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ABSTRACT
This paper presents a model reduction algorithm motivated by a
connection between frequency domain projection methods and ap-
proximation of truncated balanced realizations. The method pro-
duces guaranteed passive models, has near-optimal error properties,
is computationally simple to implement, contains error estimators,
and can incorporate frequency weighting information in a straight-
forward manner. Examples are shown to prove that the method can
outperform the standard order reduction techniques by providing
similar accuracy with lower models or superior accuracy for the
same size model.

1. INTRODUCTION
Model reduction algorithms are now standard techniques in the

integrated circuits community for analysis, approximation, and sim-
ulation of models arising from interconnect and electromagnetic
structure analysis. Krylov subspace projection methods such as
PVL [1] and PRIMA [2] have been the most widely studied over
the past decade. They are very appealing due mostly to their sim-
plicity and their overall strong performance in terms of efficiency
and accuracy.

However, Krylov projection methods are known to have two
drawbacks in practical application. First, there is no general agree-
ment on how to control error in these methods. Error estimators
do exist for some methods [3] but they are seldom used in practice.
The drawbacks of these estimators are that they require additional
computation, which can be expensive and awkward to implement,
and produce error estimates only at single frequency points, which
leaves open the problem of error estimation over a range of frequen-
cies. Second, moment based methods such as PRIMA are known in
some cases to produce models that are “too high” in order with the
obvious consequences in terms of analysis or simulation cost [4,
5, 6]. Multipoint rational approximations produce more compact
models than moment matching, but error theory is even less well
developed [7].

An alternate class of model reduction schemes are the truncated
balanced realization (TBR) family [8]. These are purported to pro-
duce “nearly optimal” models and have easy to compute a-posteriori
error bounds. As the TBR methods are too expensive to directly
apply to integrated circuit problems, various two-stage and itera-
tive Krylov methods have been proposed [5, 9, 10, 11, 12, 17]
that combine Krylov subspace projection and TBR. While these
hybrid techniques do a fairly good job of addressing the exces-
sive order issue, the error bound properties are weakened. Sec-

ond, they are awkward in treating non-symmetric, particularly very
unbalanced systems, when two separate projection subspaces must
be combined. Third, the methods are perceived as being compli-
cated to implement, and so have not been widely used in prac-
tice. Implementation of the TBR techniques requires considerable
machinery from control theory and multiple numerical procedures
that are tricky to implement in a stable way: solution of Lyapunov
equations, balancing transformations and/or eigendecompositions
of matrix products.

The main contribution of this paper is to illustrate a direct con-
nection between two existing algorithms: multipoint rational ap-
proximation techniques and TBR. As a side benefit, this connection
motivates a new algorithm, PMTBR, whose major attraction is its
simplicity. It possesses some of the advantages of both techniques:
the straightforward implementation of the projection methods and
the excellent compaction properties of TBR. In fact, the techniques
presented here turn out to performbetterthan TBR in many cases,
as it turns out that that the “near-optimal” approximation properties
of TBR are only “near-optimal” for classes of problems never en-
countered in practical circuit analysis. A side benefit is to provide
further theoretical basis for the empirically observed excellent per-
formance of multipoint projection. PMTBR also appears to have
promising properties with respect to order control and error estima-
tion, which, while not as powerful as TBR’s error control, appears
to be an advance over multipoint projection.

2. MODEL REDUCTION BACKGROUND

2.1 Projection Framework
Many modern interconnect modeling technologies rely heavily

on projection-based model reduction algorithms. For simplicity of
exposition, consider for the moment the restricted case linear sys-
tem models

dx
dt

= Ax+Bu; y=Cx (1)

with input u and outputy, that are described by the matricesA 2
R

n�n;B2Rn�p;C2Rp�n. These algorithms take as input a linear
system of the form (1) and produce a reduced model

dz
dt

= Âz+ B̂u; y= Ĉz (2)

whereÂ 2 Rq�q;B 2 Rq�p;C 2 Rp�q. This is achieved by con-
structing matricesW andV whose columns span a “useful” sub-
space, and projecting the original equations in the column spaces
of W andV as

Â�WTAV B̂�WTB Ĉ�CV: (3)

Most common choices are based on picking the columns ofW;V
to span a Krylov subspace [1, 2]. Different choices will lead to
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different algorithms with slightly different properties but an overall
similar “flavour”.

