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Abstract 
 

 Modern FPGAs contain on-chip synchronous embedded 
memory blocks (SEMBs), these memory blocks can be 
used to implement control units, when not used as on-chip 
memory. In this paper, we explore the mapping of Finite 
State Machines (FSMs) into the SEMBs for power and 
area minimization. We have shown the SEMB based 
implementation of the FSMs and compared it with 
conventional Flip-Flop (FF) based implementation. The 
proposed implementation of the FSMs consumes less 
power and has lower area and routing overhead than the 
FF based approach and it can be clocked at the maximum 
clock frequency supported by the SEMBs. Experimental 
results show that the SEMB based FSM consumes 4% to 
26% less power than the conventional implementation. In 
addition it is observed that the power consumption can be 
further reduced by stopping the clock to the SEMBs 
during the idle states. 
 

1. Introduction 
 

 The first generation FPGAs had less than a few 
thousand gates and were only able to support designs 
running upto 30 MHz. Today, FPGAs contain more than a 
million gates and are able to clock designs at a frequency 
greater than 200 MHz. Because of the substantial logic 
resources and higher processing speeds, FPGAs now can 
be used for some of the applications previously targeted 
to the Application Specific Integrated Chips (ASICs) and 
can be found in portable computing devices, mobile and 
wireless communication equipments. They are also used 
extensively in space based applications. With the rising 
FPGA complexity, power drawn by the devices has 
increased in comparison to the previous generation 
FPGAs. Furthermore, FPGA chips for these applications 
are battery-powered, thus power consumed by an FPGA 
device has became an important consideration to prolong 
battery-life. The control path of any FPGA design which 
consists of finite state machines consumes a significant 
amount of power; thus minimizing power consumed by 
the FSMs can significantly reduce the total power 
consumed by a design. 
 

 Traditionally, the FSMs in an FPGA are implemented 
using FFs and programmable Look Up Tables (LUTs). In 
addition to the programmable LUTs and FFs, the current 
generation of commercial FPGA contains embedded 
memory blocks which can be used to create single or duel 
port RAM, ROM and FIFOs. For example, Xilinx Virtex-
II FPGA contains blockRAM [1], Altera Stratix FPGA 
contains TriMatrix memory [2], and Actel 42MX FPGA 
contains dual port SRAM modules [3]. The embedded 
memory blocks are synchronous SRAM modules (with 
their outputs latched), which can be configured in many 
different width and depth combinations.  
 

 The aforementioned FPGAs provide a large number of 
embedded memory arrays. In Xilinx Virtex-II FPGA, this 
number ranges from 4 blockRAMs for the Xilinx-
XC2V40 device to 168 blockRAMs for the XC2V8000 
device.  The FPGA�s silicon area is partitioned into these 
memory arrays and the programmable logic. Since 
different designs have varying memory requirements 
some embedded memory arrays may not be utilized in 
logic-intensive designs. These unutilized memory arrays 
can be used to implement control units and FSMs, which 
will unburden the routing resources and reduce power 
consumption of a design.  
 

 In this paper mapping of an FSM into the SEMBs is 
explored for FPGAs and power consumed by it is 
compared with the FF based approach. Besides reduced 
power consumption, mapping of an FSM into the SEMB 
has the following advantages: 

• Quick and easy change in the FSMs functionality 
by directly changing the SEMBs contents. No 
design recompilation (synthesis, place and route) 
necessary for changing the FSM�s functionality. 

• Fixed timing regardless of the FSM�s complexity  
• No additional clock gating circuit is required to 

cut off the clock during idle states; this can be 
achieved by controlling the enable signal. 

