
MemMap: Technology Mapping Algorithm for Area Reduction in FPGAs with
Embedded Memory Arrays using Reconvergence Analysis

Manoj Kumar A
Indian Institute of Technology Madras

email: kama@iitm.ernet.in

Jayaram Bobba Kamakoti.V

Abstract

Modern day Field Programmable Gate Arrays (FPGA)
include in addition to Look-up Tables, reasonably big con-
figurable Embedded Memory Blocks (EMB) to cater to
the on-chip memory requirements of systems/applications
mapped on them. While mapping applications on to such
FPGAs, some of the EMBs may be left unused. This pa-
per presents a methodology to utilize such unused EMBs
as large look-up tables to map multi-output combinational
sub-circuits of the application, which, otherwise would be
mapped on to a number of small Look-Up Tables (LUT)
available on the FPGA. This inturn leads to a huge re-
duction in the area of the FPGA, utilized for mapping an
application. Experimental results show that our proposed
methodology, when employed on popular benchmark cir-
cuits, can lead to additional 50% reduction in area utilized
when compared with other methodologies reported in the
literature.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are pro-
grammable devices that can be configured for a wide va-
riety of applications. They enable faster implementation
and emulation of circuit designs on hardware. The flexi-
bility provided by Field Programmable Gate Arrays (FP-
GAs) through the presence of reconfigurable elements has
increased their popularity in comparison with the conven-
tional ASIC designs.

Among the various possible architectures, lookup-table
(LUT) based FPGA architectures have been the most pop-
ular ones. A LUT-based FPGA consists of an array of
programmable logic blocks (PLBs) together with pro-
grammable interconnections. The core of a PLB is a
k-input LUT (k-LUT) that can implement any combi-
national logic function with up to k inputs and a single
output. The problem of mapping a synthesized boolean cir-
cuit into a LUT based network has been studied extensively.

Different algorithms have been proposed based on var-
ious optimization criteria, namely, performance [1, 2],
area [3, 4], and routability [5, 6]. Architectures involv-
ing multi-output LUTs and heterogeneous LUTs have also
been studied and technology mapping algorithms for such
architectures have also been proposed.

Modern day FPGA based technologies facilitate a com-
plete System-On-Chip implementation on FPGAs. Such
large systems require more memory than smaller circuits.
Since provision of on-chip memory leads to higher clock
frequencies and lower I/O pin requirement for such systems,
FPGA vendors have included memory arrays or Embedded
Memory Blocks (EMBs) in most of their architectures. Two
implementations of on-chip memory have been considered:
fine-grained and coarse-grained. In FPGAs employing fine-
grained memory, such as the Xilinx 4000 series of FPGAs,
each lookup-table can be configured as a small RAM, and
these RAMs can be combined to implement larger memo-
ries [7]. The coarse-grained approach is used in Altera 10K
devices [8], the Actel 3200DX and SPGA parts [9] and the
Lattice ispLSI 6192 FPGAs [10]. In these devices, large ar-
rays are embedded onto the FPGA. Devices in the Altera
10K family contain between 3 and 16 2K-bit arrays, the Ac-
tel 3200DX parts contain between 2 and 32 256-bit arrays,
Actel SPGAs contain between 2 and 32 2K-bit arrays, and
the Lattice ispLSI 6192 devices contain a single 4608 bit ar-
ray.

The coarse-grained approach results in significantly
denser memory implementations, since the per-bit over-
head is much smaller [11]. However, the FPGA ven-
dor has to partition the chip into memory and logic regions
when the FPGA is designed. Since circuits have vary-
ing memory requirements this could lead to poor device
utilizations for logic-intensive or memory-intensive cir-
cuits. To avoid this wastage of resources, techniques have
been proposed to utilize unused RAM as large multi-output
lookup-tables to implement the combinational sub-circuits
in the system. We then have a heterogeneous architec-
ture in which both LUTs and memory are used as logic el-
ements in the implementation of a circuit. Multi-output

1530-1591/04 $20.00 (c) 2004 IEEE

memory arrays can implement large regions of the syn-
thesized circuit with significant area savings. Similarly,
if several combinational levels can be packed into a sin-
gle memory array, significant speed improvements can also
be obtained. Hence, we need to identify regions of the cir-
cuit that can be efficiently mapped into the memory ar-
rays.

