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ABSTRACT
A distributed sensor network (DSN) designed to cover a given re-
gion R, is said to bealive if there is at least one subset of sensors
that can collectively cover (sense) the regionR. When no such sub-
set exists, the network is said to be dead. A key challenge in the
design of a DSN is to maximize the operational life of the network.
Since sensors are typically powered by batteries, this requires max-
imizing the battery lifetime. One way to achieve this is to determine
the optimal schedule for transitioning sets of sensors between ac-
tive and inactive states while satisfying user specified performance
constraints. This requires identification of feasible subsets (covers)
of sensors and a scheme for switching between such subsets. We
present an algorithmic solution to compute all the sensor covers in
an implicit manner by formulating the problem asunate covering
problem(UCP). The representation of all possible sensor sets is ex-
tremely efficient and can accommodate very large number of sen-
sor covers. The representation and formulation makes it possible to
consider the residual battery charge when switching between cov-
ers. We develop algorithms for switching between sensor covers
aimed at maximizing the lifetime of the network. The algorithms
take into account the transmission/reception costs of sensors, a user
specified quality constraint and also utilize a novel battery model
that accounts for therate-dependent capacityeffect andcharge re-
coveryduring idle periods. Our simulation results show that life-
time improvement can be achieved by exploiting the charge recov-
ery process. The work1 presented here constitutes aframeworkfor
battery aware sensor management in which various types of con-
straints can be incorporated and a range of other communication
protocols can be examined.

1. INTRODUCTION
Recent advances in MEMS, sensor technology and microelec-

tronic fabrication have made it possible to design low cost micro-

1This work was carried out at the National Science Foundation’s
State/Industry/University Cooperative Research Centers’ Center
for Low Power Electronics (CLPE). CLPE is supported by the
NSF(Grant #EEC-9523338), the State of Arizona, and an indus-
trial consortium.

sensors that can perform sensing, data processing and wireless com-
munication. This capability has given rise to enormous research
and development activity in the area of distributed sensor networks
(DSN). Battery powered sensor units [8] are envisioned to be used
for a wide range of applications due to their low cost, ease of de-
ployment, maintainability and reliability. Consequently, a key chal-
lenge is to efficiently utilize the available finite energy resources to
maximize thelifetime of the network. Energy management in a
DSN must consider all three facets, namely, the network topology,
the data processing scheme and the communication protocol, while
satisfying the specified quality and reliability constraints. Although
the total energy cost of a DSN includes all aspects of the sensor’s
actions, for many applications, communication consumes the great-
est amount of energy [7].

In order to ensure connectivity, quality and reliability, sensor
networks are designed to be redundant. Moreover, in many ap-
plications large numbers of sensors are deployed randomly. Con-
sequently, many sensor management schemes exploit this redun-
dancy to efficiently transition a subset of sensors into a sleep or in-
active state while maintaining the network connectivity [2, 3, 4, 6,
9, 10, 13, 16]. In [3], the authors show that maximum lifetime can
be achieved by balancing the energy consumption in the network.
They propose algorithms for optimal routing of packets in sensor
networks to maximise lifetime. In [2], the authors develop an up-
per bound on the lifetime of the network by assigning feasible roles
(routers, data aggregators, etc.) to individual sensors. In [16], every
grid point has several sensors, with only one active at a time. An
event based approach is described in [13], where a communication
path is set up by activating sensors upon the occurrence of an event.
In [10], sets of sensors called thefeasible setsare computed using a
randomized approach. Since the complexity of computation of all
feasible sets is exponential, only a small fraction of the feasible sets
sensors (i.e. covers) can be maintained.In this paper, we present an
algorithmic solution to compute all the feasible sensor sets (sensor
covers) in an implicit manner by formulating the problem as unate
covering problem (UCP). The representation of all possible sensor
covers is very efficient and can accommodate a large number of
sensor covers. In addition, an accurate battery model that accounts
for the rate-dependent capacityeffect andcharge recoveryduring
idle periods, is used todetermine the selection of sensor covers. The
proposed sensor management scheme considers the battery non-
linear effects (charge recovery process), the transmission/reception
costs of sensors, the network topology and specified quality con-
straints. We develop algorithms for switching between sensor cov-
ers aimed at maximizing the lifetime of the complete network. We
assume that the sensors are static and homogeneous, and assume a
direct transmission communication protocol, in which each sensor
communicates directly with the basestation.
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The rest of the paper is organized as follows. Section 2 has the
problem formulation, the representation of covers and defines the
covering problem. Section 3 describes the battery-aware sensor
management strategies and algorithms. It also includes a brief de-
scription of the battery model. In section 4 the experimental setup
and simulation results are described. Concluding remarks are made
in Section 5.