2.2 Truncated Balanced Realizations (TBR)
Model reduction via balanced truncation is based on analysis

of the controllability and observability GramiansX;Y respectively.
The Gramians are usually computed from the Lyapunov equations

AX+XAT =�BBT ; (4)

ATY+YA=�CTC: (5)

Reduction is performed by projection onto the invariant subspaces
associated with the dominant eigenvalues of the product of Grami-
ansXY [8, 13]. For example, the approach of [13] corresponds
to the projection procedure above withW;V the orthonormal bases
arising from the Schur decomposition. One of the important fea-
tures of TBR is an absolute bound on the error of approximation. If
we letσk denote the square root of thekth largest eigenvalue ofXY
(XY always has real eigenvalues) then the error in the transfer func-
tion of the orderk TBR approximation is bounded by 2∑N

i=k+1 σk [14].

2.3 Multipoint rational approximation
A more sophisticated approach is to construct the projection ma-

trix V from a rational, or multipoint, Krylov subspace [7, 15, 9].
For a given model order the multipoint approximants tend to be
more accurate, but are usually more expensive to construct. Given
M complex frequency pointssk, a projection matrix may be con-
structed whosekth column is

zk = (skI �A)�1B: (6)

This leads to multipoint rational approximation. Multipoint pro-
jection is known to be an efficient reduction algorithm in that the
number of columns, which determines the final model size, is usu-
ally small for a given allowable approximation error, at least com-
pared to pure moment matching approaches. Of course there are
many practical questions to ponder in an actual implementation:
how many pointssk should be used, and how should thesk be cho-
sen? How is error determined? How is linear independence of the
columns ofV enforced?

Consider enforcing linear independence. An obvious strategy
is to perform an SVD on the vectorszk computed as above. The
main point of this paper is that constructing projection matrices by
multipoint frequency sampling, as in (6), followed by an SVD, in
fact converges to the TBR algorithm. The singular values obtained
from such a procedure approximate the Hankel singular values, and
can thus be used for order and error control.

3. APPROXIMATION IN FREQUENCY DO-
MAIN

3.1 Controllability Analysis
For simplicity consider the caseA = AT , C = BT and further

assume thatA is stable. This case is of more than theoretical interest
as it occurs in RC circuit analysis, and the standard TBR algorithm
is known to produce passive approximants [12]. It it is easy to
see that in this symmetrized case, both Gramians are equal and in
the standard TBR procedure are obtained by solving the Lyapunov
equation

AX+XAT = BBT : (7)

The more fundamental definition of the GramianX is obtained from
the state evolution operator, also called the fundamental solution, of

the differential equationdx=dt = Ax+Bu. The Gramian can also
be computed in the time domain as

X =

Z ∞

0
eAtBBTeATtdt: (8)

However, noting that the Laplace transform ofeAt is (sI�A)�1, it
follows immediately from Parseval’s theorem that the GramianX
can also be computed from the expression

X =

Z ∞

�∞
( jωI �A)�1BBT( jωI �A)�Hdω: (9)

where superscriptH denotes Hermitian transpose. Consider evalu-
atingX via applying numerical quadrature to (9). Given a quadra-
ture scheme with notesωk and weightswk, and defining

zk = ( jωkI �A)�1B; (10)

an approximation̂X to X can be computed as

X̂ =∑
k

wkzkzH
k : (11)

Let Z be a matrix whose columns arezk, andW a diagonal matrix
with diagonal entriesWkk =

p
wk. Eqn (11) can be written more

compactly as

X̂ = ZW2ZH : (12)

3.2 Model Reduction
To derive a model reduction procedure consider the eigendecom-

position

X =VLΣVT
L : (13)

Note thatVT
L VL = I sinceX is real symmetric in this special case.