2. Previous Work

Murgai has studied the implementation of logic in mem-
ory arrays [12]. However it was used for the development
of a circuit emulator system. Wilton has proposed algo-
rithms for utilizing the unused memory arrays in FPGAs
with on-chip memory [13]. The approach, SMAP, first in-
volves mapping the entire circuit into LUTs and then at-
tempting to pack maximum number of LUTs into the avail-
able memory heuristically. The idea of maximal network
cuts is used in identifying the feasible regions. Cong and
Xu have proposed another approach for mapping logic into
memory [14]. In their approach, EMB Pack, the circuit is
first mapped into LUTs using the best available algorithms.
They then identify regions of the LUT network which when
mapped into the embedded memory arrays would not re-
quire duplication of existing LUT nodes. While in the case
of SMAP, the objective of the algorithm is to achieve area
minimization, EMB Pack minimizes the area maintaing the
circuit delay. In this paper, we propose a different approach
for area minimization in which the reconvergent regions of
the circuit are identified as potential candidates for mapping
to the memory arrays.

3. Preliminaries and Problem Definition

The circuit is represented by a directed graph G(V,E)
where the vertices V represent nodes, and the edges E rep-
resent the interconnections between the nodes. We now
present a few definitions pertaining to reconvergence in the
circuit.
Given two nodes x and y, if there exists at least one directed
path from x to y, then node x is said to drive node y and y
is said to be driven by x. Since every gate has a unique out-
put net, this concept could be used analogously for nets also.
A stem node s ∈ V is one which drives more than one gate.
A stem node s is called a reconvergent fanout stem if there
exists more than one disjoint path from s to another node
t ∈ V . In this case, t is called reconvergent node of s.
A closing reconvergent node of a reconvergent fanout stem
s is a reconvergent node of s that does not drive any other re-
convergent node of s.
Primary Stem Region of a reconvergent fanout stem s con-
sists of all the nodes v and v’s output edges such that v is
located on a path from s to any of the closing reconvergent

ab

c

d
e

uv

wx

w1 w2

o2 o1

v2v1

b1 b2

g1g2

g3g4

g5g6

Figure 1. Gate level circuit

nodes of s. Two primary stem regions are said to overlap if
there exists at least one node common to both regions.

In the circuit shown in Figure 1, b is a reconvergent
fanout stem and g5 is its reconvergent node. The primary
stem region of b includes the nodes g1, g2, g3 and g5 while
the primary stem region of v includes the nodes g3, g4 and
g6. These two regions overlap with one another.

The technology mapping problem deals with the imple-
mentation of a synthesized Boolean circuit using logic cells
from a pre-specified family. It is one of the tough and chal-
lenging problems in the field of automated design. In this
paper, we address this problem for LUT based FPGA ar-
chitectures consisting of memory elements. In this case two
types of resources are available, viz., the k-LUTs provided
in PLBs and the reconfigurable arrays provided by embed-
ded memory blocks. Hence, the result of an algorithm map-
ping on such architectures is a circuit mapped to both mem-
ory arrays and small look-up-tables. The technology map-
ping problem for a LUT and embedded memory based hy-
brid FPGA architecture can be defined as follows:

An application would typically consist of memory el-
ements (that have to be mapped on the available on-chip
embedded memory) and combinational elements that could
be mapped both on LUTs and on-chip embedded mem-
ory. Given such an application that requires t memory ar-
rays and a FPGA architecture with a maximum of N(≥ t)
on-chip embedded memory arrays and k-LUTs, find a map-
ping such that the number of k-LUTs used is minimized.
In other words, the utilization of the n (= (N − t)) avail-
able on-chip embedded memory for implementing the com-
binational elements of the circuit is maximized.

The value of k is a constant and without loss of general-
ity we assume it to be 4.

