
An Algorithm for Nano-pipelining of Circuits and
Architectures for a Nanotechnology

Pallav Gupta and Niraj K. Jha
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

{pgupta, jha}@ee.princeton.edu

Abstract— In this paper, we describe an algorithm to post-process a
register-transfer level (RTL) architecture to enable gate-level pipelining
or nano-pipelining for the nanotechnology based on resonant tunneling
diodes (RTDs). Nano-pipelining offers the opportunity to obtain massive
throughput and, therefore, has applications in data-intensive algorithms
such as digital signal processing (DSP). Since RTDs are a self-latching
nanotechnology, nano-pipelining is an implicit property that should be
exploited for this technology. The novelty of this work lies in exploring
and demonstrating the benefits of nano-pipelining and presenting an
algorithm for architectural nano-pipelining.

I. I NTRODUCTION

In accordance with Moore’s Law, complementary metal-oxide
semiconductor (CMOS) chips have continued to provide the high
degree of integration required to sustain the ever-increasing high-
performance computing needs of end users. As predicted by the
Semiconductor Industries Association (SIA) roadmap, this trend
is likely to continue for another 10-15 years [1]. However, de-
velopments in the material science and device community have
enabled the creation of nanoscale devices that offer the possibility
of improving digital systems further in terms of area and speed.
Consequently, research is being done to understand the properties
of these devices to see how they can be used in novel circuits and
architectures [2]–[5].

There are three main reasons why RTDs are currently the most
promising nanotechnology to make their way into mainstream
electronics. First, RTDs can be grown with great precision and
uniformity using molecular-beam epitaxy [2]. Second, logic circuits
containing RTDs and heterostructure field-effect transistors (HFETs)
have been demonstrated to work at high clock frequencies [3],
[6], [7]. Finally, RTDs implement threshold logic which provides
improved computational functionality through smaller circuit logic
depth, fewer devices, and shorter wiring [8].

While progress in the material and physical understanding of
RTDs continues to be made, there is a need for work at the logic
and architectural levels to fully harness the potential of RTDs. The
authors in [2] describe an RTD-FET logic family that is expected
to operate five times faster than circuits utilizing III-V FETs alone.
In [3], the monostable-bistable transition logic element (MOBILE)
is introduced which is a self-latching RTD-HFET threshold gate.
Because of the MOBILE’s self-latching capability, computation can
be nano-pipelined. The authors in [7]–[9] take advantage of this fact
to present nano-pipelined designs of a digital correlator and various
adder circuits. However, there is no work to date on exploiting this
level of computation granularity at the architecture level.

The goal of this work is to present an algorithm for nano-
pipelining of an architecture. The novel contributions of this work
are as follows:

• This is the first algorithm for architectural nano-pipelining.

Acknowledgments: This work was supported in part by NSF under grant
No. CCR-0303789.

• We present a case for further research in nano-pipelined
architectures by demonstrating its benefits.

• We present nano-pipelined designs of a few arithmetic circuits
and perform a theoretical analysis of their gate count and
latency characteristics.

The remainder of this paper is organized as follows. We discuss
some preliminaries in Section II. In Section III, we present a
motivational example to demonstrate the benefits of architectural
nano-pipelining. We describe our nano-pipelining algorithm in Sec-
tion IV and discuss nano-pipelined designs of some arithmetic
circuits in Section V. Section VI provides some insights into open
research areas in nano-pipelining. Our conclusions are presented in
Section VII.

II. PRELIMINARIES

In this section, we present some background material which will
be helpful in understanding the ideas presented in the remainder of
this paper.

A. Threshold Logic

A linear threshold function is a multi-input function in which
each input,xi ∈ {0, 1}, i ∈ {1, 2, . . . , n}, is assigned a weight,
wi, such that the function assumes a value of1, if and only if the
weighted sum of the inputs is greater than or equal to the function’s
threshold,T . That is,

f =

{
1 if X ≥ T
0 if X < T

(1)

X =

n∑
x=1

wixi. (2)

In theory, the only restriction on the weights and threshold is that
they must be real-valued. In practice, however, they are integer-
valued and constrained within a finite range due to technolog-
ical considerations. Therefore,wi ∈ {0,±1, . . . ,±wmax} and
T ∈ {0,±1, . . . ,±Tmax}. We will use the weight-threshold vector
〈w1, w2, . . . , wn; T 〉 to denote the weights and threshold of the
threshold function.