An obvious candidate for reduction would be to pick a projection
matrix formed from the columns ofV corresponding to the dom-
inant eigenvalues ofX. If the quadrature rule is accurate,X̂ will
converge toX, which by perturbation analysis of invariant sub-
spaces [16] implies the dominant eigenspace ofX̂ converges to the
dominant eigenspace ofX. Now consider the singular value de-
composition ofZW.

ZW=VZSZUZ (14)

with SZ real diagonal,VZ andUZ unitary matrices. Clearly

X̂ =VZS2
ZVT

Z (15)

so in fact the dominant singular vectors inVZ, as can be identified
from the singular values inSZ, give the eigenvectors of̂X. There-
foreVZ converges to the eigenspaces ofX, and the Hankel singular
values are obtained directly from the entries ofSZ. VZ can then be
used as the projection matriz in a model order reduction scheme.

It seems likely that the singular values of the matrixZ would
have something to do with approximation error. The above illus-
trates that the correspondence is in fact precise – the SVD ofZ re-
veals the same information revealed by TBR (modulo the weights
W).

An obvious question is: how fast does the proposed scheme con-
verge, in particular, how fast do the dominant singular vectors of
ZW approach the dominant eigenvectors ofX? As we will demon-
strate, it turns out that very good models can be obtained with a
fairly small number of sample points, in agreement with previous
experience with multipoint approximation. For this reason, we de-
note our method “Poor Man’s” TBR (PMTBR), since the quantities
computed are cheap approximations to full TBR.

Surprisingly, as we shall shortly demonstrate, in manypractical
applications, PMTBR performsbetter than TBR in the sense of



giving more accurate models for a given model size or amount of
effort. This unexpected bonus demonstrates the virtues and rewards
of frugality.

4. PRACTICAL IMPLEMENTATION

4.1 Descriptor Systems
Usually in circuit analysis is it inconvenient, and possibly pro-

hibitively expensive, to translate to the form in Eq. (1). In the more
general case, with the state-evolution equation given byEdx=dt =
Ax+Bu, the controllability Grammian can be obtained from

AXET +EXAT +BBT = 0: (16)

Not surprisingly, the frequency domain equation is

X =

Z
( jωE�A)�1BBT( jωE�A)�Hdω (17)

and the above procedure follows exactly with the change that the
columns ofZ are given by

zk = (skE�A)�1B: (18)

Formally, to removing the system symmetry restrictions onAand
C we would need to compute vectorsyk = (skET�AT)�1CT , but in
most IC problems using an orthogonal projector computed from the
zk and congruence transforms for reduction is an effective scheme.
Such an approach has the additional advantage of guaranteeing the
passivity of the reduced order model.

4.2 Finite Bandwidths and Frequency Weight-
ing

Consider evaluating Eqn. (17) by breaking the integral into par-
tial sumsIk each of which is an integral over a sectionSk of the
imaginary axis:

X =

∞

∑
k=1

Ik (19)

Ik =

Z
Sk

( jωE�A)�1BBT( jωE�A)�Hw(ω)dω (20)

where
S∞

i=1 Si amounts to the whole imaginary axis.
Each Ik gives the contribution toX from the system’s behav-

ior over the intervalSk. X is the Gramian of the operator that
maps input to state; its singular values give the norm of that op-
erator. This suggests interpretingIk as the contribution from the
input u over the frequency intervalSk. The standard TBR proce-
dure, having no a-priori knowledge of the frequency content of the
input, weights each frequency equally. However, in almost all prac-
tical problems we have some knowledge of the actual frequency
distribution of the inputs. Often, the inputs are bandlimited, or
nearly so, or we might be interested only in the behavior of the
system around some finite frequency interval. We propose truncat-
ing the sum in Eqn. (19) to finite intervals, and using the resulting
“finite-bandwidth” Gramian for model reduction. Since the result-
ing Gramian places more emphasis on frequencies of relevance, we
expect to achieve better performance, for a given model order, on
problems with finite bandwidth inputs. More generally, we may
define a “frequency-weighted” Gramian as

