
Local Decisions and Triggering Mechanisms for Adaptive Fault-Tolerance

Phillip Stanley-Marbell, Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

{pstanley, dianam}@ece.cmu.edu

Abstract
Dynamic fault-tolerance management (DFTM) was pre-

viously introduced as a means of providing environment-
and workload-driven adaptation for failure-prone battery
powered systems.
This paper introduces and analyzes the role of local de-

cision policies in a DFTM environment, and presents a pre-
cise formulation for when it is beneficial to activate a given
DFTM algorithm with respect to metrics that combine per-
formance, reliability, power consumption and battery life.
In particular, local decision algorithms are described in
the context of an imaging array application running on a
network of resource-constrained processing elements. It is
demonstrated that DFTM algorithms, in conjunction with
appropriately chosen activation times, increase the mean
computation before battery failure for a single battery, by a
factor between 1.1 to 5.8, for the application investigated.

1. Introduction
Failure, in its many forms, is becoming an increasingly

important design constraint in computing systems. Unlike
traditional fault-tolerant computing systems, where failure
is the exceptional case that must be addressed with ap-
propriate preventive and recovery techniques, technology
trends are making it increasingly difficult to guarantee de-
vice operability, with the result that larger fractions of man-
ufactured devices must be declared defective when they fail
testing. These factors make it increasingly important to in-
clude reliability as a design constraint, in much the same
manner as power consumption has, in recent years, gained
importance as a critical constraint alongside performance.
By including failure as a design constraint, and characteriz-
ing systems in terms of a combination of performance, reli-
ability, power consumption and where appropriate, battery
life, it will be possible to derive greater utility from devices
that would otherwise have to be discarded.
Failures in a system may be the result of manufacture-

time defects, or may be the manifestation of runtime effects

such as depletion of battery resources. In this regard, tra-
ditional power management may be considered a subset of
the more general idea of dynamic adaptation of a system to
failures. Low battery levels can then be seen as a predictable
failure event, whose occurrence must be delayed as much as
possible by taking appropriate actions, embodied by tradi-
tional power management algorithms. However, in the gen-
eral case of failures, as is the case when final battery re-
source depletion does occur, fault free devices must be used
as replacements for failing or failed devices. This requires
the existence of such replacement devices or “spares” in a
system, to be harnessed on the occurrence, or on the verge,
of a failure.
Dynamic fault-tolerance management (DFTM) [8] was

proposed as a framework in which dynamic adaptation to
failures in the presence of redundantly deployed devices
could be performed. It consists of three classes of algo-
rithms which address adaptation with regard to local actions
(subsuming traditional power management algorithms), re-
dundantly deployed devices, and the choice of which of
these spare devices should be utilized, respectively.

Contributions
Dynamic fault-tolerance management [8], as previously

proposed, provided neither an investigation of DFTM poli-
cies which adapt the behavior of a device in a system
without taking advantage of other redundantly deployed
resources, nor a precise formulation for when a specific
DFTM algorithm should be activated.
This paper presents an investigation of a set of DFTM

L-class algorithms, and presents a precise formulation for
when it is beneficial to activate a given DFTM algorithm,
with respect to metrics which combine performance, reli-
ability, power consumption and battery life. As previously
introduced [8], L-class algorithms control local adaptation
decisions, M-class algorithms control decisions of when to
employ redundantly deployed resources, and D-class algo-
rithms control the choice of which redundantly deployed
devices to be harnessed. The results of this paper are ap-
plicable to systems which must adapt to the presence of

1530-1591/04 $20.00 (c) 2004 IEEE

failures such as mechanical failures or energy resource de-
pletion, and must do so while providing maximal battery
lifetime and sustained performance. Such system require-
ments are embodied by many emerging technology plat-
forms, such as ambient intelligent systems [1] and inte-
grated computational sensing and actuation surfaces.
The remainder of this paper is organized as follows. The

following section presents motivation for performing dy-
namic adaptation to failures in the context of a driver ap-
plication, a network of embedded processing elements act-
ing as an imaging array. It is followed in Section 3 by a
review of previously proposed measures [8] for quantifying
the efficacy of a system in terms of a combination of energy-
efficiency, battery life, performance and reliability, known
as ebformabilitymeasures [8]. A precise formulation for de-
termining the conditions under which an algorithm should
be activated, is presented in Section 4, followed by an exper-
imental evaluation of the driver application in the context of
the presented ideas, in Section 5. The paper concludes with
a summary of contributions in Section 6.

