An Algorithm for Nano-pipelining of Circuits and
Architectures for a Nanotechnology

Pallav Gupta and Niraj K. Jha
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544
{pgupta, jha@ee.princeton.edu

Abstract—In this paper, we describe an algorithm to post-process a « We present a case for further research in nano-pipelined
register-transfer level (RTL) architecture to enable gate-level pipelining architectures by demonstrating its benefits.

or nano-pipelining for the nanotechnology based on resonant tunneling _ninali ; ; i Aire
diodes (RTDs). Nano-pipelining offers the opportunity to obtain massive We present nano-pipelined designs of a few arithmetic circuits

throughput and, therefore, has applications in data-intensive algorithms and perform a theoretical analysis of their gate count and
such as digital signal processing (DSP). Since RTDs are a self-latching latency characteristics.

nanotechnology, nano-pipelining is an implicit property that should be : : : : .
exploited for this technology. The novelty of this work lies in exploring The remainder of this paper is organized as follows. We discuss

and demonstrating the benefits of nano-pipelining and presenting an SOme preliminaries in Section II. In Section Ill, we present a
algorithm for architectural nano-pipelining. motivational example to demonstrate the benefits of architectural
nano-pipelining. We describe our nano-pipelining algorithm in Sec-

I. INTRODUCTION tion IV and discuss nano-pipelined designs of some arithmetic

In accordance with Moore’s Law, complementary metal-oxidrcuits in Section V. Section VI provides some insights into open
semiconductor (CMOS) chips have continued to provide the hi earch areas in nano-pipelining. Our conclusions are presented in
degree of integration required to sustain the ever-increasing hiﬁctlon VII.
performance computing needs of end users. As predicted by the
Semiconductor Industries Association (SIA) roadmap, this trend [l. PRELIMINARIES

is likely to continue for another 10-15 years [1]. However, de_én this section, we present some background material which will

velopments in the material science and device community hav helnful i derstanding the id ted in th inder of
enabled the creation of nanoscale devices that offer the possibai% A pe)appgr in understanding the ideas presented in the remainder o

of improving digital systems further in terms of area and spee
Consequently, research is being done to understand the properties)
of these devices to see how they can be used in novel circuits &ndThreshold Logic

architectures [2]-[5]. A linear threshold function is a multi-input function in which
There are three main reasons why RTDs are currently the mggkh input,z; € {0,1}, i € {1,2,...,n}, is assigned a weight,
promising nanotechnology to make their way into mainstreag) such that the function assumes a valuel pif and only if the

electronics. First, RTDs can be grown with great precision aRgeighted sum of the inputs is greater than or equal to the function’s
uniformity using molecular-beam epitaxy [2]. Second, logic Circuitgreshold, 7. That is,

containing RTDs and heterostructure field-effect transistors (HFETS)
have been demonstrated to work at high clock frequencies [3], 1 fX>T
[6], [7]. Finally, RTDs implement threshold logic which provides f= { 0 IfX<T @
improved computational functionality through smaller circuit logic
depth, fewer devices, and shorter wiring [8]. n

While progress in the material and physical understanding of X= szm, (2)
RTDs continues to be made, there is a need for work at the logic z=1

and architectural levels to fully harness the potential of RTDs. Tr|1eth th | tricti th iaht d threshold is that
authors in [2] describe an RTD-FET logic family that is expecte eory, the only restriction on the weights an reshold 1s tha
ey must be real-valued. In practice, however, they are integer-

to operate five times faster than circuits utilizing llI-V FETs aloné.I d and trained withi finit due 1o technol
In [3], the monostable-bistable transition logic element (MOBILEJ&U€U and constrainéd within a finité range due 1o technolog-

is introduced which is a self-latching RTD-HFET threshold gat al considerations. Therefore;_;i € {O’il’.""iwm”} and
Because of the MOBILE’s self-latching capability, computation ¢ €1{0,%£1,..., £Tnas }. We will use the weight-threshold vector
be nano-pipelined. The authors in [7]-[9] take advantage of this f 1, w2, ..., wn; T') t0 denote the weights and threshold of the
to present nano-pipelined designs of a digital correlator and varid[]&€eshold function.

adder circuits. However, there is no work to date on exploiting this) B)

level of computation granularity at the architecture level. B. Monostable-Bistable Transition Logic Element (MOBILE)

_The goal of this work is to present an algorithm for nano- The authors in [3] have demonstrated that a MOBILE can operate
pipelining of an architecture. The novel contributions of this work; frequencies of several GHz. Shown in Fig. 1, a MOBILE is
are as follows: a rising edge-triggered, current-controlled gate that implements a

« This is the first algorithm for architectural nano-pipelining. threshold function. It consists of a serially connected load and driver
RTD. The RTD-HFETSs connected in parallel to the load and driver

Acknowledgments: This work was supported in part by NSF under grdnf DS perform a positive and negative weighting of the inputs,
No. CCR-0303789. respectively.