XFW =

Z ∞

�∞
( jωE�A)�1BBT( jωE�A)�Hw(ω)dω: (21)

wherew(ω) is the “weighting” function (the notational similarity
with quadrature weights is deliberate). The more appropriate the
weighting function to our problem at hand, the better we expect the

performance of the reduction algorithm to be. Seen from this view-
point, TBR is a generic, somewhat naive, algorithm as it presumes
complete ignorance of frequency content. The weighting function
in “standard” TBR is most appropriate for white noise inputs where
nothing is really known about frequency content.

In a practical implementation, with a finite number of frequency
samples, weighting can be accomplished by adjusting the weights
wk and/or location of samplesωk. In fact, everyZW-matrix im-
plicitly defines a frequency weighting scheme. For this reason, it
is better to choose points/weights in PMTBR (perhaps adaptively)
according to the expected frequency profile of the system and the
inputs, than to try to achieve convergence to the TBR Gramians
themselves.

While it seems to be widely believed that the TBR methods are
more mathematically sound than projection methods, in fact it now
appears that the opposite is true: TBR is a naive implementation of
more powerful, problem-specific multipoint projection schemes.

This argument also explains the empirically observed fact that
multipoint projection can exhibit better relative error performance
than generic TBR. Multipoint projection more highly weights points
in (21) than the standard TBR weighting, resulting in better relative
performance in those areas.

4.3 Error Estimation
The above arguments can be extended to a generalized process of

error estimation. The singular values obtained from the weighted
Gramians can be intepreted as gains between “filtered” inputs and
“weighted” outputs. Singular values from truncated modes can be
interpreted as errors on the “filtered” system, i.e. finite-bandwidth
or weighted errors. The singular value information can be used in
three ways to guide model order control.

First, if enough samples are taken that good estimates of the true
Gramians are obtained, then the singular values obviously provide
error bounds, through the connection to TBR.

Second, the singular values can guide an adaptive point selection
scheme. With reasonable spaced sampling of points, as projection
vectors are added to theZW-matrix, convergence of the singular
values indicates convergence of the error, which guides when to
stop adding vectors toZW.

Third, we have found that, again assuming “reasonable” sam-
pling density, the singular values usually give a fairly good guide
to model order well before convergence is achieved. Our experi-
ments indicate that when, for a number of samples in excess (e.g.
twice) of the model order, the singular value distribution exhibits a
small “tail” (that is, for a “small”ε, 9k : ε > ∑∞

i=k+1σi ), then suf-
ficient order and point placement has been achieved. Again this is,
as one would expect, strikingly similar to the usual TBR concepts.

5. COMPUTATIONAL EXPERIMENTS

5.1 Convergence to TBR
In our first example we consider an RC circuit model of a clock

distribution network. This circuit, to a good approximation, is fi-
nite bandwidth. We use this example to illustrate the asymptotic
equivalence of the TBR and PMTBR methods. Figure 1 illustrates
the singular values of theZW matrix resulting from a moderate
number (50) of sample pointswk. It can be seen that the estimated
singular values, while not exact, are good approximations, and fol-
low the general trend of the exact solution. It is interesting that
the approximate singular values continue to rapidly decrease over
nearly fifteen orders of magnitude, even with a relatively low accu-
racy approximation of the Grammians. PMTBR appears to capture
the fact that this RC model is intrinsically low-order. Of course,



adding sample points would increase the accuracy of the singular
value approximations, as we will show later.
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Figure 1: Hankel singular values as computed from exact
Gramians (solid line) and estimated from PMTBR (dashed
line).