2. Driver application : Imaging array

The driver application employed was one in which com-
puting devices arranged in a 2-dimensional grid, sample
values from sensors, and send these samples via a multi-hop
network to a designated member of the grid. Such a config-
uration of devices is representative of several applications
of relevance in ambient intelligent systems, such as an ul-
trasound imaging array for detecting the position, shape and
motion of objects, or an acoustic beamformer. It is also rep-
resentative of an active antenna array, used, for example, to
provide spatial filtering for an ultra-wideband radio.
Many of the issues raised by the application are appli-

cable to any system utilizing multiple resource-constrained
processing elements that communicate via a multi-hop net-
work. In the case of an ultrasound imaging array, the sam-
ples collected at each device in the network will contain in-
formation about the distance of objects from the particular
sensor, and the final image (the collection of samples from
all nodes in the system) will represent a 2-dimensional view
of the distance of objects from the sensor array.
For each sampling period, the image sub-component

captured at a device must be transmitted to whichever de-
vice in the system has designated itself as the aggregation
point. The arrival times of the captured sub-components at
the aggregation point will vary based on the properties of
the communication network connecting nodes together, the
method for routing data, as well as on the properties of the
nodes. For example, in a network topology such as the grid
shown in Figure 1, nodes in the system must cooperate in
the routing of data, to enable non-adjacent nodes to com-
municate.

Processing Device

Communication Link

Figure 1. A grid topology with 25 nodes. Non-
adjacent neighbor communication requires nodes
to cooperate in routing.

The particular communication strategies employed at
each node in the grid affect the communication latency be-
tween devices. For example, the algorithm governing the
delay between transmission attempts when a communica-
tion link is busy (e.g., in the case of a CSMA/CD communi-
cation medium) will affect the communication latency, and
will also affect the power dissipated at a device. In order to
conserve energy, a node might choose not to perform for-
warding for some or all received communication frames,
and this decision might change over time. For example, in
the event of impending system failure due to depletion of
battery resources, a node might cease to forward a frac-
tion of received communications. As a further example, in
the presence of excessive communication failures (e.g., due
to a physical fault in a communication link), a node might
cease forwarding a fraction of received data to reduce en-
ergy wasted in retransmission attempts1.
The variation in array sub-component arrival times or co-

herence, provides an intuitive measure of the quality of a set
of samples obtained during a quantum of the system’s life-
time. Figure 2 shows coherence maps for a 25-node sys-
tem which employs an as soon as possible (asap) transmis-
sion back-off algorithm (a device will wait for the length
of time taken to transmit one frame, and immediately retry
transmitting, on the occurrence of a collision). The analo-
gous coherence maps for a system employing a random de-
lay (random) transmission back-off algorithm (wait for a
random multiple of frame transmission times before retry-
ing) are illustrated in Figure 3. The figures provide some
intuition on the effects of one algorithm versus another on
the system performance (and reliability, if, e.g., an image
with greater than a threshold in standard deviation of arrival
times must be discarded).
In order to judge the relative benefits of one DFTM al-

1 The actual routing algorithm employed in the application investigated will not
be described in detail here. It employs an initial topology discovery phase, fol-
lowed by a deterministic routing strategy.

(a) Best σimg (b) Worst σimg

Figure 2. Spatial map of deviations in image sub-
component arrival times (in ms), for baseline asap
retransmission delay. σimg is the standard devi-
ation in arrival times for the image components.
Black squares denote absent samples.