1530-1591/04 $20.00 (c) 2004 IEEE

D

LATCH
LATCH

' Load D’ID_

Positive-weight

inputs STAGE 1 STAGE 2 STAGE 3
@
I
N . iah CLK 1 CLK2 CLK3 CLK4: CLK 1 CLK 2 CLK3 CLK 4
egative-weight M M M
_—— o (o e]
[STAGE 1 | STAGE 2
(b)
Fig. 1. A monostable-bistable transition logic element (MOBILE). Fig. 3. (a) Conventional pipeline, and (b) nano-pipeline.

A

N\CLK 1

CLK 1

CLK2

CLK3

CLK 4

: : D :

T T T wanl Tine
i 3P a|2P

2

Fig. 2. Four-phase overlapping clocking scheme for MOBILE circuits.

1) Device characteristicsA MOBILE switches to the monos-
table or bistable mode of operation depending upon its bias voltage,
Verx, Which oscillates betweedV and Vpp [9]. That is,

monostable if Vorx <2Vp Fig. 4. A nano-pipelined full-adder using MOBILEs.
Vour = metastable if Vorx = 2Vp 3)
bistable if Verx > ZVP,

and the gate returns to the monostable mode of operation. Finally,

whereVour andVp are the MOBILE output voltage and the RTDin the wait phase, the inputs of the gate are loaded with the results
peak voltage, respectively. A typical value fop is 0.3V [7]. The optained from the previous pipeline stage.
metastable state is achieved whémn. x > 0.55V [9] and the digital Fig. 3 shows the main difference between a conventional CMOS
states are achieved when a MOBILE is in the bistable mode ;Slbeline and an RTD-HFET nano-pipeline. In Fig. 3, M stands
operation. o] for a MOBILE gate. Note that in the latter, latcheare not

When the device is in the metastable region, the modulatiggeded between pipeline stages because MOBILES are self-latching.
current, A, at the output node determines what digital state thggwever, latches may be needed in other parts of a circuit for
current is obtained from Kirchoff’s Current Law and is given as, is four MOBILEs due to the overlapping clocking scheme.

Np Np,
A=Y wil (Vo) = Y wil (Vys), (4) C. A Nano-pipelined Full-Adder
i=1 i=1

A full-adder can be implemented with two threshold gates.;f
i, Ci—1 andg;, s; are the inputs and outputs, respectively, then the
weight-threshold vectors of the full-adder are as follows:

whereN,, and N,, are the number of positive and negative weight
inputs, respectively, andl(Vy,) is the peak current of a minimum-
size RTD [9]. If the gate-to-source voltage of an inptit, exceeds
the threshold voltage of the HFET, the current/ (V) is supplied ci(ai, biyeiot) s (1,1,1;2) (5)
either to the load or driver RTD current. The net RTD current for B
the load and driver idr = TI(V,,), respectively. Consequently, si(ai, biy cim1,¢) + (1,1, 1, =2;1). (6)
Vour is logic high if AI — I is positive and logic low otherwise.
2) Four-phase clocking schemeA MOBILE is self-latching
because its output is valid only when the clock is high. This prope : S
can be exploited to achieve a nano-pipeline by constructing® cond stage. This causes circuit overhead and does not allow for
cascaded network of MOBILES. However, a four-phase overlappift_€fficient nano-pipelined operation.
clocking scheme, shown in Fig. 2, is required to ensure correct!0 remove the above inefficiency, it is necessary to remove the
operation [9]. In this scheme, each stage of the clock has an e endency of; on a;, b, andc;—1 [9]. This can be achieved
period of £ and a90° phase delay. During thevaluationphase, the oY dividing the full-adder into two stages. The first stage computes
output of a gate is computed. In theld (i.e., self-latching) phase,

the result is valid while the subsequent pipeline stage begins itSan RTD-HFET latch is simply a buffer, i.e., with weight-threshold vector
computation. In theesetphase, the load capacitance is discharged; 1).