More critical for model reduction is the estimation of the pro-
jection subspaces. Figure 2 shows convergence of oneanglebe-
tween projection subspaces. In this case we chose the second prin-
cipal vector to estimate within the first four leading subspaces of
PMTBR. Even for small numbers of sample points, the subspaces
are fairly closely aligned, and alignment increases with increasing
number of samples. This indicated convergence of PMTBR to TBR
for this example. The leveling out of the curve is due to the fact
that the model under study has non-zero response outside the finite
bandwidth used to compute the PMTBR results. By increasing the
bandwidth over which we perform PMTBR we could continue to
decrease the subspace angles, but at some point the accuracy ob-
tained thereby ceases to be of interest, because in a real problem
negligible signal strength exists outside finite bandwidths.
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Figure 2: Angle between second principle vector and PMTBR
singular subspaces.

5.2 Comparison to PRIMA
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Figure 3: Error of approximations of resistance obtained with
PRIMA and PMTBR for increasing order models on the spiral
inductor example.
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Figure 4: Spiral inductor example, convergence of singular val-
ues ofZW.

In our next example we use a model for an on-chip spiral in-
ductor to demonstrate how PMTBR can outperform the standard
model order reduction method PRIMA. Particularly for the real part
of the inductor’s impedance (i.e. the resistance), PRIMA converges
slowly on this example. Figure 3 shows a comparison of the error in
the inductor’s resistance for approximations obtained with PRIMA
and PMTBR of increasing sizes. From the plot one can see that the
PMTBR approximation produces a more accurate approximation at
any given order, and converges more quickly. As thirty frequency
samples were used to compute the PMTBR model, at each order,
more work was also required to compute the approximations for a
given order. However, as about sixty PRIMA vectors are required
to obtain 1% accuracy in the resistance, the overall work is still
less.

Next we demonstrate the order control and error estimation ca-
pabilities of PMTBR. Figure 4 shows the convergence of the five
largest singular values of̂X as the number of frequency domain
sample points (aka quadrature nodeswk) is increased. In this exam-
ple we used a very crude uniform sampling/weighting that would
correspond to the “rectangle rule”in quadrature. We see that the
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Figure 5: Admittance transfer function error and error esti-
mates for the spiral inductor example.

largest five singular values have mostly converged by the time we
reach 100 sample points. Figure 5 shows the error vs. order for
PMTBR models using 100 sample basis points, as well as the er-
ror estimates computed using the singular values. First, we can see
that increasing the order of the approximation beyond ten or twelve
benefits very little, as the corresponding singular values are cer-
tainly below the relevant error and quickly approaching machine
precision. Second, we see that, for the orders corresponding to the
well-estimated singular values, the error estimates are very good.
Estimates for higher orders are not as good, but do indicate cor-
rectly that the actual error is small and rapidly approaching zero.

Note that as indicated above for this example a much smaller
number of samples was required to achieve excellent error perfor-
mance on this model. Singular value plots with this sample size
(not shown) show that a model of size 5-7 is indeed enough to
achieve acceptable accuracy with this number of sample points.

5.3 Comparison to multipoint projection
Of course, an obvious question is, since the PMTBR technique

uses the same information as multipoint projection, whether there
is any advantage in using PMTBR over multipoint projection. To
answer this, we show results from an example introduced in [1], a
lumped-element equivalent circuit for a three-dimensional problem
modeled via PEEC.

Figure 6 shows a comparison of the errors incurred with approx-
imations of increasing order obtained using a multipoint projection
method and PMTBR for this PEEC example. The plots clearly
show the superior accuracy of PMTBR for similar size models
(equivalently, PMTBR is able to generate more compact size mod-
els for the same accuracy). Furthermore it is interesting to note that
for high accuracy this difference actually increases, as the error of
the projection method goes down very slowly with order increase.
This is clearly due to the ability of PMTBR to prune out “redun-
dant” information from the model. Note that in [1] an order 60th

approximation computed with PVL was needed to obtain good ap-
proximation of the transfer function of the equivalent circuit.