(a) Best σimg (b) Worst σimg

Figure 3. Spatial map of deviations in image sub-
component arrival times (in ms), for baseline ran-
dom retransmission delay. σimg is the standard de-
viation in arrival times for the image components.
Black squares denote absent samples.

gorithm versus another, it is necessary to employ metrics
which include a combination of the effects of performance,
reliability, power consumption and battery lifetime. Perfor-
mance must be maintained for the obvious reasons of util-
ity. Reliability is of increasing concern in systems which
are either susceptible to high failure rates, or which employ
failure as a means of “throttling” performance (e.g., drop-
ping frames to be forwarded in order to conserve energy).
Power consumption and battery life must be treated sepa-
rately, since in some cases, a longer battery life might be
achieved at the cost of an increased peak power dissipation,
which might lead to increased heat dissipation and possi-
bly to reduced reliability. The following section provides a
more thorough formalization of what it means for one sys-
tem to be “better” than another, in terms of a combination
of measures of performance, reliability, power consumption
and battery life.

3. Combined metrics
3.1. Overview
Failure of a subset of the system resources can be toler-

ated in gracefully degrading fault-tolerant systems [3], pos-
sibly resulting in degraded performance. The redundantly
deployed devices which help maintain system functionality
in the presence of failures, provide additional performance
in their absence. In such situations, it is therefore necessary
to employ metrics that take into account both system per-
formance and reliability [2]. For systems in which perfor-
mance, power (average and peak power, and overall energy
consumption) and battery lifetime may be traded-off for re-
liability, similar measures are required.
In the following, F is the set of failure states, a subset of

the states in which a system may exist, which are indexed
with the variable i. The initial system state is always de-
noted by I . The probability of being in a state i after n time
steps is denoted by Pi(n). The behavior of a system un-
der study can be characterized by a collection of distinct
states, each state corresponding to a given level of perfor-
mance. For example, in a gracefully degrading system with
N nodes, 3 or more of which must be functioning in or-
der for the system to be considered “alive,” the system may
be modeled as a set ofN +1 states, of which states 0, 1 and
2 constitute the set of failing states.
The amount of computation that can be performed by a

system, T , the computation availability [2], is defined as:

T = α · n (1)

where α is the computation capacity—the amount of useful
computation per unit of time, and n is the number of time
steps.

Ci(T), the capacity function [2], is the probability that
the system executes a task of length T before its first fail-
ure, given that the state at the start of computation was i:

Ci(T) =
∑
j �∈F

P ∗
j (T) (2)

P ∗
j (T) (or Pj(n) for T = α · n) is the probability of being
in a given state after T = α · n amount of computation [2].
Larger values of Ci(T) are desirable for a given T .
In a battery powered system, the variation of Ci(T) will

be affected by the battery discharge profile, and will be
bounded by the battery life. The battery-aware capacity
function [8], Cbatti(T), is defined as:

Cbatti(T) =
∑
j �∈F

P ∗
j (T) · ζbatt(T) (3)

where ζbatt(T) is obtained by transforming the variation of
the battery state of charge versus time curve, (which can
be derived from the data-sheet for a particular battery cell),

into the computation domain. In its simplest form, it is a
step function whose extent is determined by the battery life-
time.

Ci(T) and Cbatti(T) can be used to calculate theMean
Computation Before Failure (MCBF) [2] andMean Compu-
tation Before Battery Failure (MCBBF) [8] respectively:

MCBF =
T=∞∑
T=0

CI(T), (4)

MCBBF =
T=∞∑
T=0

CbattI(T) (5)

where I is the initial state, at n = 0 (and T = 0).
The above measures can be used to determine the effi-

cacy of a system in providing fault-tolerant operation with
the best combination of power consumption, performance,
reliability and longest battery lifetime. Such an evaluation
would proceed by first defining the system states, and de-
termining the transition probabilities between states. The
probability of being in a given state, i, after a number of
time steps, Pi(n), can then be obtained by any of the meth-
ods described in the literature [4]. Pi(n) can then be trans-
formed to P ∗

i (T), by expressing the probability of being in
a given state, in terms of the amount of computation per-
formed, rather than time steps. This requires an appropri-
ate definition, for the particular system under study, of the
computation capacity, α. The metrics taking into account
performance, reliability, battery life and power consump-
tion can then be determined as detailed in equations 1–5
above. These metrics, which combine the notions of energy-
efficiency, battery lifetime, performance, and reliability, are
referred to as ebformability measures [8].

