
Saving Power by Mapping Finite-State Machines into Embedded
Memory Blocks in FPGAs

Anurag Tiwari and Karen A. Tomko
Department of ECECS, University of Cincinnati

Cincinnati, OH 45221-0030, USA
{atiwari, ktomko}@ececs.uc.edu

Abstract

 Modern FPGAs contain on-chip synchronous embedded
memory blocks (SEMBs), these memory blocks can be
used to implement control units, when not used as on-chip
memory. In this paper, we explore the mapping of Finite
State Machines (FSMs) into the SEMBs for power and
area minimization. We have shown the SEMB based
implementation of the FSMs and compared it with
conventional Flip-Flop (FF) based implementation. The
proposed implementation of the FSMs consumes less
power and has lower area and routing overhead than the
FF based approach and it can be clocked at the maximum
clock frequency supported by the SEMBs. Experimental
results show that the SEMB based FSM consumes 4% to
26% less power than the conventional implementation. In
addition it is observed that the power consumption can be
further reduced by stopping the clock to the SEMBs
during the idle states.

1. Introduction

 The first generation FPGAs had less than a few
thousand gates and were only able to support designs
running upto 30 MHz. Today, FPGAs contain more than a
million gates and are able to clock designs at a frequency
greater than 200 MHz. Because of the substantial logic
resources and higher processing speeds, FPGAs now can
be used for some of the applications previously targeted
to the Application Specific Integrated Chips (ASICs) and
can be found in portable computing devices, mobile and
wireless communication equipments. They are also used
extensively in space based applications. With the rising
FPGA complexity, power drawn by the devices has
increased in comparison to the previous generation
FPGAs. Furthermore, FPGA chips for these applications
are battery-powered, thus power consumed by an FPGA
device has became an important consideration to prolong
battery-life. The control path of any FPGA design which
consists of finite state machines consumes a significant
amount of power; thus minimizing power consumed by
the FSMs can significantly reduce the total power
consumed by a design.

 Traditionally, the FSMs in an FPGA are implemented
using FFs and programmable Look Up Tables (LUTs). In
addition to the programmable LUTs and FFs, the current
generation of commercial FPGA contains embedded
memory blocks which can be used to create single or duel
port RAM, ROM and FIFOs. For example, Xilinx Virtex-
II FPGA contains blockRAM [1], Altera Stratix FPGA
contains TriMatrix memory [2], and Actel 42MX FPGA
contains dual port SRAM modules [3]. The embedded
memory blocks are synchronous SRAM modules (with
their outputs latched), which can be configured in many
different width and depth combinations.

 The aforementioned FPGAs provide a large number of
embedded memory arrays. In Xilinx Virtex-II FPGA, this
number ranges from 4 blockRAMs for the Xilinx-
XC2V40 device to 168 blockRAMs for the XC2V8000
device. The FPGA�s silicon area is partitioned into these
memory arrays and the programmable logic. Since
different designs have varying memory requirements
some embedded memory arrays may not be utilized in
logic-intensive designs. These unutilized memory arrays
can be used to implement control units and FSMs, which
will unburden the routing resources and reduce power
consumption of a design.

 In this paper mapping of an FSM into the SEMBs is
explored for FPGAs and power consumed by it is
compared with the FF based approach. Besides reduced
power consumption, mapping of an FSM into the SEMB
has the following advantages:

• Quick and easy change in the FSMs functionality
by directly changing the SEMBs contents. No
design recompilation (synthesis, place and route)
necessary for changing the FSM�s functionality.

• Fixed timing regardless of the FSM�s complexity
• No additional clock gating circuit is required to

cut off the clock during idle states; this can be
achieved by controlling the enable signal.

The SEMB approach is in contrast to the traditional FF
and logic based approach, in which a complex state
machine can occupy a large percentage of the logic and
routing resources in a device. In the SEMB approach,
address lines of the SEMB are connected to the next state

1530-1591/04 $20.00 (c) 2004 IEEE

bits and inputs of an FSM. The memory contents are
programmed with next state address location which is
formed in conjunction with the inputs to the FSM. If there
is sufficient space some of bits of the SEMB output can
be used for the FSM�s output. The FF and SEMB based
FSMs are illustrated using figure 1a and 1b.