2. PROBLEM FORMULATION

2.1 Notation and Terminology

• S denotes the set of all sensors.

• R (sensing region) is a two dimensional grid.

• r (sensing radius) is the range of points a sensor can cover.

• Sensing cover: A set of sensors that coverR.

• Px,y is the set of sensors that cover point(x, y).

• A sensors ∈ S is also represented by a Boolean variable
s, wheres = 1(0) if s is on (off).

• λx,y = 1 if and only if there is at least one active sensor
that covers(x, y). The covering constraint is given by

λx,y =
∑

i∈Px,y

si (1)

Note:
∑

denotes Boolean disjunction operation

• χR (sensor cover function) equals 1 if only if every point in
R is covered by an active sensor. That is

χR =
∏

(x,y)∈R

(λx,y) (2)

Note:
∏

denotes Boolean conjunction operation

• A Reduced Ordered Binary Decision Diagram (ROBDD) [1]
with respect to a given ordering of boolean variables is a
rooted, directed, acyclic graph representing a Boolean func-
tion of the variables. It has two terminal nodes, (0) and (1).
Each internal nodeu is labeled by a variable, and has two
children, high(u) and low(u). The order in which the vari-
ables appear along a path is consistent with the ordering. The
functions denoted by high(u) and low(u) are distinct and
subgraphs rooted at any two nodesu andv are not isomor-
phic.

• Qf (quality factor) is the minimum number of sensors that
is required to cover every point inR.

2.2 Transmission Cost Model
The model for the energy cost of transmission follows [7]. Let

ET (k,d) andER(k) denote the total energy dissipated to transmit k
bits over distance d and energy dissipated to receive k bits respec-
tively. Let εamp be the transmitter amplification factor. Then,

ETx(k, d) = Eelec ∗ k + εamp ∗ k ∗ d2 (3)

ERx(k) = Eelec ∗ k. (4)

The energy consumed increases quadratically with the transmis-
sion distance from the base station. Hence, the current drawn from
the battery is proportional to the square of the transmission dis-
tance of a sensor node. We assume that the transmission current is
dominant. This might not true for other communication protocols.

2.3 Sensing Cover Problem (SCP)
Given a sensing regionR, n sensorss1, s2,. . . ,sn, and their re-

spective sensing radiir1, r2,. . . , rn, the determination of all sens-
ing covers, is equivalent to finding all n-tuples< s1, s2, . . . , sn >
such thatχR is satisfied. This is identical to the classical unate cov-
ering problem [5]. To see this, consider a covering matrix, where
the rows correspond to the points inR, and the columns correspond
to the sensors. An entry of 1 in a(row, col) = ((x, y), s) means
that sensors can cover grid point(x, y). Thus the sum (disjunc-
tion) of the all the variables in row(x, y) represents the conditions
for covering point(x, y), i.e. λx,y. The conjunction of the row
sums represents the conditions for covering every point, i.e.χR .
As an example, consider a4 × 4 R, with n = 5 sensors. Table 1
shows the covering table. The covering constraint associated with
each point(x, y) is also shown. Taking the conjunction of all the
covering constraints yieldsχR . For this example, we obtain (after
simplification)χR = s1s2s3s4 + s0s1s2s3.