B. Monostable-Bistable Transition Logic Element (MOBILE)

The authors in [3] have demonstrated that a MOBILE can operate
at frequencies of several GHz. Shown in Fig. 1, a MOBILE is
a rising edge-triggered, current-controlled gate that implements a
threshold function. It consists of a serially connected load and driver
RTD. The RTD-HFETs connected in parallel to the load and driver
RTDs perform a positive and negative weighting of the inputs,
respectively.

1530-1591/04 $20.00 (c) 2004 IEEE

CLK

Τ

wa wb

-wc

a b

c

f∆I

Driver

Load
Positive-weight

inputs

Negative-weight
inputs

Fig. 1. A monostable-bistable transition logic element (MOBILE).

I

IV

III

II

Time

CLK 1

CLK 4

CLK 3

CLK 2

P 2PP
2

3P
2

Evaluate

Hold

Reset

Wait

Fig. 2. Four-phase overlapping clocking scheme for MOBILE circuits.

1) Device characteristics:A MOBILE switches to the monos-
table or bistable mode of operation depending upon its bias voltage,
VCLK , which oscillates between0V and VDD [9]. That is,

VOUT =

{
monostable if VCLK < 2VP

metastable if VCLK ≈ 2VP

bistable if VCLK > 2VP ,
(3)

whereVOUT andVP are the MOBILE output voltage and the RTD
peak voltage, respectively. A typical value forVP is 0.3V [7]. The
metastable state is achieved whenVCLK > 0.55V [9] and the digital
states are achieved when a MOBILE is in the bistable mode of
operation.

When the device is in the metastable region, the modulation
current,∆I, at the output node determines what digital state the
device transitions to as it enters the bistable region. The modulation
current is obtained from Kirchoff’s Current Law and is given as,

∆I =

Np∑
i=1

wiI(Vgs)−
Nn∑
i=1

wiI(Vgs), (4)

whereNp andNn are the number of positive and negative weighted
inputs, respectively, andI(Vgs) is the peak current of a minimum-
size RTD [9]. If the gate-to-source voltage of an input,xi, exceeds
the threshold voltage of the HFET, the currentwiI(Vgs) is supplied
either to the load or driver RTD current. The net RTD current for
the load and driver isIT = TI(Vgs), respectively. Consequently,
VOUT is logic high if ∆I − IT is positive and logic low otherwise.

2) Four-phase clocking scheme:A MOBILE is self-latching
because its output is valid only when the clock is high. This property
can be exploited to achieve a nano-pipeline by constructing a
cascaded network of MOBILEs. However, a four-phase overlapping
clocking scheme, shown in Fig. 2, is required to ensure correct
operation [9]. In this scheme, each stage of the clock has an equal
period of P

4
and a90◦ phase delay. During theevaluationphase, the

output of a gate is computed. In thehold (i.e., self-latching) phase,
the result is valid while the subsequent pipeline stage begins its
computation. In theresetphase, the load capacitance is discharged

MM M M MM M M

CLK 1 CLK 2 CLK 3 CLK 4 CLK 1 CLK 2 CLK 3 CLK 4

STAGE 1 STAGE 2

LA
TC

H

LA
TC

H

STAGE 2STAGE 1 STAGE 3

(a)

(b)

Fig. 3. (a) Conventional pipeline, and (b) nano-pipeline.

ai bi ci-1

CLK 1

Τ = 1

ai bi ci-1

CLK 1

Τ = 3

ai bi ci-1

CLK 1

Τ = 2
ci

xi

yi

CLK 2

Τ = 1

si

Fig. 4. A nano-pipelined full-adder using MOBILEs.

and the gate returns to the monostable mode of operation. Finally,
in the wait phase, the inputs of the gate are loaded with the results
obtained from the previous pipeline stage.