/* Phase 1: Pre-processing */
Decompose given circuit into a 2-input network
using DMIG.
/* Phase 2: Reconvergence Analysis */
θ = set of all non-intersecting overlapping reconvergence
regions satisfying the input/output constraints.
/* Phase 3: Memory Mapping */
for each region in θ do

while region is expandable to nearest memory config-
uration do

Assign priorities to each of the gates neighbouring
the region.
Select the gate with highest priority that can be
added to region without violating the input-output
constraints.

end while
Assign priority to each of the regions

end for
Let there be n unused memory arrays in the FPGA after
the mapping of all the memory elements of the applica-
tion. Select the n best non-intersecting regions and map
them into these memory arrays.
/* Phase 4: LUT mapping */
Map the rest of the circuit into LUTs using DAG-Map

Figure 2. MemMap Algorithm

4. The Algorithm

We now give an overview of our approach. The algo-
rithm, as illustrated in Figure 2, consists of four main stages,
namely, Pre-Processing, Reconvergence Analysis, Memory
Mapping and LUT Mapping. In the pre-processing stage,
we convert the given circuit into an equivalent circuit to im-
prove performance of the mapping algorithms. In the next
stage, we analyze the circuit structurally for reconvergence
and identify regions that could be mapped into memory. In
the memory mapping stage, the prospective regions identi-
fied in the previous stage are further expanded for area op-
timization and the best ones are mapped into the memory
arrays. In the final stage, the remaining circuit is mapped
into LUTs using the existing LUT mapping algorithm DAG-
Map [15].

4.1. Pre-Processing

In the first stage of the algorithm, we take the given cir-
cuit in the form of a Boolean network and convert it into an
equivalent two-input network. A two-input network is one
in which each gate has at most two inputs. This decomposi-
tion is done using the DMIG algorithm proposed by Cong et
al [15]. It has been shown that this conversion leads to better

v1 v2 v3 v1 v2 v2 v3

v4 v5 v4 v5

a b c d e a b c d b c d e

(a) Mapping of a reconvergent
 region using MemMap

(b) Mapping solution by DagMap

Figure 3. Mapping of reconvergent regions

mapping of the circuit into LUTs by minimizing the over-
all depth of the decomposed circuit.

4.2. Reconvergence Analysis

In this stage, the circuit obtained from the pre-processing
stage is analyzed for reconvergence. We identify regions of
circuits that consist of overlapping reconvergent regions us-
ing an approach similar to the one proposed by Dey, Brglez
and Kedem [16].

We first find out the primary fanout stem regions of all
the fanout stems in the circuit. Next we combine overlap-
ping primary fanout stem regions to form larger reconver-
gence regions. However, if we are to map these regions into
memory arrays, we have to make sure that the number of
inputs and outputs of the regions are less than the num-
ber allowed by the memory arrays. Hence, while combin-
ing primary fanout stem regions, we impose a constraint on
the number of inputs and outputs of the resultant region.
Memory reconfigurability allows us to have different input-
output configurations. For example, a 2048-bit memory ar-
ray could be configured as a 2048 × 1(11 input, 1 output),
1024 × 2(10 input, 2 output), 512 × 4(9 input, 4 output) or
256 × 8(8 input, 8 output). So we combine the regions un-
til they satisfy at least one of the above configurations. Note
that the resulting set of regions is not unique as the order of
combination of regions affects the final set of regions.

Intuitively, these regions can be attributed with a high
node to external pin count ratio (sum of inputs and out-
puts). The internal reconvergence can be expected to sig-
nificantly decrease the number of output pins for the region
while the reconvergent fanout stems at the input of the re-
gion would lead to lesser number of input pins. By attempt-
ing to map these regions into the memory, we are trying
to pack a large number of nodes with limited external pin

counts into the memory arrays. This has a great impact in
reducing the number of LUTs required to map the rest of the
circuit. The results that we obtained suggest that reconver-
gent regions are particularly suitable for mapping into the
memory arrays.