Table 1: Covering matrix
(x,y) s0 s1 s2 s3 s4 λ(x,y)

(0,0) 1 0 0 0 1 s0+s4

(0,1) 1 0 0 1 1 s0+s3+s4

(0,2) 1 0 0 1 1 s0+s3+s4

(0,3) 0 0 0 1 0 s3

(1,0) 1 1 0 0 1 s0+s1+s4

(1,1) 1 1 1 1 1 s0+s1+s2+s3+s4

(1,2) 1 1 1 1 1 s0+s1+s2+s3+s4

(1,3) 0 0 1 1 0 s3+s2

(2,0) 1 1 0 0 0 s0+s1

(2,1) 1 1 1 1 1 s0+s1+s2+s3+s4

(2,2) 1 1 1 1 1 s0+s1+s2+s3+s4

(2,3) 0 0 1 1 0 s2+s3

(3,0) 0 1 0 0 0 s1

(3,1) 0 1 1 0 0 s1+s2

(3,2) 0 0 1 0 0 s2

(3,3) 0 0 1 0 0 s2

When a number of sensors sense the same event, the amount of
noise in the sensed quantity is reduced, thus increasing the quality
of the output. Any application of sensor networks needs to perform
according to user specified quality constraints which are generally
dynamic in nature. Thequality factorQf specifies the minimum
number of sensors required to cover each point inR. We now
show how this additional constraint can be incorporated into the
SCP. LetK be the set of all combinations, formed by choosing at
leastQf sensors from a totaln sensors covering a point and letk1,
k2, k3,. . . ,kn be the elements ofK. Then the covering constraint
λQ(x, y) andχR are defined as follows.

λQ(x, y) =

 n
Qf

∑
i=1

ki (5)

χR =
∏

(x,y)∈R

(λQ(x, y)) (6)

For example, the point(0, 1) in Table 1 can be covered by sen-
sorss0, s3 ands4. If Qf = 2, thenλQ(0, 1) = s0s3+s3s4+s4s0.

We use the method described in [15] to solve UCP.χR is rep-
resented by a ROBDD. Thus, the set of1-pathsin the ROBDD
forms the set of feasible solutions for the sensor cover function.
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The ROBDD forχR obtained after simplification of the covering
matrix Table 1 is shown in Figure 1. From the ROBDD, we observe
that there exists 2 sensing covers.
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Figure 1: ROBDD of χR
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Figure 2: Before Quantifica-
tion
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Figure 3: After Quantifica-
tion

3. BATTERY AWARE APPROACH
A energy based sensor management scheme requires accurate es-

timation of the residual charge of the battery. Each sensor node can
be easily made to provide such an estimate to the base unit, either
periodically or when explicitly queried. An alternative would be for
the base unit to estimate the residual charge. This requires a bat-
tery model and it’s discharge characteristics as a function of a time
varying load profile. The battery model is discussed in Section 3.3.

• Lifetime:A given sensor network is alive if and only if, there
exists at least one valid sensing cover.The earliest time at
which no sensing cover exists is defined as the lifetime of
the network.

• Let τ be the minimum time a sensing cover needs to be
turned on. τ is a user specified parameter and depends on
the type of application. The minimum value ofτ is the trans-
mission time for a single packet. The information content
required by a specific application and the data rate of the sys-
tem determineτ .

• GivenIs is the transmission current for sensor s, theweight
denoted byws(t), is it’s residual lifetime at any instantt.
as(t) is the available charge at sensor s computed using bat-
tery model discussed in Section 3.3.

ws(t) = as(t)/Is (7)

• SC ⊆ S is the validsensing coverat timet if χR evaluated
for SC results in a tautology andws(t) > τ ∀s ∈ SC .

• χon is a characteristic function (representing the set of sensor
nodes) in the currently active sensing cover.

• At any time t, a sensors is considered dead, if it’s weight
ws(t) < τ .