Fig. 3 shows the main difference between a conventional CMOS
pipeline and an RTD-HFET nano-pipeline. In Fig. 3, M stands
for a MOBILE gate. Note that in the latter, latches1 are not
needed between pipeline stages because MOBILEs are self-latching.
However, latches may be needed in other parts of a circuit for
synchronization. Furthermore, the depth of a nano-pipeline stage
is four MOBILEs due to the overlapping clocking scheme.

C. A Nano-pipelined Full-Adder

A full-adder can be implemented with two threshold gates. Ifai,
bi, ci−1 andci, si are the inputs and outputs, respectively, then the
weight-threshold vectors of the full-adder are as follows:

ci(ai, bi, ci−1) : 〈1, 1, 1; 2〉 (5)

si(ai, bi, ci−1, ci) : 〈1, 1, 1,−2; 1〉. (6)

Because MOBILE circuits use an overlapping clocking scheme,
the input operands must be latched in order to computesi in the
second stage. This causes circuit overhead and does not allow for
an efficient nano-pipelined operation.

To remove the above inefficiency, it is necessary to remove the
dependency ofsi on ai, bi, and ci−1 [9]. This can be achieved
by dividing the full-adder into two stages. The first stage computes

1An RTD-HFET latch is simply a buffer, i.e., with weight-threshold vector
〈1; 1〉.

(a)

(b)

(c)

xx

+ +

x
h[0]h[1]h[2]

y

z

1 11

11 1111

16

21

1111

16 16

x x x

+

+

h[0]h[1]h[2]

y

z

x xx

+ +

Fig. 5. A four-bit FIR filter to demonstrate nano-pipelining. The circles
represent functional units.

ai + bi + ci−1 (arithmetic sum) as follows:

xi(ai, bi, ci) : 〈1, 1, 1; 1〉 (7)

ci(ai, bi, ci) : 〈1, 1, 1; 2〉 (8)

yi(ai, bi, ci) : 〈1, 1, 1; 3〉. (9)

The second stage detects ifai + bi + ci−1 ∈ {1, 3}. Thus,

si(xi, ci, yi) : 〈1,−1, 1; 1〉. (10)

Now si is dependent on the intermediate variables,xi, yi, and ci

which are computed in the previous stage. Therefore, there is no
need to latch the inputs. Fig. 4 shows a nano-pipelined full-adder
that uses MOBILEs.

III. M OTIVATIONAL EXAMPLE

In this section, we present a nano-pipelined finite impulse re-
sponse (FIR) filter as an example to motivate the need for our nano-
pipelining algorithm. We also demonstrate the massive throughput
that can be obtained with nano-pipelining.

A. Demonstration of Nano-pipelining

The initial RTL architecture of a four-bit FIR filter is shown
in Fig. 5(a). The first step in nano-pipelining is to replace each
functional unit in the architecture with its nano-pipelined equivalent.
During this mapping phase, it is clear that a library of nano-pipelined
modules, similar to a CMOS RTL module library, must exist. The
components in this library will have their associated area, latency,
power, etc., characteristics.

After the mapping phase, the next step is to determine when
the inputs and outputs of each of the modules become available.
Assuming a four-bit nano-pipelined ripple carry adder (RCA) and
array multiplier have latencies of5 and10 clock phases (as shown

later), respectively, the arrival times (in clock phases) for the signals
are annotated next to the modules in Fig. 5(b). Since the inputs to
the multipliers come from latches, they are available at clock phase
1. The constants,h[i], are always available and the output,z, is
available after21 clock phases.

The final step in architectural nano-pipelining is to synchronize
all paths from the inputs to the outputs so that a traversal along
any path will always lead to the same latency. This is achieved by
inserting latches on the required paths. For example, the inputs to
the last RCA in Fig. 5(b) arrive at the11th and16th clock phases,
respectively. As shown in Fig 5(b), five latches need to be inserted
to synchronize the arrival of the inputs. The nano-pipelined FIR
filter is shown in Fig. 5(c).