 This paper is organized as follows: Section 2 provides
some background on power consumption in FPGAs.
Section 3 discusses related research done on low power
FSM design for FPGAs and mapping of logic into unused
embedded memory arrays. Section 4 gives a detailed
description of how to map an FSM into the SEMBs and
describes why power consumption by the SEMB
approach is lower than the FF based approach. In addition
to presenting the SEMB mapping, this section compares
the power consumed by both implementations. Section 5
and 7 present experimental results and conclusion
respectively. Section 6 shows that power can be further
reduced by stopping the clock to the SEMBs during idle
states.

2. Power Consumption in FPGAs

 In a typical FPGA 60% of power is consumed by the
programmable interconnects, 16% is consumed by
programmable logic and 14% by the clock distribution
network [4]. This distribution is different from ASICs, in
which the majority of power is consumed by the clocking
network. Programmable interconnects in an FPGA are the
dominating power consuming source, because a routed
signal may have to pass though a number of
programmable switches before reaching its destination.
Other power consuming sources are the logic
programmed into the FPGA�s computing elements and
the clock distribution network. Power consumed by an
FPGA design is primarily dependent on three factors:
clock frequency, resource utilization, and switching
activity. Dynamic power dissipation, which constitutes a
major portion of the total power dissipated by an FPGA,
is caused by signal transitions, i.e. a change of signal
value from logic level �0� to �1� and vice versa. Therefore,
a design running at a higher clock frequency will have

increased power dissipation due to more frequent signal
transitions. Resource utilization is another factor which
affects the power dissipation. Unused resources in an
FPGA do not consume any dynamic power and as
different designs have varying resource utilization, power
consumed by a design is dependent on the resources it
uses. The switching activity, which is equal to the number
of signal transitions in a clock cycle, also contributes to
the dynamic power dissipation. The switching activity of
a signal depends upon the type of design and on the inputs
to the design.

3. Related Work

 Extensive research has been done in the area of low
power design for FSMs. However, the majority of the
previous research work is focused on ASIC
implementation. Our work in this paper is different from
earlier research as it takes advantage of the architectural
features of newer FPGAs. Sutter et al [5] have proposed a
decomposition based approach for FPGAs, in which the
original FSM is divided into many smaller FSMs. There
has been some research done for mapping combinatorial
logic into the embedded memory arrays [6][7]. However,
techniques presented in [6] and [7] are limited to the
asynchronous on-chip memory blocks present in some
previous generation FPGAs. Benini et al [8] have
presented a clock gating technique which stops clock to
the FSM during idle states. The clock stopping work
presented in section V is similar to the research in [8], but
our work is adapted and modified for reducing power
consumed by the embedded memory blocks in FPGAs.

4. Mapping Finite State Machines to on-chip
Memory Arrays

 An FSM can be described by a six-tuple (I, O, S, r0, δ,
Y) where I is the set of inputs, O is the set of outputs, S is
the set of states, and r0 is the initial (reset) state, δ: I X S =
S is the state transition function and Y: I X S = O is the
output function for Mealy machines. The six-tuple
machine can be depicted as a state transition graph (STG),
where nodes represent states and directed edges represent
outputs and inputs for the state transition

4.1 FF Based FSM Implementation in FPGA

 When an FSM is implemented using FFs, each state is
represented by the binary value stored in the FFs. The
outputs and the next state values are calculated by the
combinatorial logic. Figure 1a shows a FF and LUT based
implementation of an FSM. The combinatorial portion of
an FSM is implemented by LUTs in the FPGAs, which
are connected by programmable interconnect. As the
complexity of an FSM increases the number of LUTs and
FFs, and programmable interconnect resources utilization
increases proportionally. The number of FFs used to
implement an FSM depends on the state encoding, such as

Combinational
logic mapped in
LUTs

 R
egisters

Clock

Next state

Outputs

Inputs

Figure 1b. SEMB based FSM implementation

Figure 1a. FF and LUT based FSM in an FPGA

SEMB

Clock
Inputs

Next state bits

Output

SEMB
address
input

SEMB
data
output

sequential, one-hot, grey encoding. The number of LUTs
increases with the complexity of the FSM. It depends on
the number of states in an FSM, number of transition in
the state transition graph, number of inputs and outputs.
In a design which utilizes a small percentage of total
FPGA resources, LUTs and FFs are placed close to each
other so that minimal programmable interconnects are
used. On the other hand, in a denser design, due to routing
congestion, LUTs and FFs may be spread all across the
FPGA chip. This will increase the programmable
interconnect utilization and hence the power
consumption. Contrary to this the power consumed by the
SEMB based FSM does not change with routing
congestion, because most of the logic is programmed in
the embedded memory itself. In the case where more than
one embedded memory is required to implement an FSM,
high speed dedicated interconnects between the memories
blocks can be used [1].