In Figure 3, we give an example of a reconvergent sub-
circuit where the logic represented can be efficiently im-
plemented using memory arrays. If the circuit were to be
mapped using 4-LUTs, then the node v2 will have to be du-
plicated and the mapped solution would contain 2 LUTs.
However, if we consider the concept of overlapping recon-
vergence regions, then the whole sub-circuit can be imple-
mented in a single memory array with 5 inputs and 2 out-
puts. Thus by mapping reconvergence regions to memory,
it is highly likely that we avoid node duplication and hence
decrease the number of LUTs required.

4.3. Memory Mapping

In this stage, the overlapping reconvergent regions that
can be mapped to the memory arrays are selected and ex-
panded till they just satisfy the pin constraint imposed by
the memory arrays. Expansion is a crucial step since there
is a possibility of including more gates into the reconver-
gent regions. We have developed a heuristic that attempts to
maximize the LUTs covered by the region while maintain-
ing the input/output constraints specified by the memory ar-
rays.

The heuristic employs a greedy approach in finding out
the gate to be selected next from an array of candidate gates.
The candidate gates of region R are essentially the neigh-
bouring gates of R, i.e the gates that are not part of R and
either drive a gate in R or are driven by a gate in R. We
then expand the regions by progressively including the can-
didate gates. The candidate gates are selected on the basis
of a weight function which is determined as explained be-
low.

First the given circuit is mapped into LUTs using the
DAG-Map algorithm. All the gates in the circuit are marked
with the LUTs they belong to. Note that a gate can belong
to more than one LUT because of duplication of gates in
DAG-Map algorithm. If R be the reconvergence region be-
ing considered, and g be a candidate gate:
Let φ(g) be the set of LUTs containing g in the mapping
of the circuit and let α(g) be the set of LUTs that contain g
and at least one gate that belongs to R.

cov(g) = |φ(g)|
pcov(g) = |α(g)|
weight(g) = pcov(g)/cov(g).

The motivation for choosing this function is as follows:
When R is expanded, there will be a change in the num-
ber of LUTs completely covered by R as well as the num-
ber of those partially covered. A completely covered LUT

Reconvergent
Region

LUT

g

L1

L2

L3

R

Figure 4. Expansion of Reconvergent Re-
gions

with respect to R is one for which all the gates in it are part
of R, while a partially covered LUT is one that is not a com-
pletely covered LUT but has at least one gate in common
with R. In Figure 4, g is the candidate node being consid-
ered for expansion of region R. L1, L2 and L3 are LUTs
obtained by mapping the circuit. While L1 is not covered
by R, L2 is partially covered by R and L3 is totally cov-
ered by R.

While increasing the number of completely cov-
ered LUTs remains the final objective, increase in the
number of partially covered LUTs is not desirable
since the fate of partially covered LUTs remains unpre-
dictable. Hence R should be expanded in a manner that
increases the possibility of covering more LUTs with-
out significantly increasing the number of partially covered
LUTs. Since the number of LUTs containing g and not cov-
ered at all by R add to partially covered LUTs after g is
added, we choose that g which has the minimum frac-
tion of such LUTs, i.e the gate g with the maximum
weight.

After expanding each of the regions, we next assign a
priority to them. Here we consider the regions on the ba-
sis of m, the number of completely covered LUTs. The re-
gion R having maximum m is assigned the highest priority
and so on. Note that the expansion stage could cause some
of the regions to intersect with each other. So if we have n
available memory arrays, then we consider the n best non-
intersecting regions for mapping into the memory blocks.

Circuit # 4-LUTs Number of 4-LUTs removed
in original (CPU time(in secs)
circuit N = 1 N = 4 N = 8 N = 16

pair 654 27(3) 59(4) 110(4) 187(6)
c7552 850 23(27) 95(27) 181(29) 295(30)
c5315 673 23(6) 49(6) 105(7) 154(8)
c6288 555 20(2) 52(2) 86(2) 134(3)

i10 1116 26(11) 54(12) 98(12) 146(13)
rot 296 21(< 1) 45(< 1) 79(< 1) 158(< 1)

dsip 1468 28(42) 62(42) 93(44) 136(45)
alu4 367 67(< 1) 127(< 1) 205(< 1) -
alu2 201 36(< 1) 79(< 1) 118(< 1) -
dalu 454 23(8) 55(8) 110(9) 145(9)
b14 1562 15(29) 28(30) 43(33) 82(37)
b15 1837 13(46) 33(47) 47(53) 106(60)
b20 3412 19(230) 44(241) 57(255) 123(271)

s13207 538 37(36) 54(36) 90(38) 176(40)