Because MOBILE circuits use an overlapping clocking scheme,
jie input operands must be latched in order to computin the

y I I I later), respectively, the arrival times (in clock phases) for the signals
are annotated next to the modules in Fig. 5(b). Since the inputs to
the multipliers come from latches, they are available at clock phase

hi2] ° ° ° 1. The constantshl[i], are always available and the output, is
available after21 clock phases.

° ° 2 The final step in architectural nano-pipelining is to synchronize
all paths from the inputs to the outputs so that a traversal along
(@) any path will always lead to the same latency. This is achieved by

inserting latches on the requwed paths. For example, the inputs to
the last RCA in Fig. 5(b) arrive at the1" and 16" clock phases,
respectively. As shown in Fig 5(b), five latches need to be inserted
to synchronize the arrival of the inputs. The nano-pipelined FIR
filter is shown in Fig. 5(c).

B. Throughput Analysis

In this subsection, we wish to demonstrate the primary advantage
of nano-pipelining — the massive throughput that can be achieved.
To do so, we again consider the FIR filter of Fig. 5(a). For a CMOS
implementation, we assume that the multiplier has two pipeline
stages while the adder is non-pipelined and carry-lookahead (CLA).
The critical path of the filter is a single stage of the multiplier and
two CLAs. The pipeline stage of the multiplier contains an RCA
consisting of three full-adders (in our case, a full-adder consists of
two cascaded XOR gates). Assuming that the full-adders are realized
using the four-NAND implementation, the critical path of the RCA
has12 gates (six gates for the first full-adder and three gates each for
the second and third full-adders). A CLA has six gates in its critical
path (one gate to compute the generate/propagate signal, two gates
to compute the carry lookahead, and three gates for the second-level
Fig. 5. A four-bit FIR filter to demonstrate nano-pipelining. The circle&XOR gate to compute the sum). Therefore, the critical path of the

(©)

represent functional units. filter is 24 gates and the total delay BLD¢y,0s Where Depmos iS
the typical delay of a CMOS gate. In the nano-pipelined filter, the
ai + bi + c;—1 (arithmetic sum) as follows: critical path has four MOBILEs and the delay 49,,,01:c Where
Dinobite 1S the delay of a MOBILE.
xi(ai, by, ci) 0 (1,1,1;1) (7) The increase in throughput in the nano-pipelined implementation
ciai, biy i) (1,1,1;2) 8) is 65 Demos - Assuming Demos and D,,opie are comparable, the
(Cas b - . nano- plpeflned filter offer$X higher throughput than its CMOS
y’b(a”i?b’bvc’b) <1717173> (9)
counterpart. The overall conclusion is that nano-pipelining can
The second stage detectsaif + b; + ¢;—1 € {1,3}. Thus, drastically increase throughput and data-intensive applications stand

to gain the maximum benefits.
siei e yi) = (1,-1,151). (o) Y

Now s; is dependent on the intermediate variables,y;, andc; IV. NANO-PIPELINING ALGORITHM

which are computed in the previous stage. Therefore, there is ndVe present our algorithm for nano-pipelining of a pipelineable
need to latch the inputs. Fig. 4 shows a nano-pipelined full-add€fL architecture in this section. We model the RTL architecture as
that uses MOBILEs. a directed acyclic graph (DAGY;(V, E), whereV and E represent
the modules and their interconnections in the architecture, respec-
I1l. M OTIVATIONAL EXAMPLE tively. Fi,(v) and F,..(v) denote the set of inputs and outputs of
In this section, we present a nano-pipelined finite impulse reedev, respectively. It is assumed that there exists a library which
sponse (FIR) filter as an example to motivate the need for our nagontains nano-pipelined versions of every module present in the
pipelining algorithm. We also demonstrate the massive throughpuchitecture that is to be nano-pipelined. Furthermore, we assume

that can be obtained with nano-pipelining. that the modules are implemented with MOBILEs, although nano-
) o pipelining, in general, is applicable to any nanotechnology that is
A. Demonstration of Nano-pipelining self-latching. Fig. 6 outlines our nano-pipelining algorithm.