The SEMB approach is in contrast to the traditional FF 
and logic based approach, in which a complex state 
machine can occupy a large percentage of the logic and 
routing resources in a device. In the SEMB approach, 
address lines of the SEMB are connected to the next state 
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bits and inputs of an FSM. The memory contents are 
programmed with next state address location which is 
formed in conjunction with the inputs to the FSM. If there 
is sufficient space some of bits of the SEMB output can 
be used for the FSM�s output. The FF and SEMB based 
FSMs are illustrated using figure 1a and 1b.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This paper is organized as follows: Section 2 provides 
some background on power consumption in FPGAs. 
Section 3 discusses related research done on low power 
FSM design for FPGAs and mapping of logic into unused 
embedded memory arrays. Section 4 gives a detailed 
description of how to map an FSM into the SEMBs and 
describes why power consumption by the SEMB 
approach is lower than the FF based approach. In addition 
to presenting the SEMB mapping, this section compares 
the power consumed by both implementations. Section 5 
and 7 present experimental results and conclusion 
respectively. Section 6 shows that power can be further 
reduced by stopping the clock to the SEMBs during idle 
states. 
 

2. Power Consumption in FPGAs 
 

 In a typical FPGA 60% of power is consumed by the 
programmable interconnects, 16% is consumed by 
programmable logic and 14% by the clock distribution 
network [4]. This distribution is different from ASICs, in 
which the majority of power is consumed by the clocking 
network. Programmable interconnects in an FPGA are the 
dominating power consuming source, because a routed 
signal may have to pass though a number of 
programmable switches before reaching its destination. 
Other power consuming sources are the logic 
programmed into the FPGA�s computing elements and 
the clock distribution network. Power consumed by an 
FPGA design is primarily dependent on three factors: 
clock frequency, resource utilization, and switching 
activity. Dynamic power dissipation, which constitutes a 
major portion of the total power dissipated by an FPGA, 
is caused by signal transitions, i.e. a change of signal 
value from logic level �0� to �1� and vice versa. Therefore, 
a design running at a higher clock frequency will have 

increased power dissipation due to more frequent signal 
transitions. Resource utilization is another factor which 
affects the power dissipation. Unused resources in an 
FPGA do not consume any dynamic power and as 
different designs have varying resource utilization, power 
consumed by a design is dependent on the resources it 
uses. The switching activity, which is equal to the number 
of signal transitions in a clock cycle, also contributes to 
the dynamic power dissipation. The switching activity of 
a signal depends upon the type of design and on the inputs 
to the design.  
 

3. Related Work 
 

 Extensive research has been done in the area of low 
power design for FSMs. However, the majority of the 
previous research work is focused on ASIC 
implementation. Our work in this paper is different from 
earlier research as it takes advantage of the architectural 
features of newer FPGAs. Sutter et al [5] have proposed a 
decomposition based approach for FPGAs, in which the 
original FSM is divided into many smaller FSMs. There 
has been some research done for mapping combinatorial 
logic into the embedded memory arrays [6][7]. However, 
techniques presented in [6] and [7] are limited to the 
asynchronous on-chip memory blocks present in some 
previous generation FPGAs. Benini et al [8] have 
presented a clock gating technique which stops clock to 
the FSM during idle states. The clock stopping work 
presented in section V is similar to the research in [8], but 
our work is adapted and modified for reducing power 
consumed by the embedded memory blocks in FPGAs.   
 

4. Mapping Finite State Machines to on-chip 
Memory Arrays 
 

 An FSM can be described by a six-tuple (I, O, S, r0, δ, 
Y) where I is the set of inputs, O is the set of outputs, S is 
the set of states, and r0 is the initial (reset) state, δ: I X S = 
S is the state transition function and Y: I X S = O is the 
output function for Mealy machines. The six-tuple 
machine can be depicted as a state transition graph (STG), 
where nodes represent states and directed edges represent 
outputs and inputs for the state transition 
 