B. Throughput Analysis

In this subsection, we wish to demonstrate the primary advantage
of nano-pipelining — the massive throughput that can be achieved.
To do so, we again consider the FIR filter of Fig. 5(a). For a CMOS
implementation, we assume that the multiplier has two pipeline
stages while the adder is non-pipelined and carry-lookahead (CLA).
The critical path of the filter is a single stage of the multiplier and
two CLAs. The pipeline stage of the multiplier contains an RCA
consisting of three full-adders (in our case, a full-adder consists of
two cascaded XOR gates). Assuming that the full-adders are realized
using the four-NAND implementation, the critical path of the RCA
has12 gates (six gates for the first full-adder and three gates each for
the second and third full-adders). A CLA has six gates in its critical
path (one gate to compute the generate/propagate signal, two gates
to compute the carry lookahead, and three gates for the second-level
XOR gate to compute the sum). Therefore, the critical path of the
filter is 24 gates and the total delay is24Dcmos whereDcmos is
the typical delay of a CMOS gate. In the nano-pipelined filter, the
critical path has four MOBILEs and the delay is4Dmobile where
Dmobile is the delay of a MOBILE.

The increase in throughput in the nano-pipelined implementation
is 6 Dcmos

Dmobile
. AssumingDcmos and Dmobile are comparable, the

nano-pipelined filter offers6X higher throughput than its CMOS
counterpart. The overall conclusion is that nano-pipelining can
drastically increase throughput and data-intensive applications stand
to gain the maximum benefits.

IV. NANO-PIPELINING ALGORITHM

We present our algorithm for nano-pipelining of a pipelineable
RTL architecture in this section. We model the RTL architecture as
a directed acyclic graph (DAG),G(V, E), whereV andE represent
the modules and their interconnections in the architecture, respec-
tively. Fin(v) andFout(v) denote the set of inputs and outputs of
nodev, respectively. It is assumed that there exists a library which
contains nano-pipelined versions of every module present in the
architecture that is to be nano-pipelined. Furthermore, we assume
that the modules are implemented with MOBILEs, although nano-
pipelining, in general, is applicable to any nanotechnology that is
self-latching. Fig. 6 outlines our nano-pipelining algorithm.

In lines 1-3 of the algorithm, we replace each node (module)
in the network with its nano-pipelined equivalent from the module
library. The complexity of this step isO(|V |). In line 4, topological
sorting of the network is performed so that we can compute the
arrival times of each input and output signal of a node in lines
5-6. It is assumed that the input arrival times to the network are
known. The output time is simply the sum of the maximum of the
input arrival times and the node delay. The complexity of sorting and
computing the arrival times isO(|V +E|) andO(|E|), respectively.

Once the arrival times have been computed, it is necessary to
insert latches to synchronize all the paths from the inputs to outputs.

Require: G(V, E)
// replace each module with nano-pipelined version from library

1: for all v ∈ G(V) do
2: vp ← modulelibrary(v)
3: replacev with vp in G
4: G′ ← topological sort ofG

// compute arrival time, AT, of each signal
5: for all e = (u, v) ∈ G′(E) do
6: AT(e) ← max{AT(k), k ∈ Fin(u)} + delay(u)

// insert latches to synchronize all paths from inputs to outputs
7: for all v ∈ G′(V) do
8: max AT ← max{AT(k), k ∈ Fin(v)}
9: k′ ← edge that has maxAT

10: for all k ∈ Fin(v), k 6= k′ do
11: insert maxAT – AT(k) latches on edgek

// remove extra latches on edges with fanout> 1
12: for all v ∈ G′(V) do
13: if Fout(v) > 1 then
14: min latches← min{AT(k), k ∈ Fin(v)}
15: k′ ← edge that contains minlatches
16: for all k ∈ Fout(v), k 6= k′ do
17: remove minlatches on edgek, if possible

Fig. 6. The nano-pipelining algorithm.