4.2 FSM Implementation Using SEMBs

 In the SEMB FSM implementation, the memory array
contents are programmed with the encoded state bits
(which along with the FSM�s inputs also form the address
for the next state memory location), and FSM�s output.
This approach is explained with the help of Figure 2b, the
implementation shown is of a �0101� sequence detector,
whose state diagram is shown in Figure 2a. The output of
this sequence detector is �0� till the last �1�, if the
sequence is detected, at which time it becomes �1�. The
embedded memory blocks present in the FPGAs have
their output latched, which can be set or cleared after the
device configuration or on the application of a reset
signal. Since the output signals of the memory array are
routed to its address inputs, the initial state of the FSM
can be programmed at the location addressed by set or
cleared outputs, usually it is the first memory location. In
the sequencer example shown in Figure 2b, the initial
state is the memory location �000�, which is programmed
with an encoded value of state �A�. When the sequencer is
in state A and if the input to it is �0�, memory location
�000� is addressed, the contents of which is �010�, which
is the memory location for the next state, B. Similarly,
there is a state transition to other states by the change in
address of the memory array. In some cases no separate
logic is needed to generate the output of an FSM, instead
it can be realized using the memory arrays itself. In the
example discussed, the 1-bit output of the FSM is
programmed in bit �D0� of the memory array.

 Some FSMs may have more outputs than can be
programmed into a single SEMB. For such FSMs
multiple SEMBs can be connected in parallel using the
same address inputs. For Moore type FSMs, in which the
output depends on the current state, the state bits coming
out of the SEMBs can be used to implement the output
function external to an SEMB. The output function is

implemented using the LUTs, this is illustrated in figure.
3. A Mealy machine can be transformed into a Moore
machine [12], if the output are to be implemented using

the LUTs.

 The input bits in the STG of some FSMs may contain
many don�t-care bits. If these don�t-care bits are
separated from the input bits, fewer input bits will be
required to determine the state transition for each state.
The don�t care bits can be removed from the inputs by
column compaction. In the STG, if all the rows specific to
a state have the don�t care bits at the same bit position
then those bits can be removed from the input provided all
the other states can also remove the same number of don�t
care bits. Since the position of the don�t care bits can
differ for different states, an input encoder is needed to
select the corresponding inputs for each state. Our column
compaction problem and the solution is different from the
ones proposed earlier for symbolic inputs and outputs
[13,14], because in our technique the inputs are not
symbolic. This process is illustrated with figure 4.
Column compaction is helpful when the total number of
inputs and state bits are more than the number of address
lines present in the SEMB. Thus instead of connecting
more SEMBs in series to increase the address lines a
multiplexer can be used to implement an FSM with fewer
SEMB. This is also advantageous for power savings, as
instantiating more SEMB increases the power
consumption.
 Once implemented, an SEMB based FSM has some
advantages over a traditionally implemented FSM. The

Figure 2b. SEMB implementation
101

010

000

110

100

010

000

010

2-bit next state address input

D2-D1 A2-A1

1-bit output
of the FSM

D0 A01-bit input to
the FSM

Memory
location
�000�

 Clock
Reset

Figure 3. Output function of a Moore type
FSM is implemented using LUTs

Figure 2a. State diagram for a �0101� detector

SEMB

Clock

Inputs

Next state bits

Output
logic
using
LUTs

Outputs

functionality of an SEMB based FSM can be changed by
changing the contents of the SEMB. The changes can be
made quickly by re-writing the memory location which
needs to be changed. This process of changing SEMB
contents is much faster than going through the complete
synthesis and placement and routing process. This is
helpful for last moment engineering change orders
(ECOs) and for unforeseen design changes.

 The timing of the SEMB based FSM is predictable
since the critical path is from the output of the SEMB to
its address inputs. Thus no matter how many state
transitions an FSM may have the timing of it does not
change.