It is interesting to observe that, just as the multipoint projection
method did, the PMTBR technique is able to circumvent any dif-
ficulties involved with having singularA or G matrices. This is a
matter of practical relevance as many systems obtained applying
the modified nodal formulation to some discretized model often
have singularA and/orE matrices (typically in those casesA would
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Figure 6: Comparison of error in multipoint projection method
(MPPROJ) and PMTBR for the PEEC example.

be related to the conductance matrix andE to the capacitance ma-
trix). Applying “standard” TBR to such systems involves some
complicated preprocessing, see [12] for a discussion. Note also
that PMTBR was quite accurate on this example, despite the fact
that it contains sharp resonances that cause difficulty for quadra-
ture (compare Figure 1 where the singular value estimates are not
exact). PMTBR does not produce the exact same singular value
estimates as TBR, as it weights the contributions to the projection
subspaces differently, the subspaces produced contain the system
information relevant to the point selection chosen.

5.4 Finite Bandwidth
A final question to resolve is whether there is any advantage to

PMTBR compared to a standard projection technique followed by
standard TBR. We show results from an 18 pin shielded connector
structure that was previously used to illustrate a PEEC formulation
based on PRIMA that generates passive reduced-order models [6].
While the resulting model was indeed provably passive, disappoint-
ing reductions were reported, which were attributed to limitation in
the PRIMA algorithm in dealing with the “relevant modes of the
system”. In order to address this issue, in [17] the same example
was used to illustrate a two-step algorithm for RLC order reduc-
tion based on PRIMA followed by TBR. Significant order reduc-
tions were reported after the 2nd step of reduction as TBR is able
to determine that those modes are not observable nor controllable.
Therefore it is a good model system on which to compare PMTBR
and TBR.

Figure 7 shows a plot of the exact transfer function of the connec-
tor, as well as approximations obtained with TBR and PMTBR. For
this particular example we were interested in testing the ability of
the PMTBR algorithm to produce approximations on a finite band-
width. We decided to illustrate approximation over a finite range
of zero to 8 GHz. Samples were generated to cover the frequency
range from DC to 8GHZ and these samples were used to generate
an order 18 PMTBR approximation. At the same time, a TBR ap-
proximation of order 30 was also generated (we found that 30 was
the minimum order required for TBR to provide reasonable repre-
sentation ofany features in the 0-8GHz range). From the figure
we can see that the PMTBR approximation does indeed show very
good accuracy in the frequency range of interest. The figure also
shows, rather dramatically, the inability of the TBR approximation
to produce an accurate model at the frequency of interest, even with



the higher order approximation. Furthermore, the TBR approxima-
tion seems to be accurately picking some features of the system but
these happen to fall out of the bandwidth of interest. We believe
TBR concentrates effort around 15GHz because of the relative am-
plitude of the transfer function. PMTBR is easily focused on the
8GHz and below range merely by selection of sampling points, and
does not waste effort with approximation at higher frequencies.
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Figure 7: Transfer function approximations for the connec-
tor example. Note PMTBR has better finite-bandwidth perfor-
mance than TBR.

6. CONCLUSIONS
In this work we discussed a connection between truncated bal-

anced realization (TBR) model reduction methods and multipoint
rational approximation/projection techniques. While primarily of
theoretical interest, this connection leads to a potentially useful
new algorithm, PMTBR. PMTBR was shown to have some advan-
tages over existing algorithms, particularly in generating smaller
reduced models, and possibly in order control and error estimation.
In retrospect, the connection of TBR and PMTBR is not surprising:
both the TBR procedure and the SVD used in PMTBR are princi-
pal components analyses. TBR is a principal components analysis
of the functionals defined by the state-space model, and naturally
arises from time-domain theory of state-space systems. PMTBR
arises naturally from a numerical approximation viewpoint of fre-
quency domain data.

Possible extensions of this work include integration of adaptive
point selection estimation with error control, and extension of the
PMTBR approach to the positive-real TBR [12] algorithms.
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