimination rule from Table 2 no longer applies. Yet, some-
times this alternative decomposition yields smaller circuits.

Example 5.2 Let U = C1
2(I ⊗σx) be the matrix that inter-

changes |00〉↔ |01〉 while fixing |10〉 and |11〉. This opera-
tor occurs in the Deutsch-Josza algorithm – one of the orig-
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inal proving grounds for the power of quantum computers
[6, 4]. U requires only two basic gates including one CNOT.
Unfortunately, applying the decomposition of Theorem 3.1
to U results in the following highly suboptimal circuit:

S∗z Sy

h

s S∗y

s

h Sy

h

s Sy

σz

S∗z

However, using the alternative decomposition of Example
5.1, we have ∆ = S∗

z ⊗ I, hence the CNOT gates arising from
the decomposition of an arbitrary 2-qubit diagonal operator
do not appear. We obtain the following circuit.

S∗y Sz

h

s

S∗z h

s S∗y

S∗z

This saves one CNOT gate and several one-qubit gates. 3

Another avenue for optimization in these decomposi-
tions is that the canonical decomposition is not unique.
To compute the canonical decomposition of an operator
U , it is necessary to pick a basis of eigenvectors for P =
(E∗UE)(E∗UE)t . Thus, for almost all operators – those
for which P has distinct eigenvalues – the non-uniqueness
amounts to a finite number of cases. In these cases, it suf-
fices to try all orderings of the distinct eigenvalues during
the algorithm, and take the best resulting circuit. The case
of non-distinct eigenvalues is trickier; one must find an op-
timal basis of eigenvectors. This optimization could con-
ceivably be automated by a numerical procedure; however,
we have yet to find one.

Example 5.3 Let F be the two-qubit Quantum Fourier
Transform (QFT) [6]. It is given by the matrix

F =
1
2







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







This operator is at the heart of Shor’s factoring algorithm,
and is one of the few operators whose implementation on a
quantum computer is exponentially faster than any known
classical counterpart [6]. Choosing the canonical decompo-
sition appropriately and applying Theorem 3.1, one obtains
the following circuit, in which Tz = Rz(π/4).

Sy T 5
z

h

s

T ∗
z

s

h

h

s

T 4
z S∗y

This circuit is smaller than that synthesized by the methods
of [2] by six elementary gates, and is no worse than the best
known circuits for F [6]. 3

Our proposed techniques outperform those from [2]
on all examples in this section previously considered in
http://xxx.lanl.gov/abs/quant-ph/0211002

6 Conclusions
Our work advances the basic theory of quantum circuits.

We show how to synthesize small circuits for arbitrary
two-qubit operators with respect to several gate libraries.
We also contribute a number of lower and upper bounds
on worst-case gate counts, many of which are tight.
Two-qubit synthesis primitives can be used in peephole
optimization of larger circuits and directly apply to many
on-going physics experiments. Another application domain
is in quantum communication, where protocols typically
transmit one qubit at a time and use encoding/decoding
circuits on two or three qubits. We apply our tech-
niques to several important two-qubit operators and, with
additional work, find smaller circuits than those produced in
http://xxx.lanl.gov/abs/quant-ph/0211002
using techniques from [2].

Our techniques are based on circuit identities and are ap-
plicable far beyond the realm of two-qubit circuits. In par-
ticular, we point out that n-qubit circuits using CNOT and
one-qubit gates require at least d 1

4(4n−3n−1)eCNOT gates
in the worst case. This general result contains an earlier re-
ported lower bound of three CNOT gates for the basic-gate
library [7] and also a similar result for one-parameter rota-
tions. We show that three CNOTs are always sufficient.
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