3.2. Parameters for image array application
For the image array application, a failure is defined as the

arrival time of a sample at the aggregation node being more
than one standard deviation from the mean for that sam-
pling period. The states of the system are defined to corre-
spond to the number of valid samples received.
The computation capacity [2], α, is the amount of use-

ful computation performed per time step. It embodies the
“quality” of the behavior of the system. For the application
under study, four factors must be taken into consideration
regarding performance: (1) The standard deviation, σimg,
between the arrival times of components of an image, aver-
aged across many images; (2) The CPU occupancy, occcpu,
the fraction of time for which the CPU is busy; (3) The max-
imum occupancy of the transmit and receive FIFO queues,
occfifo, across all the nodes in the system and (4) The
average number of valid image subcomponents received,
nvalid. The CPU occupancy and maximum buffer lengths
used, are included in the measure of computation capacity

to incorporate a notion of how efficiently resources are be-
ing used. Given that the application was employed on a non-
preemptive system executing a single application, they pro-
vide a measure of the additional load that the system could
bear, in the presence of preemptive multiprogramming. The
computation capacity, α is therefore defined as a combina-
tion of these factors:

α =
(

ε

occcpu
+

µ

σimg
+

ν

occfifo

)
· nvalid (6)

In the above equation, ε, µ and ν are the relative weights
attached to the roles of occcpu, σimg and occfifo, respec-
tively. In the experimental evaluation, identical weighting
factors were employed for all the terms, i.e., ε = µ = ν.

4. DFTM algorithm triggering mechanisms
Dynamic Fault-Tolerance Management (DFTM) in-

volves dynamically adapting systems in the presence
of failures, by employing a structured set of algorithms
which modify a node’s behavior or take advantage of al-
ternate resources, to provide prolonged lifetime. The
failures in question may be intermittent non-fatal fail-
ures (such as communication errors) or predictable fatal
failures (such as low battery levels). Despite the useful-
ness of the structured approach to adaptation algorithms,
the benefits to be derived from algorithm activations is de-
pendent on the time at which these activations occur.
The original proposal of DFTM [8] used educated guess-
work to determine the threshold at which the activation of a
DFTM algorithm should occur. It is however possible to de-
rive precise formulations for when an algorithm should be
activated, given the tradeoffs between the overheads as-
sociated with the algorithm, in terms of a combination of
performance, power, reliability and battery life, and its ben-
efits thereof.
In order to achieve the best combination of performance,

reliability and battery lifetime for a battery-powered sys-
tem, it is desirable for a DFTM algorithm to maximize
the Mean Computation Before Battery Failure (MCBBF)
ebformability measure. The battery threshold for initiating
the action of a DFTM algorithm (e.g., switching from the
asap collision retry policy to the random collision retry
policy for the example in Section 2), henceforth referred
to as the activation threshold, ξ(Battery,Algorithm, γ),
is given as:

ξ(Battery,Algorithm, γ) =
θalg(Battery, γ)

lifetimebase
(7)

where θalg is the time of activation of the new behavior,
lifetimebase is the expected lifetime of the system if the
algorithm is not activated, and 0 ≤ γ ≤ 1, is the relative im-
portance of the combined ebformability metrics over opti-
mal system lifetime. The constant γ enables a specification

Number of nodes 25 (26 for M-class algorithms)
Link Layer Frame Size 1024 bits
Link Speed 1 Mb/s
Communication Power 250mW TX/RX
Operating Frequency 15 MHz
Battery Capacity 0.1 mAh
Battery Discharge Prop. LUT Panasonic CGR18
DC-DC Conv. Efficiency LUT Maxim MAX1653

Table 1. Properties of the simulated system

of the emphasis to be placed on the ebformability measures
versus on achieving the optimal system lifetime (without re-
gard, say, to reliability).
In activating a new behavior over the baseline opera-

tion, the time of activation affects the overall lifetime in
two ways. The obvious effect is any change in performance
from the activation of the new behavior. However, the time
at which the activation occurs, also affects the usable life-
time of the battery cell, as a result of non-linearities in the
battery electro-chemical characteristics, particularly, if the
activation might cause a temporary or permanent change in
the current discharge profile. The fractional increase in bat-
tery lifetime derived from employing an activation time of
θalg is λalg , a function of θalg , lifetimebase and the bat-
tery cell characteristics. It can be determined using meth-
ods for determining the effect of application profile on bat-
tery lifetime [5].
The goal in obtaining θalg for the algorithm alg, is to

maximize the increase in MCBBF over a baseline, base,
given knowledge of the MCBBFs for base and alg, and the
discharge characteristics of the battery cell, i.e.:

∆ =
αbase·θalg∑

T=0

Cbase(T)ζbatt(T)

+
αalg·lifetimebase·λalg∑

T=αbase·θalg

Calg(T)ζbatt(T)

−
αbase·lifetimebase∑

T=0

Cbase(T)ζbatt(T) ≥ 0 (8)

where T , α, n and Ci(T) are as previously defined in equa-
tions 1–5.
Equation 8 can be solved to obtain the θalg for which

there is an increase in the MCBBF, and the optimal θalg can
be obtained by taking the appropriate derivatives of∆.

5. Evaluation
The imaging array application was implemented in the

C programming language, and compiled for execution on a
cycle-accurate simulator, an extension of a previously de-
veloped simulation framework [7], that enables the instan-

Algorithm Description

binexp Binary exponential transmission
retry delay (binexp).

asap ASAP transmission retry delay (asap).
random Random transmission retry delay (random).
dropfwd Randomly drop 10% of link layer frames

meant to be forwarded (dropfwd).

L0 Switch from binexp to asap after
(ξ(# collisions) = 32) link layer collisions.

L1 Switch from binexp to random after
(ξ(# collisions) = 32) link layer collisions.

L2 Enable dropfwd after occurrence of
(ξ(# collisions) = 32) link layer collisions.

L3 Enable dropfwd after
(ξ(batt. level) = 25% capacity).

L4 Switch from binexp to asap
after (ξ(batt. level) = 25% capacity).

L5 Switch from binexp to random
after (ξ(batt. level) = 25% capacity).

L6 Enable dropfwd after occurrence of
(ξ(batt. level) = 15% capacity).

M0 Re-map application sub-component to
a redundantly deployed device
after (ξ(batt. level) = 25% capacity).

M1 Re-map application sub-component to
a redundantly deployed device
after (ξ(batt. level) = 15% capacity).

Table 2. Baseline, L-class and M-class DFTM in-
stantiations investigated.

tiation of multiple processing elements, modeling compu-
tation, communication and battery subsystem properties[6].
From the simulation data, the parameters occcpu, occfifo

and σimg of Equation 6 are extracted, as well as the re-
sultant battery lifetime and transition probabilities between
states. The properties of the simulated system are listed in
Table 1, and the set of DFTM algorithms investigated are
listed in Table 2.
The first group of system configurations listed in Ta-

ble 2, binexp to dropfwd, represent the baseline configu-
rations, with the strategy listed in the second column em-
ployed throughout the application’s execution (i.e., no dy-
namic changes between behaviors in response to applica-
tion or environment conditions). The second group, L0 to
L6 represent seven simple DFTM L-class algorithms for
adaptation. In the second group, ξ represents some function
of the number of link layer collisions, or the battery capac-
ity, at which the algorithm’s change should occur, as shown
in Equation 7. The last group represents DFTM M-class al-
gorithms, which employ application re-mapping to take ad-
vantage of redundantly deployed devices in a system. These
employed the same threshold as the corresponding L-class
algorithms, to investigate the possible benefits of prioritiz-
ing algorithms from the different classes at a given thresh-
old.
The trend in the mean computation before battery fail-

ure (MCBBF) across the baseline, L- and M-class algo-
rithms is shown in Figure 4. The MCBBF of a system rep-
resents the average amount of computation the given sys-

binexp asap randomdropfwd L0 L1 L2 L3 L4 L5 L6 M0 M1

0

10

20

30

40

50

60

binexp asap randomdropfwd L0 L1 L2 L3 L4 L5 L6 M0 M1
MCBBF

Figure 4. Mean Computation Before Battery Fail-
ure, MCBBF.

tem configuration will complete, in the presence of possible
system failures, before it exhausts its battery. Even though
the asap baseline witnesses the smallest average commu-
nication buffer occupancy, implying the best communica-
tion performance, it does not achieve the lowest standard
deviation in image component arrival times (the data is
not presented here for brevity). It also achieves the worst
MCBBF of all the baseline configurations. This is because
even though the individual indicators of performance (CPU
occupancy, standard deviation across image subcomponent
arrival times, average buffer occupancy) are comparable or
better than the other baseline configurations, the probabil-
ity of being in a non-failed state, with increasing amount of
computation performed, as given by C(T) (see Section 3),
is substantially smaller than for the other baselines.