A

D

C

B

A

D

C

B

Fig. 7. Relocation of latches from the “branches” to the “stem” of an output
node with multiple fanout.

This is achieved by visiting the network nodes in order. As shown
in lines 7-11, we determine the maximum arrival time of all inputs
to a node. For every input to this node that has its arrival time less
than the maximum arrival time, we insert the appropriate number of
latches. The architecture is fully nano-pipelined once this has been
accomplished. The complexity of this step isO(|V | · |E|).

The above step is a little sloppy in inserting the latches. Fig. 7
shows a scenario in which an output node has multiple fanout.
The way the algorithm works, lines 7-11 will insert latches on
the “branches” of an output, rather than on its “stem”. To prevent
this, lines 12-17 look at nodes with multiple fanout. If an output is
detected that contains latches on all its “branches”, then it is possible
to relocate the number of common latches on all “branches” to the
“stem” of the output. The complexity of this step isO(|E|) and the
overall complexity of the algorithm isO(|V | · |E|).

V. EXAMPLES

In this section, we present the design of a nano-pipelined array
multiplier and a non-restoring divisor. These circuits can be part
of the library of nano-pipelined modules required in our nano-
pipelining algorithm. One can also use nano-pipelined versions of
the designs presented in [10], [11]. We perform a similar analysis
later of some DSP architectures when our nano-pipelining algorithm
is applied to them.

A. Nano-pipelined Array Multiplier

The design of a four-bit nano-pipelined array multiplier is shown
in Fig. 8. It consists of the cells FA, FX, FX0, FX1, and FX2.
FA is the full-adder discussed in Section II-C while FX is a single
threshold gate implementing the product termX0Y0. The circuit

also contains input and output latches that are required to achieve
synchronization for nano-pipelining. A square in Fig. 8 with number
y in it represents a series ofy latches. The remaining squares
represent a series of two latches.

To understand the operation of the nano-pipelined multiplier, we
first look at the design of its cells FX0, FX1, and FX2 shown in
Fig. 9. It can be seen that one of the inputs to the full-adder in FX0
is always zero while one (two) of the inputs to the full-adders in
FX1 (FX2) are constrained by the logical AND ofd, e (a, b and
d, e). This gives us the opportunity to implement the outputs of the
cells in Fig. 9 in a compact way using threshold logic. The Boolean
logic function ofp for the various cells are as follows:

pFX0 = ab(d̄ + ē)︸ ︷︷ ︸
g

+ (ā + b̄)de︸ ︷︷ ︸
h

pFX1 = āb(d̄ + ē)︸ ︷︷ ︸
i

+ ab̄(d̄ + ē)︸ ︷︷ ︸
j

+ āb̄de︸︷︷︸
k

+ abde︸︷︷︸
l

pFX2 = abdef︸ ︷︷ ︸
m

+ ab(d̄ + ē)f̄︸ ︷︷ ︸
n

+ (ā + b̄)def̄︸ ︷︷ ︸
o

+ (ā + b̄)d̄f︸ ︷︷ ︸
q

+

+ (ā + b̄)ēf︸ ︷︷ ︸
r

. (11)

Similarly, the Boolean logic function ofc for the various cells are
as follows:

cFX0 = abde

cFX1 = ab + (a + b)de

cFX2 = ab(de + f)︸ ︷︷ ︸
s

+ def︸︷︷︸
t

. (12)

The functions in (11) are not threshold because many variables
appear in both phases in the function’s expression. A well-known
necessary condition for a function to be threshold is that it must be
unate [12] (the converse is not true, however). In addition,cFX2 is
also not a threshold function even though it is unate. However, if
we let the variablesg througho and q throught be as designated
above, then it is possible to convert (11) and (12) into threshold
functions as follows:

pFX0(g, h) : 〈1, 1; 1〉 (13)

g(a, b, d, e) : 〈2, 2,−1,−1; 3〉
h(a, b, d, e) : 〈−1,−1, 2, 2; 3〉

pFX1(i, j, k, l) : 〈1, 1, 1, 1; 1〉 (14)