 Although memory arrays have greater power
consumption when compared to individual LUTs and FFs,
for state machine which uses several FFs, LUTs, and
significant routing resources, the SEMB based approach
has lower power consumption than the FF based
approach. The SEMB approach uses minimal routing
resources. For example, if there are N states in a state
machine, then log2N bits of the output of the memory
array are connected to its address input along with the
state machine�s inputs. Routing resources are needed only
to route a small number of signals from the output of the
memory array to its address input, and to connect inputs
of the FSM to the address input of the memory array. The
state change in this approach only requires a change in
address, thus any state machine, no matter how complex,
can be implemented using just the memory arrays without
any additional logic. Further, the FSMs implemented can
be clocked at the maximum clock frequency supported by
the memory arrays, which is close to the maximum clock
frequency a design can execute on an FPGA. Figure 5
shows the algorithm to map an FSM into the SEMBs.

5. Experimental Results

 To compare the traditional and proposed technique,
power consumed by a design by both the approaches was
measured. The target FPGA for our experiments was
Xilinx Virtex-II XC2V250-6fg256. We have used
benchmark circuits from the MCNC benchmark set [9],
these benchmark circuits represent the STG of FSMs. In
addition to the MCNC benchmark circuits we have used
an FSM prep4, which is part of the prep benchmark suite
[10]. The STG of these FSMs were synthesized using SIS
[11] and a net-list in blif format was generated. This net-
list contains the combinatorial portion of the FSMs and
FFs to store the states. The blif net-list was then translated

into structural VHDL and was technology mapped for the
target FPGA using synplify_pro tool from Synplicity. The
placement and routing of the mapped design was done
using Xilinx ISE 4.2.03i design tool suite. The XPower
tool, which is part of the ISE design suite, was used to
calculate the power dissipation. XPower takes the design
information from the placed and routed (.ncd) file and
takes as input the clock frequency and switching activity
information for all the nets in the design from a .vcd
(value change dump) file. For all the benchmark designs,
post place and route simulation was done using ModelSim
simulator for a large number of random inputs. The
switching activities for all the components was then saved
in the .vcd file and was input to the Xpower tool to
estimate the power consumption of the design.
Algorithm Map_FSM_in_SEMBs
 I: number of inputs to an FSM
 O: number of outputs of the FSM
1. encode each state in the STG, with total number of state bits

equal to s
2. if(I+s < number of address lines available at any SEMB

configuration) then {
3. if(O+s < data out width of the SEMB) then
4. calculate SEMB contents using the STG;
5. else
6. while (! (O < data out width of SEMBs in parallel)) do
7. join 1 SEMB in parallel having the same address

inputs;
8. endwhile;
9. break; }
10. else {
11. from the STG find out the maximum number of inputs

i� any state uses excluding don�t care bits;
12. if (i� + s < number of address lines available at any

SEMB) then {
13. decode input i to i� for each state and connect i� to

address input of SEMBs;
14. goto3; }
15. else {
16. while (! (i� + s < number of address lines available

at any SEMB)) do
17. join 1 SEMB in series;
18. endwhile
19. goto 3;}
20. }
End_Algorithm

STG

SIS

.blif

blif to
VHDL
translator

Structural
VHDL

Technology
Mapping
Synplify_pro

.edif

Placeme-
nt and
routing

.ncd

Xpower
tool

Modelsim
simulation

Figure 6. Experimental flow

Figure 4. SEMB with an input multiplexer to
select inputs for each state.

Figure 5. Algorithm to map an FSM into the SEMBs

SEMB

Clock

Inputs

Next state bits

Input
mux Outputs

 For the SEMB implementation, the blockRAMs were
instantiated in the VHDL code and connection to their
address lines and outputs were made. The contents of the
blockRAMs were initialized in the VHDL code; we have
written a �C� program to automatically generate the
VHDL initialization string for these blockRAMs. The
experimental flow to estimate power for the SEMB based
FSMs is same as shown in figure 6. But instead of
synthesizing the design using SIS, synplify_pro is used to
synthesize the VHDL code. Among the benchmark
circuits we used, the outputs of prep4 were implemented
using the LUTs. The prep4 circuit has 16 states and 8
outputs, 16 states were encoded using 4 output lines of the
blockRAM, which were also connected to the inputs of 8
LUTs to generate the FSM�s output. Table 1 shows the
area occupied by each benchmark circuit. Table 2 shows
power (in MW) consumed by each benchmark circuit at
different clock frequencies. In the SEMB based
implementation only those benchmark circuits which need
an input multiplexer require LUTs in addition to the
blockRAMs. It is observed that power consumption of the
FF based state machines goes up with the increase in
complexity of the state machine (more number of
transitions) and with increasing number of states. This is
because more LUTs, FFs and programmable interconnect
resources are needed to implement a complex state
machine. For the SEMB based implementation, power
consumption goes up with increasing number of inputs,
outputs and states. Power consumed by the blockRAM is
dependent upon the number of word-lines used, and
number of bits in a word-line used. Therefore, an increase
in the number of inputs and outputs and the number of
states increases the power consumption of a blockRAM.