The best baseline MCBBF is achieved by the dropfwd
algorithm, which selectively drops 10% of the received
packets meant to be forwarded. Even though on the average
it has an approximately 50% larger standard deviation in
image subcomponent arrival times, on the whole, it exhibits
a greater probability of being in a non-failed state over time.
This best performing baseline is improved on by the L1 and
L2 L-class algorithms, and the M0 M-class algorithm. The
L1 algorithm switches from a binexp retransmission delay
to a random delay after a threshold of 32 link layer col-
lisions. It witnesses a 1.1x improvement over the best per-
forming baseline MCBBF (dropfwd), and a 5.8x improve-
ment over the worst baseline MCBBF (asap).
Comparing L- and M-class policies which are enabled at

the same battery capacity threshold (L3, L4 and L5 com-
pared to M0; L6 compared to M1), it is observed that in
terms of the MCBBF, for the same activation threshold, the
M-class algorithms should be given priority over L-class al-
gorithms, if the goal is to maximize MCBBF. For different
battery sizes and characteristics however, the benefits from

employing L-class algorithms might begin to exceed those
of M-class algorithms for the same threshold. An interesting
avenue for future research is determining the threshold in
average battery capacity in a system, for which M-class al-
gorithms will always perform better than L-class algorithms
activated at the same threshold, and vice versa.

6. Summary
This paper presented an investigation of a set of DFTM

L-class algorithms, and a precise formulation for when it
is beneficial to activate a given DFTM algorithm, with re-
spect to metrics which combine performance, reliability,
power consumption and battery life. It was demonstrated
with the aid of a concrete example and detailed simulation
results, that L-class algorithms can provide a substantial im-
provement over systems not employing DFTM. The mean
computation before battery failure for a single battery was
shown to be increased by a factor between 1.1x to 5.8x, for
the application investigated.

Acknowledgments
This research was supported in part by the Army Re-

search Office through the Center for Computer and Com-
munication Security at Carnegie Mellon University and by
the Semiconductor Research Corporation under Grant No.
2002-RJ-1052G.

References

[1] T. Basten, L. Benini, A. Chandrakasan, M. Lindwer, J. Liu,
R. Min, and F. Zhao. Scaling into Ambient Intelligence.
In Proceedings of Design Automation and Test in Europe,
DATE’03, pages 76–81, March 2003.

[2] M. D. Beaudry. Performance-related reliability measures for
computing systems. IEEE Transactions on Computers, c-
27(6):540–547, June 1978.

[3] B. R. Borgerson and R. F. Freitas. A reliability model for
gracefully degrading and standby-sparing systems. IEEE
Transactions on Computers, c-24:517–525, May 1975.

[4] G. Grimmett and D. Stirzaker. Probability and Random Pro-
cesses. Oxford University Press, 2001.

[5] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery
Lifetime Prediction for Energy-Aware Computing. In Inter-
national Symposium on Low Power Electronics and Design,
ISLPED’02, pages 154–159, August 2002.

[6] P. Stanley-Marbell. Myrmigki Simulator Reference Manual.
Technical report, CSSI, Dept. of ECE, Carnegie Mellon, 2003.

[7] P. Stanley-Marbell and M. Hsiao. Fast, Flexible, Cycle-
Accurate Energy Estimation. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design,
pages 141–146, August 2001.

[8] P. Stanley-Marbell and D. Marculescu. Dynamic Fault-
Tolerance and Metrics for Battery Powered, Failure-Prone
Systems. In International Conference on Computer Aided De-
sign, (ICCAD), pages 633–640, November 2003.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