4.1 FF Based FSM Implementation in FPGA 
 

 When an FSM is implemented using FFs, each state is 
represented by the binary value stored in the FFs. The 
outputs and the next state values are calculated by the 
combinatorial logic. Figure 1a shows a FF and LUT based 
implementation of an FSM. The combinatorial portion of 
an FSM is implemented by LUTs in the FPGAs, which 
are connected by programmable interconnect. As the 
complexity of an FSM increases the number of LUTs and 
FFs, and programmable interconnect resources utilization 
increases proportionally. The number of FFs used to 
implement an FSM depends on the state encoding, such as 
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Figure 1a. FF and LUT based FSM in an FPGA 
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sequential, one-hot, grey encoding. The number of LUTs 
increases with the complexity of the FSM. It depends on 
the number of states in an FSM, number of transition in 
the state transition graph, number of inputs and outputs. 
In a design which utilizes a small percentage of total 
FPGA resources, LUTs and FFs are placed close to each 
other so that minimal programmable interconnects are 
used. On the other hand, in a denser design, due to routing 
congestion, LUTs and FFs may be spread all across the 
FPGA chip. This will increase the programmable 
interconnect utilization and hence the power 
consumption. Contrary to this the power consumed by the 
SEMB based FSM does not change with routing 
congestion, because most of the logic is programmed in 
the embedded memory itself. In the case where more than 
one embedded memory is required to implement an FSM, 
high speed dedicated interconnects between the memories 
blocks can be used [1].       
 

4.2 FSM Implementation Using SEMBs 
 

 In the SEMB FSM implementation, the memory array 
contents are programmed with the encoded state bits 
(which along with the FSM�s inputs also form the address 
for the next state memory location), and FSM�s output. 
This approach is explained with the help of Figure 2b, the 
implementation shown is of a �0101� sequence detector, 
whose state diagram is shown in Figure 2a. The output of 
this sequence detector is �0� till the last �1�, if the 
sequence is detected, at which time it becomes �1�. The 
embedded memory blocks present in the FPGAs have 
their output latched, which can be set or cleared after the 
device configuration or on the application of a reset 
signal. Since the output signals of the memory array are 
routed to its address inputs, the initial state of the FSM 
can be programmed at the location addressed by set or 
cleared outputs, usually it is the first memory location. In 
the sequencer example shown in Figure 2b, the initial 
state is the memory location �000�, which is programmed 
with an encoded value of state �A�. When the sequencer is 
in state A and if the input to it is �0�, memory location 
�000� is addressed, the contents of which is �010�, which 
is the memory location for the next state, B. Similarly, 
there is a state transition to other states by the change in 
address of the memory array. In some cases no separate 
logic is needed to generate the output of an FSM, instead 
it can be realized using the memory arrays itself. In the 
example discussed, the 1-bit output of the FSM is 
programmed in bit �D0� of the memory array.  
 

 Some FSMs may have more outputs than can be 
programmed into a single SEMB. For such FSMs 
multiple SEMBs can be connected in parallel using the 
same address inputs. For Moore type FSMs, in which the 
output depends on the current state, the state bits coming 
out of the SEMBs can be used to implement the output 
function external to an SEMB. The output function is 

implemented using the LUTs, this is illustrated in figure. 
3. A Mealy machine can be transformed into a Moore 
machine [12], if the output are to be implemented using 

the LUTs.    
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 The input bits in the STG of some FSMs may contain 
many don�t-care bits. If these don�t-care bits are 
separated from the input bits, fewer input bits will be 
required to determine the state transition for each state. 
The don�t care bits can be removed from the inputs by 
column compaction. In the STG, if all the rows specific to 
a state have the don�t care bits at the same bit position 
then those bits can be removed from the input provided all 
the other states can also remove the same number of don�t 
care bits. Since the position of the don�t care bits can 
differ for different states, an input encoder is needed to 
select the corresponding inputs for each state. Our column 
compaction problem and the solution is different from the 
ones proposed earlier for symbolic inputs and outputs 
[13,14], because in our technique the inputs are not 
symbolic. This process is illustrated with figure 4. 
Column compaction is helpful when the total number of 
inputs and state bits are more than the number of address 
lines present in the SEMB. Thus instead of connecting 
more SEMBs in series to increase the address lines a 
multiplexer can be used to implement an FSM with fewer 
SEMB. This is also advantageous for power savings, as 
instantiating more SEMB increases the power 
consumption.  
 Once implemented, an SEMB based FSM has some 
advantages over a traditionally implemented FSM. The 
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functionality of an SEMB based FSM can be changed by 
changing the contents of the SEMB. The changes can be 
made quickly by re-writing the memory location which 
needs to be changed. This process of changing SEMB 
contents is much faster than going through the complete 
synthesis and placement and routing process. This is 
helpful for last moment engineering change orders 
(ECOs) and for unforeseen design changes. 
  