The pseudo code for updating the weight of all sensors is pre-
sented in Algorithm 1. The load profile of each sensor node is
updated after a specified time depending on whether a given node
is turned on or off. Using the updated load profile(discussed in 3.3)
and the network on-timeT , the available chargeaj(T ) at each sen-
sor node is calculated using the battery model. The ratio ofaj(T )to
Ij is the weight of the sensor node.

Algorithm 1: Pseudo code of UPDATE WEIGHTS

UPDATE WEIGHTS(S,χon , ∆k, T, α, β)
(1) foreachsj ∈ S
(2) if sj ∈ χon

(3) UPDATE LOAD PROFILE(Isj ,∆k);
(4) else
(5) UPDATE LOAD PROFILE(0,∆k);
(6) asj (T)← α - σsj (T, α, β);
(7) wsj (T)← asj (T)/Isj ;
(8) return

3.1 Max-Min Minimal Cover (M3C)
A sensing cover, or simply a cover, ceases to be a valid, if at

least one sensor in the cover is dead. Therefore, the lifetime of a
cover is limited by the lifetime of the weakest sensor in the cover.
Maximizing the lifetime of the weakest sensors in a cover, delays
the death of a cover. Moreover, every sensor is shared by a large
number of covers. An optimal cover needs to be turned on among
all the covers in such a way that the lifetime is maximized. This is
accomplished, by selecting a cover whose minimum weighted node
(min) is maximum (Max) over all existing covers. By keeping Max
Min cover on, we avoid discharging all other covers whose weakest
sensor node weights are smaller than the current weakest node, thus
increasing the lifetime of the network. Additionally, we eliminate
redundant sensors from this optimal cover by making it minimal.
Such a cover is referred to as Max-Min Minimal Cover (M3C).

DEFINITION 3.1. Let F (x1, . . . , xn) be a Boolean function.
The universal quantification(Figure 2,3) ofF with respect toxi,
denoted by∀(F, xi),is defined as∀(F, xi) = F (x0, . . . , xi =
1, . . . , xn) · F (x0, . . . , xi = 0, . . . , xn)

DEFINITION 3.2. At any given time t,S ⊆ S is an minimal
cover if and only if,∀s ∈ S, χR evaluated atS − s is not a tautol-
ogy.

DEFINITION 3.3. Let S1 and S2 be two minimal covers, with
n1 and n2 sensors, respectively. Let(s1,1, s1,2, . . . , s1,n1) and
(s2,1, s2,2, . . . , s2,n2) be the sensors inS1 andS2 respectively, ar-
ranged in increasing order of their weights. Letj be the smallest
index such thats1,j 6= s2,j . Then the Max-Min Cover ofS1 and
S2 is equal toS1 if ws1,j (S1) > ws2,j (S2); and is equal toS2 if
ws2,j (S2) > ws1,j (S1).

DEFINITION 3.4. A cover, which is both max-min and minimal,
is called the max-min minimal Cover (M3C). The characteristic
function of a max-min minimal cover is denoted byχM3C.

The pseudo code to compute theχM3C is presented in Algorithm 2.
The inputs areχR , the characteristic function describing the region
R, χon , the characteristic function previous on cover, andS, the
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set of sensors. After initialization, sensors are sorted in ascending
order by their weights in Step 2. Initially, whenχon is empty, the
index of the weakest sensor is assigned 0 and no sensor node is
quantified fromχM3C in step 7. Ifχon is not empty, then the index
of the weakest sensor in the on cover is found in step 6. In step
7, all sensors weaker than the weakest sensor ofχon are removed
using universal quantification (Def: 3.1) overχM3C with respect to
all weaker sensors. IfχM3C is empty,χon is returned in step 9.
Otherwise in step 10,χM3C is made minimal by removing redun-
dant sensors and returned as a new M3C which will be the next on
cover. This is further explained in the following section.

