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Abstract. This paper describes a self test program design technique
for embedded DSP cores. The method requires minimal knowledge of
the core’s internals and minimal insertion of external LFSR hardware,
without scan insertions. The test program consists of a small set of
instructions which operate iteratively on pseudorandom data generated
by the LFSRs to fully test the DSP core components. The method uses
instruction-based test metrics and a program template as a blueprint to
generate the test program. The self test scheme has been successfully
applied on an industrial-strength DSP core and the results compare
favorably to other methods using ATPG and pseudorandom BIST.

1 Introduction

Testing of embedded DSP cores in a System-on-Chip (SoC)
is very challenging. Embedded cores have limited test data
bandwidth from the Automated Test Equipment (ATE) due to
limited speed and number of external pins. The area and per-
formance overhead of invasive DFT such as scan may make
them prohitive in timing critical applications. Moreover, hard
to test components may be embedded within the core. Finally,
IP vendors desire to minimize internal knowledge that may be
revealed indirectly by test sets supplied with their core.
To address these issues, we have developed a self-test method-
ology for DSP cores whose basis is to construct a self-test tem-
plate program using instruction-level controllability and ob-
servability metrics on the core’s instruction set. The self-test
program primarily consists of template instructions and data us-
ing minimal additional hardware based on LSFRs. For random
pattern resistant faults, non-template instructions and data are
provided. Errors are propagated to the output of the core and
can be validated directly or indirectly using a MISR.
The idea of utilizing a processor’s instruction set to construct
self-test programs has been around for a while [1]. Since
then, more fully developed approaches have been developed. A
functional-based self-test and validation approach is discussed
in [2]. Another functional test generation method based on an
evolution paradigm is in [3]. The BIST scheme [4] randomizes
instruction opcodes, under some restrictions, as well as data
fields to produce self-test code. However, no specific methodol-
ogy for constructing the self-test program is provided and there
is difficulty targeting components with poor controllability and
observability. The method described in [5] uses deterministic
data, however, the test program produced may be too large [6]
attempts to decrease the size of self-test programs by adding
test instructions to the core, however, it requires modifications
to the core’s controller, while their results show only 20% test
size reduction. The methodology in [7] develops tests for the
individual core components; it also may lead to very large test
programs. Although, the option of pseudorandom patterns is

given, no instruction-level testability metrics are used incurring
accessibility problems for some core components. Instruction
self-testing was also used in [8], however, they do not provide
systematic testability metrics for instructions. A method using
ATPG constraint extraction is in [9].
In our work, we use a metrics-based approach to construct
the self-test program. We employ instruction-based testability
metrics to determine whether an instruction sequence exercises
components along the core’s datapath sufficiently. We believe
that this approach is simple and can be easily implemented once
the testability metrics are calculated. Moreover, using ATPG
and fault simulation, we can enhance our results regarding test
time and random resistant faults, in like manner as in [7].
This paper is organized as follows. Section 2 discusses our self-
test methodology, including instruction-based test metrics and
introduces a program template as a blueprint for test program
generation. Section 3 discusses in detail how we apply our test
methodology on an industrial DSP core. The results compare
favorably to the use of ATPG and pseudorandom BIST.

2 Self Test Methodology
The self test program consists of a sequence of instructions
which, when executed as a loop several times, with different
random numbers loaded into the DSP core as data, provides the
core with good coverage. The objective is to sufficiently exer-
cise each datapath component and to propagate any errors that
result in the component outputs to an observable output of the
core. We use instruction-level controllability and observability
metrics [10, 11] to determine the component testability.

2.1 The Controllability Metric
The controllability metric is based on randomness of the inputs
to a component. The idea of pseudorandom fault testing is that
if enough random test vectors are provided to a component then
most of the possible faults will be observable at the compo-
nent’s output. The randomness metric is derived from entropy
as defined in information theory which measures the average
amount of uncertainty regarding the value of a variable. The
following equation shows the entropy of an-bit variablex that
can take on values 0 to2n − 1 andpi is the probability thatx
equalsi.

H(X) = H(p0, p1, ..., p2n−1) = −
2n−1∑

0

pi log2 pi

The controllability metric,C(X) quantifies the quality of pseu-
dorandom patterns as they propagate through the embedded
components. The entropy of each component’s output is mea-
sured as a result of applying a pseudorandom uniform distri-
bution to the input of the core. Simulation can be done at the
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Figure 1. DSP Datapath
Opcode Mult Add Sub Clear Acc
Add 0 0.79/0.99 0.79/0.99 0.79/0.99
Add R 0.73/0.99 0.85/0.99 0.85/0.99
Sub 0 0.70/0.99 0.83/0.99 0.83/0.99
Sub R 0.67/0.99 0.86/0.99 0.86/0.99
Mac 0 0.71/0.99 0.86/0.99 0.86/0.99
Mac R 0.73/0.99 0.89/0.99 0.89/0.99
Clr 0 0.64/0.00 0.76/0.99 0.76/0.99
Clr R 0.64/0.00 0.76/0.99 0.76/0.99

Table 1. Controllability/Observability Metrics Table

behavioral level in order to get the probabilities used for these
calculations.