 The timing of the SEMB based FSM is predictable 
since the critical path is from the output of the SEMB to 
its address inputs. Thus no matter how many state 
transitions an FSM may have the timing of it does not 
change. 
 
 
 
 
 
 
 
 
 
 
 
 

 Although memory arrays have greater power 
consumption when compared to individual LUTs and FFs, 
for state machine which uses several FFs, LUTs, and 
significant routing resources, the SEMB based approach 
has lower power consumption than the FF based 
approach. The SEMB approach uses minimal routing 
resources. For example, if there are N states in a state 
machine, then log2N bits of the output of the memory 
array are connected to its address input along with the 
state machine�s inputs. Routing resources are needed only 
to route a small number of signals from the output of the 
memory array to its address input, and to connect inputs 
of the FSM to the address input of the memory array. The 
state change in this approach only requires a change in 
address, thus any state machine, no matter how complex, 
can be implemented using just the memory arrays without 
any additional logic. Further, the FSMs implemented can 
be clocked at the maximum clock frequency supported by 
the memory arrays, which is close to the maximum clock 
frequency a design can execute on an FPGA. Figure 5 
shows the algorithm to map an FSM into the SEMBs.  
 

5. Experimental Results 
 

 To compare the traditional and proposed technique, 
power consumed by a design by both the approaches was 
measured. The target FPGA for our experiments was 
Xilinx Virtex-II XC2V250-6fg256. We have used 
benchmark circuits from the MCNC benchmark set [9], 
these benchmark circuits represent the STG of FSMs. In 
addition to the MCNC benchmark circuits we have used 
an FSM prep4, which is part of the prep benchmark suite 
[10]. The STG of these FSMs were synthesized using SIS 
[11] and a net-list in blif format was generated. This net-
list contains the combinatorial portion of the FSMs and 
FFs to store the states. The blif net-list was then translated 

into structural VHDL and was technology mapped for the 
target FPGA using synplify_pro tool from Synplicity. The 
placement and routing of the mapped design was done 
using Xilinx ISE 4.2.03i design tool suite. The XPower 
tool, which is part of the ISE design suite, was used to 
calculate the power dissipation. XPower takes the design 
information from the placed and routed (.ncd) file and 
takes as input the clock frequency and switching activity 
information for all the nets in the design from a .vcd 
(value change dump) file. For all the benchmark designs, 
post place and route simulation was done using ModelSim 
simulator for a large number of random inputs. The 
switching activities for all the components was then saved 
in the .vcd file and was input to the Xpower tool to 
estimate the power consumption of the design.  
Algorithm Map_FSM_in_SEMBs 
       I:   number of inputs to an FSM 
       O:  number of outputs of the FSM 
1. encode each state in the STG, with total number of state bits 

equal to s 
2. if( I+s < number of address lines available at any SEMB 

configuration) then     { 
3.    if( O+s < data out width of the SEMB) then 
4.               calculate SEMB contents using the STG; 
5.    else   
6.        while (! (O < data out width of SEMBs in parallel)) do  
7.                  join 1 SEMB in parallel having the same address 

inputs; 
8.        endwhile; 
9.        break;                   }  
10.  else    { 
11.        from the STG find out the maximum number of inputs 

i� any state uses excluding don�t care bits; 
12.         if ( i� + s < number of address lines available at any 