Algorithm 2: Pseudo code to compute M3C
M3C(χR , χon , S)
(1) χM3C ← χR ;
(2) S← SORT BY WEIGHT(S);
(3) if χon=NULL
(4) i← 0;
(5) else
(6) i← FIND WEAKEST WEIGHTED NODE INDEX(χon );
(7) χM3C ← ∀(χM3C, s1 . . .si);
(8) if χM3C is φ
(9) return χon ;
(10) foreach j← (i+1 to length of array S)
(11) result← ∀(χM3C, sj)
(12) if result/∈ φ
(13) χM3C ← result;
(14) return χM3C;

3.2 Sensor Management Schedules
Using M3C, we first present a simple scheduling scheme without

considering the battery recovery effect as the baseline implementa-
tion. Since, in this scheme all the M3C’s are discharged one after
another, it is referred to as a sequential scheduling scheme.

The sequential schedule is computed using Algorithm 3. The
algorithm usesχR , andS as it’s inputs to iteratively generate the
load profile for each sensor and to compute the lifetime T. At the
beginning of each iteration, in Step 3,χon is computed by making
an initial call to M3C. In the sequential scheme, the sensor cover is
kept on until it ceases to be a valid cover. Therefore, in Step 4, the
on time slot∆k, for every iteration is limited by the life time of the
weakest sensor in the on coverχon . The lifetime of the weakest
sensor is computed using the battery model by applying a constant
transmission load. Likewise, in Step 5 the network lifetime T is
incremented by∆k. In step 6,the weights of all sensors are up-
dated by calling the function UpdateWeights (Algorithm 1). A set
of dead sensorsSd is computed in Steps 8, 9, and 10. All the dead
sensors inSd are eliminated fromχR in step 12, thereby ensur-
ing the set of invalid covers are pruned out from the search space.
Finally, if χR is not empty, a new on-cover for the next iteration
is again computed. Finally, if no sensor cover exists (i.e.χR is
empty) the loop terminates.

The lifetime of the weakest sensor in the cover characterizes the
lifetime of each cover. Hence, all the weakest sensors in each cover,
can be treated as a set of multiple batteries. Recent research on dis-
charging schemes of multiple batteries [12] has shown that lifetime
of the multiple battery systems can be improved by appropriately
switching between them. Based on this argument, we present the
switching scheme aimed at maximizing the recovery effect at each
sensor using the M3C. By switching between different M3Cs every
τ units of time, we ensure that the sensors with the highest battery
reserves bear the transmission load, giving greater opportunity for

Algorithm 3: Pseudo code of SEQ LIFETIME

M3C SEQ LIFETIME(χR , S)
(1) T← 0; χon ← NULL;
(2) while χR /∈ φ
(3) χon ← M3C(χR , χon , S);
(4) ∆k ←WEAKEST NODE L IFETIME(χon );
(5) T ← T + ∆k;
(6) UPDATE WEIGHTS(S, χon , ∆k, T );
(7) Sd ← φ;
(8) foreachs ∈ S
(9) if WEIGHT(s)< τ
(10) Sd ← Sd

⋃
s;

(11) if Sd 6= φ
(12) χR ← ∀(χR , Sd);
(13) return T;

other sensors in the network to recover.
The switching schedule is computed in Algorithm 4. GivenχR ,

and S as inputs, the algorithm computes the lifetime of the network.
The iterative procedure starts by computing the M3C in Step 3. The
selected M3C is turned on forτ units of time and the network on
time is incremented in step 5. In Step 6, the weights of all sensors
are updated. Steps 7, 8, 9, 10 describe a method to identify the
dead sensors in the network. These sensors are removed from the
χR using the universal quantification operation in Step 12. The
steps from 2 to 13 are repeated until, no more valid covers exist
and return the value of the lifetime.

In estimation of each sensor’s battery charge, it is assumed that
no transmission errors occur. If transmission errors do occur, the
base station does not use the battery model to estimate each sensor’s
battery reserve, but relies on individual sensors transmitting their
battery status after each iteration.