i(a, b, d, e) : 〈−2, 2,−1,−1; 1〉
j(a, b, d, e) : 〈2,−2,−1,−1; 1〉
k(a, b, d, e) : 〈−1,−1, 1, 1; 2〉
l(a, b, d, e) : 〈1, 1, 1, 1; 4〉

pFX2(m, n, o, q, r) : 〈1, 1, 1, 1, 1; 1〉 (15)

m(a, b, d, e, f) : 〈1, 1, 1, 1, 1; 5〉
n(a, b, d, e, f) : 〈2, 2,−1,−1,−2; 3〉
o(a, b, d, e, f) : 〈−1,−1, 2, 2,−2; 3〉

q(a, b, d, f) : 〈−1,−1,−2, 2; 1〉
r(a, b, e, f) : 〈−1,−1,−2, 2; 1〉

cFX0(a, b, d, e) : 〈1, 1, 1, 1; 4〉 (16)

cFX1(a, b, d, e) : 〈2, 2, 1, 1; 4〉 (17)

cFX2(s, t) : 〈1, 1; 1〉 (18)

s(a, b, d, e, f) : 〈3, 3, 1, 1, 2; 8〉
t(d, e, f) : 〈1, 1, 1; 3〉.

(1)(2) FXFX0FX0FX0

FX2 FX1 FX1

FX2 FX1 FX1

FX1 FA FA

9

P0P1P2

(4)

P3

(6)

P5 P4

(8)(9)

P7 P6

(9) (10)

Y0
Y1

Y2

Y3

X3 X2 X1 X0

(7)(8)

864211

2

4

8
12 1

Fig. 8. Schematic diagram of a four-bit nano-pipelined array multiplier.

FX0

+

pc

e
d a

b

FX1

+

a

p

b

c

d
e

FX2

+

pc

e
d a

b
f

Fig. 9. The cells that comprise the nano-pipelined array multiplier. The
circle represents a full-adder.

In converting the Boolean functions into threshold functions, we
have taken care to prevent input dependencies from exceeding a
single nano-pipeline stage. In this way, we perform a computation
and use its results immediately in the next stage. In cell FX2, it takes
two clock phases to calculatep and c. On the other hand, it takes
two and one clock phases to calculatep andc, respectively, in cells
FX0 and FX1. However, bothp andc are required at the same time
in the next stage. Thus, a latch must be inserted on the path realizing
c to equalize its latency withp (this latch is assumed to be inside
the FX0 and FX1 cells in Fig. 8 and is thus not shown explicitly).
Additional latches are required in the last stage to synchronize the
addition, since the partial products arrive earlier than the carry from
the full-adders. The clock phase at which each bit of the product
term is generated is shown in parenthesis in Fig. 8.

The latency,Lm, in clock phases of anN -bit nano-pipelined
array multiplier is the sum of the latencies of theN − 1 levels in
the multiplier and theN −2 full-adders and the FX1 cell in the last
level. The latency of the carry from the full adder and the sum of
the FX1 cell is one and two clock phases, respectively. Therefore,

Lm = 2(N − 1) + (N − 2) + 2 = 3N − 2. (19)

The total number of threshold gates (including latches),Gm, re-
quired is,

Gm = GFX + (N − 1)GFX0 + (N2 − 4N + 5)GFX1

+ (N − 2)GFX2 + (N − 2)GFA + (3N − 2)(N − 1)

+
(Lm − 2N)(Lm − 2N + 1) + 2

2
+ (N − 1)(Lm − N)

+ (2Lm − 1) + (N − 2)2, (20)

whereGFX , GFX0, GFX1, GFX2, andGFA are the threshold gate
counts of the various cells and are equal to one, five (four for the
logic and one for the latch), seven (six for the logic and one for

the latch), nine, and four, respectively. Table I shows the gate count
and latency for nano-pipelined array multipliers with bit-widths of
4, 8, 16, 32, and 64.