The initial RTL architecture of a four-bit FIR filter is shown In lines 1-3 of the algorithm, we replace each node (module)
in Fig. 5(a). The first step in nano-pipelining is to replace each the network with its nano-pipelined equivalent from the module
functional unit in the architecture with its nano-pipelined equivaleribrary. The complexity of this step i©(|V|). In line 4, topological
During this mapping phase, it is clear that a library of nano-pipelinesdrting of the network is performed so that we can compute the
modules, similar to a CMOS RTL module library, must exist. Tharrival times of each input and output signal of a node in lines
components in this library will have their associated area, laten&yf. It is assumed that the input arrival times to the network are
power, etc., characteristics. known. The output time is simply the sum of the maximum of the

After the mapping phase, the next step is to determine whigput arrival times and the node delay. The complexity of sorting and
the inputs and outputs of each of the modules become availalslemputing the arrival times i©(|V + E|) andO(| E|), respectively.
Assuming a four-bit nano-pipelined ripple carry adder (RCA) and Once the arrival times have been computed, it is necessary to
array multiplier have latencies &f and 10 clock phases (as showninsert latches to synchronize all the paths from the inputs to outputs.

Require: G(V, E) also contains input and output latches that are required to achieve
Il replace each module with nano-pipelined version from librafysynchronization for nano-pipelining. A square in Fig. 8 with number

1: for all v € G(V) do y in it represents a series af latches. The remaining squares
g: ;’gp‘gcg'oc\j\;i‘tlﬁ“brai‘;yg) represent a series of two latches.

. v Up . i . ..
4 & — topological Sort ofG: To understand the operation of the nano-pipelined multiplier, we

first look at the design of its cells FX0, FX1, and FX2 shown in

/I compute arrival time, AT, of each signal Fig. 9. It can be seen that one of the inputs to the full-adder in FX0

5: for all e = (u,v) € G'(E) do

6: AT(e) — max{AT(k), k € Fin(u)} + delay) is always zero while one (two) of the inputs to the full-adders in
Il insert latches to synchronize all paths from inputs to outputs FX1 (FX2) are constrained by the logical AND df e (a, b and
7: for all v € G'(V) do d, e). This gives us the opportunity to implement the outputs of the
8: maxAT «— max{AT(k), k € Fin(v)} cells in Fig. 9 in a compact way using threshold logic. The Boolean
9. k'« edge that has makT logic function ofp for the various cells are as follows:
10: for all k € Fy,,(v),k # k' do _ _
11 insert maxAT — AT(k) latches on edgé prxo = ab(d + €) + (a + b)de
/I remove extra latches on edges with fanouf —_—
12: for all v € G'(V) do 9 _h ~
13: if Fout(v) > 1 then prx1 = ab(d + €) + ab(d + €) + abde + abde
14: min_latches— min{AT(k), k € Fi, (v)} —_ —— Y
15: k' — edge that contains milatches g 7 o o
16: for all k € Fout(v),k # K’ do prx2 = abdef +ab(d+ &) f + (a+ b)def + (a + b)df +
17: remove minlatches on edgé, if possible M~ —— —— Y——
m n o q
; alini ; + (@a+b)ef. 11
Fig. 6. The nano-pipelining algorithm. ()ef 11

r

Similarly, the Boolean logic function of for the various cells are
as follows:

SO HHHD — B4

Fig. 7. Relocation of latches from the “branches” to the “stem” of an output
node with multiple fanout. The functions in (11) are not threshold because many variables

appear in both phases in the function’s expression. A well-known
This is achieved by visiting the network nodes in order. As show fgcessary condition for a function to be threshold is that it must be
in lines 7-11, we determine the maximum arrival time of all |nputl§|naten[lt2] (ttgre Cr?%eltsﬁ 'f ?]Ot trur(]e tkr]lowek\‘/etr) In r?dtd'tt?_'ﬁ” is L if
to a node. For every input to this node that has its arrival time | ¢80 not a threshold function even though 1t IS unate. HOWever, 1

T?f let the variableg througho and ¢ throught be as designated

CEFX0 = abde
crx1 = ab+ (a + b)de

%éé

crx2 = ab(de + f)+ def . 12)
s t

than the maximum arrival time, we insert the appropriate number
latches. The architecture is fully nano-pipelined once this has b 1 \f nthen]lt I||smpl)933|ble to convert (11) and (12) into threshold
accomplished. The complexity of this stepG%|V| - | E|). unctions as foflows.