SEMB) then       { 
13.       decode input i to i� for each state and connect i� to 

address input of SEMBs; 
14.           goto3;        } 
15.        else       { 
16.             while (! (i� + s < number of address lines available 

at any SEMB)) do 
17.                           join 1 SEMB in series; 
18.            endwhile 
19.           goto 3;}  
20.             } 
End_Algorithm 
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 For the SEMB implementation, the blockRAMs were 
instantiated in the VHDL code and connection to their 
address lines and outputs were made. The contents of the 
blockRAMs were initialized in the VHDL code; we have 
written a �C� program to automatically generate the 
VHDL initialization string for these blockRAMs. The 
experimental flow to estimate power for the SEMB based 
FSMs is same as shown in figure 6. But instead of 
synthesizing the design using SIS, synplify_pro is used to 
synthesize the VHDL code. Among the benchmark 
circuits we used, the outputs of prep4 were implemented 
using the LUTs. The prep4 circuit has 16 states and 8 
outputs, 16 states were encoded using 4 output lines of the 
blockRAM, which were also connected to the inputs of 8 
LUTs to generate the FSM�s output. Table 1 shows the 
area occupied by each benchmark circuit. Table 2 shows 
power (in MW) consumed by each benchmark circuit at 
different clock frequencies. In the SEMB based 
implementation only those benchmark circuits which need 
an input multiplexer require LUTs in addition to the 
blockRAMs. It is observed that power consumption of the 
FF based state machines goes up with the increase in 
complexity of the state machine (more number of 
transitions) and with increasing number of states. This is 
because more LUTs, FFs and programmable interconnect 
resources are needed to implement a complex state 
machine. For the SEMB based implementation, power 
consumption goes up with increasing number of inputs, 
outputs and states. Power consumed by the blockRAM is 
dependent upon the number of word-lines used, and 
number of bits in a word-line used. Therefore, an increase 
in the number of inputs and outputs and the number of 
states increases the power consumption of a blockRAM.  
 

6. Stopping the Clock during Idle States 
 

 The embedded memory block in an FPGA has higher 
clock capacitance than an LUT and an FF. For this reason 
more power is consumed in clocking a blockRAM than an 
FF in a Virtex-II device. An FSM may not change its state 
and its output on every clock cycle, thus clocking the 
embedded memory array during these idle states will 
waste power.  Through the STG it is possible to detect 
states and the corresponding set of inputs for which there 
will no state and output change. The clock to the 
blockRAM can be disconnected for these idle states until 
a transition in the state or outputs must be performed. In 
the Virtex-II series of FPGAs, the blockRAM provide an 
enable port. This enable port enables the read/write 
operation to the blockRAM. During the idle states of the 
FSM this port can be disabled, and the blockRAM is not 
clocked. Unlike the gated clock techniques, this method 
does not require any external clock gating and thus is 
glitch free.  
 
 

Table 1. FPGA device utilization for different 
benchmarks circuits by both the approaches.  

FF/LUT based FSM SEMB FSM Benchmark 
LUT FF slice LUT slice block 

RAM 
Prep4 69 4 35 8 4 1 
Dk16 114 5 58 0 0 1 
Tbk 342 10 174 0 0 1 
Keyb 112 5 57 16 8 1 
donfile 66 5 33 0 0 1 
Sand 263 10 134 20 10 2 
Styr 241 8 123 16 8 2 
Ex1 144 5 73 15 8 3 
Planet 320 12 163 18 9 3 

The clock control logic of the blockRAM is implemented 
using the LUTs. The inputs to the clock control logic for a 
Moore machine are the current state bits and the inputs to 
the FSM. For a Mealy machine output of the FSMs are 
also used to implement the clock control logic, because in 
a Mealy machine there can be conditions when the state 
does not change but outputs may change. We have written 
a program in �C� which identifies all such idle states from 
the state transition graph and generates a behavioral 
VHDL code for the clock control logic.         
 

The clock control technique can be used for the FF based 
implementation also, and it may appear that the same 
percentage of power should be saved. However, there is 
an important difference; the clock control logic will only 
stop the clock supplied to the FFs. The inputs connected 
to the combinatorial logic may still switch on each clock 
cycle even when there is no change in the state and the 
outputs. Thus the combinatorial portion of the FSM will 
continue to consume power during the idle states even 
after clock gating.  
 