B. Nano-pipelined Non-Restoring Divisor Circuit

The relevant portion of a nano-pipelined, non-restoring divisor
circuit is shown in Fig. 10. The dividend is loaded in the lower half
of the remainder latch while the divisor and its complement are
stored in other latches. We store the complement as well because if
we did not, an extra nano-pipeline stage would be necessary for this
computation each time. This would involve inserting latches in all
the other parts of the circuit and would cause significant overhead.
It is simpler just to compute the complement in the beginning and
have it available throughout the division process.

The nano-pipelined RCA operates on the upper half of the remain-
der latch. The shifting of the remainder is performed implicitly by
the wiring. The most significant bit (MSB) from the RCA is used
to select whether the divisor or its complement gets added in the
next stage. In addition, the MSB is inverted to output the quotient
bit and serves as the carry-in to the RCA in the next stage. The
latency,Ld, of the divisor in clock phases is,

Ld = 1 + (LRCAN + 2)(N + 1), (21)

whereLRCAN is the latency of anN -bit nano-pipelined RCA. We
observe that to reduce the latency of the divisor, it is important to
optimize the RCA. For this analysis, we use anN -bit nano-pipelined
RCA whose latency is simplyN + 1 clock phases. One can also
use the more sophisticated nano-pipelined adders presented in [9]
to improve the latency of this circuit. The total number of required
threshold gates (including latches),Gd, is,

Gd = (N + 1)GRCAN + N2 · GMUX + LRCAN

9N2 + 6N

4
+ 4N(N + 1), (22)

whereGMUX is the number of threshold gates needed to implement
a one-bit 2:1 multiplexer, and is equal to three (two gates for logic
and one latch),LRCAN is as mentioned above, andGRCAN is the
number of threshold gates needed for anN -bit nano-pipelined RCA
and is,

GRCAN = 4N + 1.5(N2 − N) + 1. (23)

Table I shows the threshold gate count and latency for nano-
pipelined non-restoring divisor circuits of different bit-widths.

4-bit RCA

4-bit RCA

2:1 MUX

0-1

q0

divisor divisor dividend

0 (1)

(1)

(6)

(8)

(6)(6)

(8)(8)
(7)

(8)

remainder latch

Fig. 10. A portion of a four-bit nano-pipelined non-restoring divisor circuit.

TABLE I
GATE COUNT AND LATENCY CHARACTERISTICS OFNANO-PIPELINED

ARITHMETIC CIRCUITS

Mult Div Mult Div
N # Threshold gates Latency (clock phases)

4 152 513 10 36
8 726 2,937 22 100
16 3,170 19,281 46 324
32 13,242 138,273 94 1,156
64 54,122 1,044,033 190 4,356

C. Examples of Nano-pipelined DSP Architectures

In this subsection, we present the threshold gate count, latch
overhead, latency, and throughput for some nano-pipelined DSP
architectures. The word size of the architecture is assumed to be
four bits. In calculating the throughput offered by a CMOS and
a nano-pipelined implementation of an architecture, we make the
same assumptions about the modules and technology characteristics
as those presented in Section III-B.

Table II presents the results of our analysis. The examples consist
of direct and symmetric FIRs, and direct infinite impulse response
(IIR) filter [13]. The tap size of a filter is just the number of
data points that are used for calculating the result. We applied our
algorithm to obtain the nano-pipelined version of these architectures.
The gate count and latencies were calculated using the equations
developed in previous subsections. The latch overhead represents
the number of latches that are inserted in the architecture (not the
sub-modules) to synchronize the paths needed for nano-pipelining.
As can be seen, nano-pipelined architectures have the potential to
offer massive throughput.

VI. FUTURE DIRECTIONS

We devote this section to discussing possible enhancements and
developments to the initial algorithm for nano-pipelining. A major
problem is to try to decrease the circuit overhead that is accrued
during nano-pipelining. This can only be achieved through efficient
design of circuits based on RTD-HFET gate technology. Second,
nano-pipelining is an idea that should be exploited in the high-level
synthesis paradigm. Although one can find examples of architectures
that are not nano-pipelineable, many architectures of interest are and
it is important to address this concept in high-level design for nan-
otechnologies. It will also be helpful to develop a design automation
tool for design space exploration and synthesis of nano-pipelined
architectures. Finally, it will be necessary to develop communication
mechanisms for interfacing with the external environment.