The above step is a little sloppy in inserting the latches. Fig. 7 prxo(g,h) : (1,1;1) (13)
shows a scenario in which an output node has multiple fanout. gla,byd,e) : (2,2, —1,-1;3)
The way the algorithm works, lines 7-11 will insert latches on T
the “branches” of an output, rather than on its “stem”. To prevent h(a,b,d,e) : (—=1,-1,2,2;3)
this, lines 12-17 look at nodes with multiple fanout. If an output is prx1(i, 7, k,0) : (1,1,1,1;1) (14)
detected that contains latches on all its “branches”, then it is possible i(a,b,d,e): (—2,2,—1,—1;1)
to relocate the number of common latches on all “branches” to the bode): (2,2, —1,-1:1
“stem” of the output. The complexity of this step(¥|E|) and the j(a,b,dye) : (2,-2, -1, -1;1)
overall complexity of the algorithm i (|V| - | E|). k(a,b,d,e) : (-1,-1,1,1;2)
v E l(a,b,d,e):(1,1,1,1;4)
| EXAMPLES prxa(m,n,0,q,r) < (1,1,1,1,1;1) (15)
In this section, we present the design of a nano-pipelined array . .
o . > ano m(a,b,d,e, f):{1,1,1,1,1;5)
multiplier and a non-restoring divisor. These circuits can be part
of the library of nano-pipelined modules required in our nano- n(a,b,d,e, f):(2,2,-1,-1,-2;3)
pipelining algorithm. One can also use nano-pipelined versions of o(a,b,d,e, f): (—-1,—-1,2,2,—-2;3)
the designs presented in [10], [11]. We perform a similar analysis ala,byd, f): (—1,—1,-2,2;1)
later of some DSP architectures when our nano-pipelining algorithm r(a,bye,)t (—1,—1,-2,2: 1)
is applied to them.) S
CFX()(a b d 6) . <].7 1, 17 1;4> (16)
A. Nano-pipelined Array Multiplier crxi(a,b,de): (2,2,1,1;4) (17)
The design of a four-bit nano-pipelined array multiplier is shown crxa(s,t) 1 (1,1;1) (18)
in Fig. 8. It consists of the cells FA, FX, FX0, FX1, and FX2. s(a,b dye, f): (3,3,1,1,2:8)
FA is the full-adder discussed in Section II-C while FX is a single AT
threshold gate implementing the product teA®Y,. The circuit t(d,e, f):(1,1,1;3)

Y1
FX1
(4)
Y2
Y3
(¢] (e] El
P P P

2

g g a b d d a the latch), nine, and four, respectively. Table | shows the gate count
e € b and latency for nano-pipelined array multipliers with bit-widths of
4, 8, 16, 32, and 64.

c p ¢ p c p B. Nano-pipelined Non-Restoring Divisor Circuit
FX0 FX1 EX2 The relevant portion of a nano-pipelined, non-restoring divisor
circuit is shown in Fig. 10. The dividend is loaded in the lower half
Fig. 9. The cells that comprise the nano-pipelined array multiplier. T the remainder latch while the divisor and its complement are
circle represents a full-adder. stored in other latches. We store the complement as well because if
we did not, an extra hano-pipeline stage would be necessary for this
In converting the Boolean functions into threshold functions, wemputation each time. This would involve inserting latches in all
have taken care to prevent input dependencies from exceedintpeaother parts of the circuit and would cause significant overhead.
single nano-pipeline stage. In this way, we perform a computatitins simpler just to compute the complement in the beginning and
and use its results immediately in the next stage. In cell FX2, it takeave it available throughout the division process.
two clock phases to calculajeandc. On the other hand, it takes The nano-pipelined RCA operates on the upper half of the remain-
two and one clock phases to calculatandc, respectively, in cells der latch. The shifting of the remainder is performed implicitly by
FX0 and FX1. However, botp andc are required at the same timethe wiring. The most significant bit (MSB) from the RCA is used
in the next stage. Thus, a latch must be inserted on the path realidingelect whether the divisor or its complement gets added in the
c to equalize its latency witlp (this latch is assumed to be insidenext stage. In addition, the MSB is inverted to output the quotient
the FX0 and FX1 cells in Fig. 8 and is thus not shown explicitlyhit and serves as the carry-in to the RCA in the next stage. The
Additional latches are required in the last stage to synchronize tatency, Lq, of the divisor in clock phases is,
addition, since the partial products arrive earlier than the carry from
the full-adders. The clock phase at which each bit of the product Lo =1+ (Lroay +2)(N +1), (1)
term is generated is shown in parenthesis in Fig. 8. where Lrca,, is the latency of anV-bit nano-pipelined RCA. We
The latency, L., in clock phases of arV-bit nano-pipelined observe that to reduce the latency of the divisor, it is important to
array multiplier is the sum of the latencies of the— 1 levels in optimize the RCA. For this analysis, we use/srbit nano-pipelined
the multiplier and theV — 2 full-adders and the FX1 cell in the lastRCA whose latency is simplyv + 1 clock phases. One can also
level. The latency of the carry from the full adder and the sum gke the more sophisticated nano-pipelined adders presented in [9]
the FX1 cell is one and two clock phases, respectively. Thereforg, improve the latency of this circuit. The total number of required