Algorithm 4: Pseudo code of SWT LIFETIME

M3C SWT LIFETIME(χR , S)
(1) T← 0; χon ← NULL;
(2) while χR /∈ φ
(3) χon ← M3C(χR , χon , S);
(4) ∆k ← τ
(5) T ← T + ∆k;
(6) UPDATE WEIGHTS(S, χon , ∆k, T );
(7) Sd ← φ;
(8) foreachs ∈ S
(9) if WEIGHT(s)< τ
(10) Sd ← Sd

⋃
s;

(11) if Sd 6= φ
(12) χR ← ∀(χR , Sd);
(13) return T;

3.3 Battery Model
The capacity of a battery depends on the discharge current. The

battery is less efficient at higher loads (rate dependent capacity ef-
fect). When a battery is disconnected from it’s load, some of the
charge that wastrappedcan be made available at the end of the
idle period (recovery effect). A highly accurate and robust model
of a battery that captures both these effects is presented in [11].
Consider a load profile given as a sequence of N constant current
valuesI0, I1, . . . , IN−1, applied to the battery until the battery is
fully discharged (up to timet = L). The loadIk starts at timetk

and is applied for a duration∆k=tk+1-tk. Then the battery model
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is defined by

α =

N−1∑
k=0

Ik∆k (8)

+ 2

N−1∑
k=1

Ik

∞∑
m=1

e−β2m2(L−tk−∆k) − e−β2m2(L−tk)

β2m2

Note: the parametersα andβ are constants and characterize the
battery. They are estimated by applying a set of constant load tests
until the battery is fully discharged [11]. The parameterα rep-
resents the total chargein the battery when it is fully charged.β
measures how fast the diffusion process cankeep upwith the rate
of withdrawal of the charges. Ifβ is moderately large, then the
second term in (8) becomes negligible, and the total charge deliv-
ered to the application up to the time it is cutoff is the total charge
available in the battery. A small value ofβ means that there can
be some unused charge left in the battery at the time it was cut-
off. Now consider anactual load profilei0, i1, . . . in−1, applied
to an (α, β) battery, where the duration ofik is ∆k. In general,
ik depends on the type of activity the sensor is performing, e.g. ,
data processing, transmitting, or receiving. Given{ik}, we define
a cost functionσ(t) which represents theapparentcharge lost by
the battery by timet, as follows.

σ(t) =

n−1∑
k=0

Ik∆k (9)

+ 2

n−1∑
k=1

Ik

∞∑
m=1

e−β2m2(t−tk−∆k) − e−β2m2(t−tk)

β2m2

Comparing Equation (9) with (8), the lifetimeL of the battery
is the first instantt when σ(t) equalsα. Now, the first term in
Equation (9) is the charge actually consumed by timet, while the
second term is the charge that is unavailable at the electrode surface
σ(t) is then theapparent charge lostby the battery. The charge
available at timet is a(t) = α− σ(t).

4. EXPERIMENTAL RESULTS
In this section we present the results of experiments to verify

the approach and the improvement in the network lifetime due to
battery recovery effect. Then sensors were randomly distributed
on a grid of size50 × 50. The results reported in all simulations
were averaged over 20 randomly generated networks for each value
of n. The programs were implemented using CUDD package [14]
and executed 1.8GHz Pentium 4, with 512MB memory.

To examine the efficiency of the representation, we varied the
network density by increasing the number of sensors from 50 to
100, with a sensor radiusr = 10. Figure 4 shows that while the
total number of covers increases significantly with respect ton,
the size of the ROBDD representation increases at a much smaller
rate. In fact, the ratio of the ROBDD size to the number of covers
approaches zero as the number of covers increases (see Figure 5).