6. Stopping the Clock during Idle States

 The embedded memory block in an FPGA has higher
clock capacitance than an LUT and an FF. For this reason
more power is consumed in clocking a blockRAM than an
FF in a Virtex-II device. An FSM may not change its state
and its output on every clock cycle, thus clocking the
embedded memory array during these idle states will
waste power. Through the STG it is possible to detect
states and the corresponding set of inputs for which there
will no state and output change. The clock to the
blockRAM can be disconnected for these idle states until
a transition in the state or outputs must be performed. In
the Virtex-II series of FPGAs, the blockRAM provide an
enable port. This enable port enables the read/write
operation to the blockRAM. During the idle states of the
FSM this port can be disabled, and the blockRAM is not
clocked. Unlike the gated clock techniques, this method
does not require any external clock gating and thus is
glitch free.

Table 1. FPGA device utilization for different
benchmarks circuits by both the approaches.

FF/LUT based FSM SEMB FSM Benchmark
LUT FF slice LUT slice block

RAM
Prep4 69 4 35 8 4 1
Dk16 114 5 58 0 0 1
Tbk 342 10 174 0 0 1
Keyb 112 5 57 16 8 1
donfile 66 5 33 0 0 1
Sand 263 10 134 20 10 2
Styr 241 8 123 16 8 2
Ex1 144 5 73 15 8 3
Planet 320 12 163 18 9 3

The clock control logic of the blockRAM is implemented
using the LUTs. The inputs to the clock control logic for a
Moore machine are the current state bits and the inputs to
the FSM. For a Mealy machine output of the FSMs are
also used to implement the clock control logic, because in
a Mealy machine there can be conditions when the state
does not change but outputs may change. We have written
a program in �C� which identifies all such idle states from
the state transition graph and generates a behavioral
VHDL code for the clock control logic.

The clock control technique can be used for the FF based
implementation also, and it may appear that the same
percentage of power should be saved. However, there is
an important difference; the clock control logic will only
stop the clock supplied to the FFs. The inputs connected
to the combinatorial logic may still switch on each clock
cycle even when there is no change in the state and the
outputs. Thus the combinatorial portion of the FSM will
continue to consume power during the idle states even
after clock gating.

 The clock control logic uses the state bits, input, and
output signals as its input; therefore, it is in the critical
path of the design. Similar to the input setup time, the
enable signal should be stable before the rising edge of
the clock. In other words, the clock frequency of the
design will be slower proportional to the delay introduced
by the clock control logic.

 Table 3 shows the power consumed by each benchmark
circuit with the clock control logic and table 4 shows the
area overhead to implement the clock control logic. The
amount of power savings achieved with the clock control
logic is dependent upon the total time an FSM spends in
idle states. For an FSM which spends very little time in
idle states, there will be very little improvement over the
traditional FF based implementation. On the other hand,
significant power savings can be seen for an FSM which
spends much of the time in idle states. Table 3 shows an
average case (with 50% idle states) to make a comparison
between the two techniques.

7. Conclusion

 In this paper, we have presented an alternate
implementation of FSMs using embedded FPGA memory
blocks. A complete procedure starting from an STG to the
hardware implementation is outlined. Experimental
results have shown that, the SEMB based approach saves
power from 4% to 26% compared to the FF based
approach. Furthermore, it is shown that clock supply to
the embedded memory can be stopped during the idle
states of the FSM for additional power savings. The
SEMB based approach also has low area-overhead and
provides flexibility to change an FSM�s functionality
without any design recompilation, by changing the
memory contents.

 Mapping of the FSMs into embedded FPGA memory
array can unburden the programmable routing resource
and has very low area overhead. Since commercial
FPGAs have their own set of programming tools, to be
used efficiently, this technique will have to be automated
for different proprietary tools. Currently it is automated
only for Xilinx Virtex-II series of FPGAs.