Lm=2(N—1)+ (N —2)+2=3N —2. (19) threshold gates (including latcheg),, is,

1

2
The total number of threshold gates (including latchés),, re- Gy = (N +1)Groay + N*-Guux + LRCANM
quired is,

) + 4N(N + 1), (22)
Gm = Grx + (N =1)Grxo + (V"= AN +5)Grx whereG is the number of threshold gates needed to implement
MUX
+ (N =2)Grx2+ (N =2)Gra + (3N = 2)(N - 1) a one-bit 2:1 multiplexer, and is equal to three (two gates for logic
(L — 2N)(Ly —2N 4+ 1) 42

+ + (N =1)(Lm — N) and one latch)Lrca, is as mentioned above, aiderzc 4, is the
2 number of threshold gates needed forérbit nano-pipelined RCA
+ (2L — 1) + (N —2)?, (20) and is,
Groay = 4N +1.5(N° = N) + 1. (23)

whereGrx, Grxo, Grx1, Grx2, andGr 4 are the threshold gate
counts of the various cells and are equal to one, five (four for tiiable |1 shows the threshold gate count and latency for nano-
logic and one for the latch), seven (six for the logic and one fpipelined non-restoring divisor circuits of different bit-widths.

remainder latch TABLE 11

divisor divisor dividend FOUR-BIT NANO-PIPELINED DSP ARCHITECTURES
LI T LTI DEEEE
0) # Threshold| Latch Latency Throughput
) Tap gates overhead| (clock phases)| increase
» 4-bit RCA _
—l(e) l<e) (™) Direct FIR
©) 2 339 0 15 4.5X
2:1 MUX @ 4 713 15 25 7.5X
(0 A 6 1,087 50 35 10.5X
» 4-bit RCA 8 1,461 105 45 13.5X
l ®) 16 2,957 525 85 25.5X
qo(a)rlrlrlrl Symmetric FIR
° 2 187 0 15 4.5X
. . 4 409 0 20 6X
6 596 5 25 7.5X
Fig. 10. A portion of a four-bit nano-pipelined non-restoring divisor circuit. | 8 853 15 30 9X
16 1,741 115 50 15X
TABLE | -
GATE COUNT AND LATENCY CHARACTERISTICS OFNANO-PIPELINED Direct lIR
ARITHMETIC CIRCUITS 2 526 0 20 6X
4 1,274 20 30 9X
Mult Div Mult | Div 6 2,022 80 40 12X
Threshold gates | Latency (clock phases) 8 2,770 155 50 15X
4 = 13 o % 16 5,762 915 90 27X
8 726 2,937 22 100
16 || 3,170 | 19281 | 46 324 VII. CONCLUSIONS
32 || 13,242 | 138,273 | 94 1,156 In this paper, we presented nano-pipelined designs of some
64 || 54,122 | 1,044,033| 190 4,356 arithmetic circuits. We also introduced the first algorithm to enable