Table 1. Results for benchmark circuits using MemMap algorithm

4.4. LUT Mapping

This is the final phase of the algorithm in which
the residual circuit left after mapping onto memory ar-
rays is mapped into LUTs. The DAG-Map algorithm is
used to implement this mapping. The LUT mapping algo-
rithm could be oriented towards different optimization cri-
terion like area, delay or routability.

4.5. Salient Features of Our Method

We now discuss some advantages offered by our algorithm:

1. It reduces reconvergence in the circuit to be mapped
onto LUTs by mapping reconverging areas onto mem-
ory blocks. DAG-Map which is the algorithm used for
mapping onto LUTs is more efficient when reconver-
gence in circuit is less. DAG-Map algorithm is opti-
mal when the initial network is a tree or a set of trees
[15].

2. All potential regions that can be mapped onto EMBs
are obtained in a single phase. Depending on the num-
ber of available EMBs, we select the best possible re-
gions. Hence, the same algorithm can be used for map-
ping to both single EMB and multiple EMBs, without
adding extra complexity.

3. The second phase of the algorithm exploits the flexi-
bility for reconfiguration provided by embedded mem-
ory blocks. This is done by expanding a given over-
lapping reconvergent region to meet constraints of the
nearest configuration of the memory block.

5. Experimental Results

We now present the experimental results obtained by im-
plementing the MemMap algorithm and testing it on a set of
both combinational and sequential circuits taken from vari-
ous benchmark suites. The algorithms were coded in C and
were run on an Intel Xeon based dual processor 1.2 GHz
server with 2 GB RAM.

The results presented here assume an FPGA with N
2048-bit arrays, each of which can be configured as 2048×
1, 1024 × 2, 512 × 4, or 256 × 8. This is the array size and
flexibility available with Altera FLEX 10K devices.

First, we ran MemMap on various benchmark circuits
varying N , the number of memory blocks. The results are
presented in Table 1. For the set of benchmarks that we have
taken, for N = 1, an average of 28 LUTs were removed
using the technique. For N = 4, 8 and 16, the number of
LUTs removed on an average are 61, 103 and 154 respec-
tively. The results clearly indicate the effectiveness of the
identified regions in reducing the overall number of LUTs
in the circuit. The CPU time taken for the whole mapping
process is indicated. We observed that the time taken for
memory mapping stage of MemMap is negligible. We also
studied the impact of MemMap on delay of the circuit. Ta-
ble 3 gives the delay results of the circuits mapped using
DagMap and MemMap for N = 8 respectively. We do not
observe a significant increase in delay in most cases.

We also compared our results with that of SMAP [13].
In Table 2, we give the number of LUTs removed by both
the algorithms for different number of memory blocks. The
number of LUTs initially present before memory mapping
are also indicated. In case of SMAP, a blocking factor(BF)

Circuit # 4-LUTs removed/Initial # of 4-LUTs
N=1 N=8

SMAP Mem %Diff SMAP Mem %Diff

Map Map

pair 13/641 27/654 110 81/641 110/654 28
c7552 15/679 23/850 55 94/679 181/850 95
c5315 12/596 23/673 94 76/596 105/673 42
c6288 19/527 20/555 5 93/527 86/555 -7
dsip 18/1370 28/1468 56 87/1370 93/1468 8

bigkey 18/1707 21/1750 16 88/1707 106/1750 22
i10 18/994 26/1116 45 94/994 98/1116 4

ralu32 20/3659 26/3726 30 118/3659 143/3726 24

Table 2. Comparison with SMAP algorithm

of 1 was chosen as it gave better results for most of the cir-
cuits. BF is a parameter used by the algorithm in [13] to
combine available memory arrays into larger arrays. If n
is the number of available EMBs, then they are combined
into n/BF larger arrays for mapping. MemMap when com-
pared to SMAP, on an average reduced 51% more nodes for
a single block of memory and 27% more nodes for 8 blocks
of memory.