Acknowledgement: The synthesis and FPGA tools used in
this work were donated by Synplicity and Xilinx
respectively. Part of this work was supported by the
University of Cincinnati summer graduate student
research fellowship.
Table 3. Power consumed (in MW) by the
benchmark circuits with clock control logic

REFERENCES
1. Xilinx Incorporate, San Jose California, Virtex-II data sheet,
version 2.3, March 2003
2. Altera Corporation, Stratix Programmable Logic Device
Family Data Sheet, version 2.0, April 2002
3. Actel Corporation, 42MX FPGA Data Sheet, ver 5.0, Feb� 01
4. L.Shang et al, �Dynamic Power Consumption in VirtexTM�II
FPGA family�, Proc. FPGA�03, ACM Feb 2002
5. G.Sutter et al, �FSM Decomposition for Low Power in
FPGA�, Proc. FPL�02
6. J.Cong et al, �Technology Mapping for FPGAs with
Embedded Memory Blocks�, Proc. FPGA�98, ACM,
7. S.Wilton, �Heterogeneous Technology Mapping for FPGAs
with Dual-Port Embedded Memory Array�, Proc. FPGA�00,
ACM, pp. 67-74
8. L.Benini et al, �Automatic Synthesis of Low-Power Gated-
Clock Finite-State Machines�, IEEE Trans. CAD of IC, vol. 15
No.6 June 1996
9. Bob Lisanke. Logic synthesis and optimization benchmarks.
Technical report, MCNC, Research Triangle Park, North
Carolina, December 1988.
10. Programmable Electronic Performance Group, �PREP
Benchmark Suite #4, Version 1.3,� Los Altos, CA, 1994.
11. E. Sentovich, et al, SIS: A System for Seq. Circuit Synthesis.
Tech. Report Mem. No. UCB/ ERL M92/41, Univ. of California,
Berkeley, 1992.
12. Z. Kohavi, Switching and Finite Automata Theory. McGraw-
Hill New York, 1978
13. Mitra, S. et al., �An Output Encoding Problem and a
Solution Technique�, IEEE Trans.CAD, vol. 18, no. 6, June�99
14. Binger, D. et al., �Encoding Multiple Outputs for Improved
Column Compaction�, Proc. ICCAD-91, 1991, pp. 230-233

 FF/LUT based FSM SEMB FSM Benchmark
50MHz 85MHz 100MHz 50MHz 85MHz 100MHz

Percentage saving of SEMB implementation at
100MHz

Prep4 147.39 149.84 158.42 131.51 143.70 152.09 4.0
Dk16 128.42 139.56 144.33 122.19 128.97 131.38 9.0
Tbk 148.35 174.68 177.14 122.28 129.59 132.61 25.19
Keyb 127.18 137.45 141.85 122.22 129.02 131.93 7.0
Donfile 126.75 136.72 141.00 125.00 133.50 137.75 2.30
Sand 148.76 174.14 185.08 137.67 155.28 162.83 12.02
Styr 148.63 173.92 184.76 139.01 157.56 165.51 10.40
Ex1 155.00 184.75 197.50 156.94 188.04 190.37 3.6
Planet 168.45 207.61 224.39 156.18 186.75 199.85 11.0

 SEMB FSM with clock
control logic

Bench
mark

50MHz 85MHz 100MHz

percentage saving
compared to the FF
based approach at
100MHz

Prep4 130.43 142.61 148.28 6.40
Dk16 120.24 125.65 127.97 11.33
Tbk 121.73 128.10 130.86 26.12
Keyb 120.91 126.79 129.13 9.00
Donfile 123.47 131.15 134.44 4.60
Sand 135.29 151.23 158.07 14.50
Styr 136.30 152.95 159.09 13.89
Ex1 156.14 186.84 188.75 4.44
Planet 151.49 178.77 190.47 15.20

Area overhead Benchmark
LUTs Slices

Prep4 10 5
Dk16 4 2
Tbk 62 32
Keyb 4 3
Donfile 4 2
Sand 47 25
Styr 17 30
Ex1 49 28
Planet 9 13

Table 2. Power consumed (in MW) by different benchmark circuits by both the approaches

Table 4. Area overhead of clock control logic for different
benchmark circuits

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