Next, we varied the sensing radii of every sensor from 8 to 20,
while keeping then = 75. Figure 6 shows that the number of cov-
ers increases as expected with respect to the sensing radii, however,
the size of ROBDD forχR initially increases for smaller radii and
thereafter it decreases for larger radii. This is due the fact that for
smaller radii, the cover matrix is sparsely filled. As a result, the
ROBDD representations are more compact. Similarly for larger
sensing radii, the cover matrix is very dense and this again results
in a compact representation. However for a moderate radius, when
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Figure 4: Impact of network
density

Figure 5: Ratio of Size of
BDDs and Number of Covers

the matrix is neither very sparse or dense, the ROBDD representa-
tion is larger.

Figure 7 shows the number of covers and the size of the ROBDD
varies as the quality factorQf is varied from 1 to 4, withr and
n being 10 and 90 respectively. As expected the number of covers
and ROBDD size decreases with respect to increase in theQf again
due to sparser covering matrix .
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It should be noted that even for a very sparse network with 50
sensors and sensing radii at 10, the number of covers is several or-
ders of magnitude greater than those considered by any previous
approaches[10]. The run-times observed to compute all covers var-
ied from 2 to 426 seconds with increase in network density from
50 sensors to 100 sensors. Thus, the presented approach, provides
an ideal platform for developing more efficient sensor management
techniques.

The battery parametersα=40000 andβ=0.22 were estimated
by direct measurements of a 3V Lithium ion battery [11]. Data
from the Berkeley Motes MICA2DOT [8] sensors was used for
lifetime comparison between the sequential scheme and the pro-
posed battery aware switching scheme. The MICA2DOT motes
(MPR510CA) draw 25mA of current during transmission at maxi-
mum power and 8mA for reception. For the current set of simula-
tion results, the parameterτ was set to 3 minutes.

The percentage improvement of M3C switching approach nor-
malized with respect to the M3C sequential approach is shown in
Figures 8 and 9. Results shown in Figure 8 were performed by
varyingn and keepingQf = 1, andr = 10, whereas those in Fig-
ure 9 were withr = 10 andn = 90 and varyingQf . The results
indicate up to 15% improvement in the sensor network life time is
possible for the same M3C sensor management scheme by intro-
ducing switching of covers (Figure 8). Since the number of avail-
able covers decreases asQf increases, the percentage improvement
in the network life time decreases. This is shown in Figure 9.

Note: In the sequential scheme, when a sensor is exhausted, it
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is removed from further consideration. Thus no battery recovery
effect is present. In the switched scheme, each sensor is discharged
for a fixed amount of time, and it can be become part of a cover
in a subsequent iteration since during its idle period, some of its
unavailable charge would become available. To demonstrate this,
the percentage improvement in the network lifetime was computed
as a function of the battery parameterβ. Recall, that the large value
of β indicates that the diffusion process cantrack the discharge
and consequently,σ(t) represents the actual charge consumed, and
there is no unavailable charge to recover. Figure 10 clearly shows
how the switching scheme exploits the charge recovery capability.
For n = 50, the improvement shown in Figure 8 is approximatly
8.5%. All of this improvement is due to a charge recovery as shown
in Figure 10. Asβ increases, the improvement of the switching
scheme over the sequential scheme decreases.
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Figure 8: Improvement in
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Figure 9: Effect of Qf on
lifetime for n=90,r=10
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5. CONCLUSIONS AND FUTURE WORK
Sensor management can be further improved by considering a

larger set of covers. In this paper, we presented a formal method
to compute all covers for the given network. Thus, it provides a
ideal framework for evaluating network topologies and routing pro-
tocols. Additionally, the presented approach can be used to explore
novel energy efficient sensor management techniques. The over-
head to compute all sensor covers is a one time effort and can be
performed at the base station which is not power constrained. Also,
as demonstrated, the formulation naturally extends to the incor-
poration of additional constraints such as computing covers with
specified quality factorQf . The simulation results show that by
incorporating the switching to account battery recovery effect, the
network lifetime can be further improved, provided that the switch-
ing overhead is negligible.

It will be interesting to extend the sensor covering paradigm to
a distributed environment and develop a localized decision making
process using energy information.
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