 The clock control logic uses the state bits, input, and 
output signals as its input; therefore, it is in the critical 
path of the design. Similar to the input setup time, the 
enable signal should be stable before the rising edge of 
the clock. In other words, the clock frequency of the 
design will be slower proportional to the delay introduced 
by the clock control logic.  
 

 Table 3 shows the power consumed by each benchmark 
circuit with the clock control logic and table 4 shows the 
area overhead to implement the clock control logic. The 
amount of power savings achieved with the clock control 
logic is dependent upon the total time an FSM spends in 
idle states. For an FSM which spends very little time in 
idle states, there will be very little improvement over the 
traditional FF based implementation. On the other hand, 
significant power savings can be seen for an FSM which 
spends much of the time in idle states. Table 3 shows an 
average case (with 50% idle states) to make a comparison 
between the two techniques.  
 
 
 
 
 



 

7. Conclusion 
  

 In this paper, we have presented an alternate 
implementation of FSMs using embedded FPGA memory 
blocks. A complete procedure starting from an STG to the 
hardware implementation is outlined. Experimental 
results have shown that, the SEMB based approach saves 
power from 4% to 26% compared to the FF based 
approach. Furthermore, it is shown that clock supply to 
the embedded memory can be stopped during the idle 
states of the FSM for additional power savings. The 
SEMB based approach also has low area-overhead and 
provides flexibility to change an FSM�s functionality 
without any design recompilation, by changing the 
memory contents.   
 

 Mapping of the FSMs into embedded FPGA memory 
array can unburden the programmable routing resource 
and has very low area overhead. Since commercial 
FPGAs have their own set of programming tools, to be 
used efficiently, this technique will have to be automated 
for different proprietary tools. Currently it is automated 
only for Xilinx Virtex-II series of FPGAs.  
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Table 3. Power consumed (in MW) by the 
benchmark circuits with clock control logic 
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           FF/LUT based FSM                SEMB FSM Benchmark 
50MHz 85MHz 100MHz 50MHz 85MHz 100MHz 

Percentage saving of SEMB implementation at 
100MHz 

Prep4 147.39 149.84 158.42 131.51 143.70 152.09 4.0 
Dk16 128.42 139.56 144.33 122.19 128.97 131.38 9.0 
Tbk 148.35 174.68 177.14 122.28 129.59 132.61 25.19 
Keyb 127.18 137.45 141.85 122.22 129.02 131.93 7.0 
Donfile 126.75 136.72 141.00 125.00 133.50 137.75 2.30 
Sand 148.76 174.14 185.08 137.67 155.28 162.83 12.02 
Styr 148.63 173.92 184.76 139.01 157.56 165.51 10.40 
Ex1 155.00 184.75 197.50 156.94 188.04 190.37 3.6 
Planet 168.45 207.61 224.39 156.18 186.75 199.85 11.0 

 SEMB FSM with clock 
control logic 

Bench 
mark 

50MHz 85MHz 100MHz 

percentage saving 
compared to the FF 
based approach at 
100MHz 

Prep4 130.43 142.61 148.28 6.40 
Dk16 120.24 125.65 127.97 11.33 
Tbk 121.73 128.10 130.86 26.12 
Keyb 120.91 126.79 129.13 9.00 
Donfile 123.47 131.15 134.44 4.60 
Sand 135.29 151.23 158.07 14.50 
Styr 136.30 152.95 159.09 13.89 
Ex1 156.14 186.84 188.75 4.44 
Planet 151.49 178.77 190.47 15.20 

Area overhead  Benchmark 
LUTs Slices 

Prep4 10 5 
Dk16 4 2 
Tbk 62 32 
Keyb 4 3 
Donfile 4 2 
Sand 47 25 
Styr 17 30 
Ex1 49 28 
Planet 9 13 

Table 2. Power consumed (in MW) by different benchmark circuits by both the approaches

Table 4. Area overhead of clock control logic for different 
benchmark circuits
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