TABLE II
FOUR-BIT NANO-PIPELINED DSP ARCHITECTURES

Threshold Latch Latency Throughput
Tap gates overhead (clock phases) increase

Direct FIR
2 339 0 15 4.5X
4 713 15 25 7.5X
6 1,087 50 35 10.5X
8 1,461 105 45 13.5X
16 2,957 525 85 25.5X

Symmetric FIR
2 187 0 15 4.5X
4 409 0 20 6X
6 596 5 25 7.5X
8 853 15 30 9X
16 1,741 115 50 15X

Direct IIR
2 526 0 20 6X
4 1,274 20 30 9X
6 2,022 80 40 12X
8 2,770 155 50 15X
16 5,762 915 90 27X

VII. C ONCLUSIONS

In this paper, we presented nano-pipelined designs of some
arithmetic circuits. We also introduced the first algorithm to enable
architectural nano-pipelining. This is achieved by first replacing each
module in the RTL architecture with its nano-pipelined version and
then inserting latches, where needed, to synchronize all paths from
the inputs to the outputs. We presented examples and demonstrated
that it is possible to achieve high throughput using nano-pipelined
architectures. Furthermore, we showed the application of RTD-
HFET nanotechnology to nano-pipelining. We hope that this work
has laid the foundation for further research in exploring novel nano-
pipelined architectures.

REFERENCES

[1] “Semiconductor Industries Association Roadmap.” http://public.itrs.net
[2] R. H. Mathewset al., “A new RTD-FET logic family,” Proc. IEEE,

vol. 87, no. 4, pp. 596–605, Apr. 1999.
[3] K. Maezawaet al., “High-speed and low-power operation of a resonant

tunneling logic gate MOBILE,”IEEE Electron Device Lett., vol. 19,
no. 3, pp. 80–82, Mar. 1998.

[4] J. P. Sunet al., “Resonant tunneling diodes: Models and properties,”
Proc. IEEE, vol. 86, no. 4, pp. 641–661, Apr. 1998.

[5] K. F. Goseret al., “Aspects of systems and circuits for nanoelectronics,”
Proc. IEEE, vol. 85, no. 4, pp. 558–572, Apr. 1997.

[6] W. Williamson et al., “12 GHz clocked operation of ultralow power
interband resonant tunneling diode pipelined logic gates,”IEEE J.
Solid-State Circuits, vol. 32, no. 2, pp. 222–230, Feb. 1997.

[7] P. Mazumderet al., “Digital circuit applications of resonant tunneling
devices,”Proc. IEEE, vol. 86, no. 4, pp. 664–686, Apr. 1998.

[8] C. Pacha and K. Goser, “Design of arithmetic circuits using resonant
tunneling diodes and threshold logic,” inProc. Wkshp. Innovative
Circuits & Systems for Nanoelectronics, Sept. 1997, pp. 83–93.

[9] C. Pachaet al., “Resonant tunneling device logic circuits,” University of
Dortmund and Gerhard-Mercator University of Duisburg, Tech. Rep.,
July 1999.

[10] L. Ciminiera and A. Serra, “Efficient serial-parallel arrays for multi-
plication and addition,” inProc. Int. Conf. Computer Arithmetic, June
1985, pp. 28–35.

[11] L. Dadda, “Fast multipliers for two’s complement numbers in serial
form,” in Proc. Int. Conf. Computer Arithmetic, June 1985, pp. 57–63.

[12] Z. Kohavi, Switching and Finite Automata Theory. New York, NY:
McGraw-Hill, 1978.

[13] J. G. Proakis and D. G. Manolakis,Digital Signal Processing: Princi-
ples, Algorithms, and Applications. Upper Saddle River, NJ: Prentice-
Hall, 1996.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