6. Conclusions

This paper presents a new algorithm for technology map-
ping onto heterogeneous architectures containing LUTs and
embedded memory blocks. For the first time, the concept of
reconvergence is used in the field of FPGA mapping and is
shown to be effective. We have tested our algorithm on a set
of large benchmark examples and achieved satisfactory re-
sults. The algorithm presented has focused on minimizing
the area required to implement circuits.

References

[1] R.J.Francis, J.Rose, and Z.Vranesic, ”Technology mapping
for lookup table-based FPGAs”, in Digest Intl. Conf. on
Computer-Aided Design,pages 568-571, 1991.

[2] J.Cong and Y.Ding, ”FlowMap: An optimal technology map-
ping algorithm for delay optimization in lookup-table based
FPGA designs,” in IEEE Trans. on Computer-Aided Design,
13:1-11, 1994.

[3] R.J.Francis, J.Rose and Z.Vranesic, ”Chortle-crf: Fast tech-
nology mapping for lookup table-based FPGAs,” in Proc.
ACM/IEEE Design Automation Conf., pages 227-233, 1991.

[4] R.Murgai, Y.Nishizaki, N.Shenoy, R.K.Brayton and
A.Sangiovanni-Vincentelli, ”Logic synthesis algorithms
for table look up programmable gate arrays,” In Proc.
ACM/IEEE Design Automation Conf. pages 620-625, 1990.

Circuit Delay
DagMap MemMap

pair 9 14
c7552 13 15
c5315 15 15
c6288 25 24

i10 15 15
rot 12 15

alu4 14 13
alu2 12 13
dalu 13 16
b14 19 21
b15 23 25
b20 21 22

s13207 12 13

Table 3. Delay comparison for circuits

[5] M.Schlag, J.Kong and P.K.Chan, ”Routability-driven tech-
nology mapping for lookup table-based FPGAs,” in IEEE
Trans. on Computer-Aided Design, 13:13-26, 1994.

[6] N.Bhat and D.Hill, ”Routable technology mapping for FP-
GAs,” in ACM/SIGDA Workshop on FPGAs, pages 143-148,
1992.

[7] Xilinx, Inc., XC4000 Series (E/L/EX/XL) Field Pro-
grammable Gate Arrays v1.04, September 1996.

[8] Altera Corporation, Databook, June 1996.
[9] Actel Corporation, Datasheet: 3200DX Field-Programmable

Gate Arrays, 1995.
[10] Lattice Semiconductor Corporation, Datasheet: ispLSI and

pLSI 6192 High Density Programmable Logic with Dedi-
cated Memory and Register/Counter Modules, July 1996.

[11] T.Ngai, J.Rose, and S.J.E.Wilton, ”An SRAM-
Programmable field-configurable memory,” in Proceed-
ings of the IEEE 1995 Custom Integrated Circuits Confer-
ence, pp.499-502, May 1995.

[12] R.Murgai, F.Hirose and M.Fujita, ”Logic Synthesis for a sin-
gle large look-up table,” in Proc. Int. Workshop on Logic Syn-
thesis, May 1995.

[13] S.J.E.Wilton, ”Heterogeneous Technology Mapping for area
reduction in FPGA’s with embedded memory arrays,” in
IEEE Transactions on Computer-Aided Design on Integrated
Circuits and Systems, Vol.19, No.1, Jan 2000.

[14] J.Cong and S.Xu, ”Technology mapping for FPGAs with
embedded memory blocks,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, Feb 1998, pp.171-178

[15] K.C.Chen, J.Cong, Y.Ding, A.B.Kahng and P.Trajmar,
”DAG-Map: Graph-based FPGA technology mapping for de-
lay optimization,” in IEEE Design and Test of Computers,
pp.-20, Sep.1992.

[16] S.Dey, F.Brglez and G.Kedem, ”Corolla-based circuit parti-
tioning and resynthesis,” in ACM/IEEE 27th Design Automa-
tion Conference, pp.607-612, June 1990.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