architectural nano-pipelining. This is achieved by first replacing each
. i module in the RTL architecture with its nano-pipelined version and
C. Examples of Nano-pipelined DSP Architectures then inserting latches, where needed, to synchronize all paths from
In this subsection, we present the threshold gate count, latbl inputs to the outputs. We presented examples and demonstrated
overhead, latency, and throughput for some nano-pipelined DRt it is possible to achieve high throughput using nano-pipelined
architectures. The word size of the architecture is assumed todpehitectures. Furthermore, we showed the application of RTD-
four bits. In calculating the throughput offered by a CMOS andFET nanotechnology to nano-pipelining. We hope that this work
a nano-pipelined implementation of an architecture, we make thas laid the foundation for further research in exploring novel nano-
same assumptions about the modules and technology characterigijpslined architectures.
as those presented in Section I1I-B. REFERENCES
Table Il presents the results of our analysis. The examples consjs} “Semiconductor Industries Association Roadmap.” http:/public.itrs.net
of direct and symmetric FIRs, and direct infinite impulse responsi] R. H. Mathewset al, “A new RTD-FET logic family,” Proc. IEEE
(IR) filter [13]. The tap size of a filter is just the number of] KOII'\/I8a7e'zg\?v'agf glp.“a?ﬁh—gogéggrr.]dl?oﬁ. ower operation of a resonant
data points that are used for _cal(_:ulatlng the result. We ap_plled O[ﬁ tuhneling logic date ?\/IO!:E‘?ILE,”IEEE Elepctron ngice Lettvol. 19,
algorithm to obtain the nano-pipelined version of these architectures. no. 3, pp. 80-82, Mar. 1998.
The gate count and latencies were calculated using the equatidak J. P. Sunet al, “Resonant tunneling diodes: Models and properties,”
developed in previous subsections. The latch overhead represents Proc. IEEE vol. 86, no. 4, pp. 641-661, Apr. 1998.

; ; ; K. F. Goseret al, “Aspects of systems and circuits for nanoelectronics,”
the number of latches that are inserted in the architecture (not the o " IEEE vol. 85, no. 4, pp. 558-572, Apr. 1997.

sub-modules) to synchronize the paths needed for nano-pipelining) w. williamson et al, “12 GHz clocked operation of ultralow power
As can be seen, nano-pipelined architectures have the potential to interband resonant tunneling diode pipelined logic gatéSEE J.

offer massive throughput. Solid-State Circuitsvol. 32, no. 2, pp. 222-230, Feb. 1997.
[7] P. Mazumderet al., “Digital circuit applications of resonant tunneling
VI. FUTURE DIRECTIONS devices,"Proc. |IEEE vol. 86, no. 4, pp. 664—-686, Apr. 1998.

We devote thi tion to di . ibl h t 6{8h C. Pacha and K. Goser, “Design of arithmetic circuits using resonant
€ devote this section 1o discussing possible enhancements &nd y,nneling diodes and threshold logic,” iRroc. Wkshp. Innovative

developments to the initial algorithm for nano-pipelining. A major Circuits & Systems for NanoelectronjcSept. 1997, pp. 83-93.
problem is to try to decrease the circuit overhead that is accrugé] C.Pacheetal, ‘Resonant tunneling device logic circuits,” University of
during nano-pipelining. This can only be achieved through efficient JDlﬂ;tngg and Gerhard-Mercator University of Duisburg, Tech. Rep.,
deS|gn_0f .Cll.’cums bas_,ed on RTD-HFET gate '_[ech_nology. .SeCO\TPF] L. Ciminiera and A. Serra, “Efficient serial-parallel arrays for multi-
nano-pipelining is an idea that should be exploited in the high-level” pjication and addition,” irProc. Int. Conf. Computer Arithmetidune
synthesis paradigm. Although one can find examples of architectures 1985, pp. 28-35. _ _
that are not nano-pipelineable, many architectures of interest are Hidl fL Dé}ddab “Faﬁ't tmgltlli}“ecfs for ?NO’AS _?r?mpt'%mentlgléf;befs 519 3693f ial
it i H H H _ H _ orm,” In Proc. Int. Coni. Computer Arithmetigune , Pp. —0bJ3.
It IS Important to a(_ﬂdress this concept in high-level quIQH for ne 2] Z. Kohavi, Switching and Finite Automata Theory New York, NY:
otechnologies. It will also be helpful to develop a design automation™ negraw-Hill, 1978.

tool for design space exploration and synthesis of nano-pipelingd] J. G. Proakis and D. G. ManolakiBjgital Signal Processing: Princi-
architectures. Finally, it will be necessary to develop communication ples, Algorithms, and ApplicationsUpper Saddle River, NJ: Prentice-

mechanisms for interfacing with the external environment. Hall, 1996.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