C(X) =
H(X)

H( 1
2n , ..., 1

2n )
=

H(X)
n

C(X) can range from non-controllability, 0.0, to full control-
lability, 1.0. Values decreasing towards zero represent more
coverage effort required by the random number generator for
the component.
Table 1 shows the controllability metric of each component for
a simple DSP datapath example in Figure 1. Each column rep-
resents each component’s mode or behavior due to control bits
on the datapath. The component ”ALU” has three modes: clear,
add, or subtract. The rows of the table represent the different in-
structions that can be used to exercise the components in the cir-
cuit. When running the behavioral simulations to calculate the
metrics, we assume that the values which are fed back or stored
in datapath registers are either known or random. The metrics
for each of the instructions, Table 1, are calculated twice, once
assuming that the value previously stored is the constant zero
(i.e. denoted by a ”0”) and the other time with a random value,
denoted by ”R” in column one. This point is explained later.

2.2 The Observability Metric
The observability metric,O(X), quantifies the ability of prop-
agating an erroneous value within the datapath to the core’s ob-
servable output. This can be calculated by the total number of
errors observed at the core’s output,δcore, divided by the total
number of simulations with random errors applied at the output
of the component within the datapath,δ(X).
For ann-bit signal there are2n − 1 possible erroneous values.
For components with large output signals it would take too long
to perform all2n − 1 possible faulty simulations for each good
simulation, so a good heuristic resulted in2×n. For example, a
good circuit was simulated 2000 times. If a component had an

LS
FR

2Load

Processor Local Bus

M
IS

R

Memory

Controller

DSP Processor core

LS
FR

1

(Self−Test Program)

External Memory

Instruction Fields

TestM
ode

Mux Mux

Reg.Opcode Immediate

Mux

Figure 2. Test Program Template Architecture

output that wasn-bits wide, for each of the good simulations,
2×n faulty simulations were run with a random value replacing
the component’s actual output value. Thus if 2000 good simu-
lations were run, then2000× 2× n simulations were run with
a random erroneous signal at then-bit output signal of com-
ponentX, then the approximate observability of componentX
would be calculated using the following formula:

O(X) =
δcore

δ(X)
≈ δcore

2000 × 2 × n

Table 1 also shows the observability metric of each component
of a simple DSP datapath, Figure 1, ranging from 0.0 to 1.0.
An observability of 1.0 means that every time that an erroneous
value was used at the components output it resulted in an error
at the core’s output. An observability of 0.0 means that errors
in the components output had no effect on the value output by
the core.
An instructioncoversa component if the metrics it produces on
that component are greater or equal to threshold values for the
controllability,Cθ, and observability,Oθ, metrics. From expe-
rience, good initial choices areCθ = 0.70 andOθ = 0.50.

2.3 Test Program Template Architecture

As mentioned earlier, the goal of the self-test program is to suf-
ficiently exercise each of the DSP components and to propagate
any errors that result in the outputs of these components to an
observable output of the core. By using a combination of ran-
domly generated data and specific data, this methodology will
generate test vectors that will provide good test coverage of the
core. This means providing both a) topological or structural
coverage of the core’s components and b) good quality control-
lability and observability metrics. This will hopefully mean that
the self test program also provides a high fault coverage for the
core. Figure 2 shows the self-test template architecture which
modifies the instruction stream between the memory and core.
Instructions from memory are treated as templates and various
instruction fields are instantiated with pseudorandom data dur-
ing testing. Instantiated instructions are then passed on to the
cache or processor core. Although, special test instructions can
be added, they are only visible to the the template architecture
and not the processor core itself. The output of the core can
then be fed into a response analyzer, e.g. MISR.
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Figure 3. Self-Test Template Generation flow

Several pseudorandom number generators (i.e. LFSRs) are
used by the architecture. Load pseudorandom data instructions
are created from unused opcodes from the DSP core’s architec-
ture which are trapped beforehand by the template architecture.
The instructions immediate field is then filled with the LFSR1
data and then the opcode is transformed as a normal load in-
struction.
When constructing our test program we do not take into con-
sideration the different registers that make up the register file.
This is because a register file may contain many registers, and
it would take a long test program to cover all of them. We still
want to exercise each of the registers that make up the register
file, so we add hardware that masks the register addresses used
by the test program, exercising a different group of registers
each iteration through the test program. Exclusive-ORing the
LFSR2 to the instructions register fields is one method which
can be used to change the register field instance of the self-test
program. This allows reuse of the same program to exercise
other registers during datapath coverage by using test loops.

2.4 Test Program Template Generation
Figure 3 shows the program generation flow for choosing the
instructions that make up the self-test program. The first step is
to construct a ”Metrics Table” that provides the controllability
and observability metrics produced by each instruction for each
of the components on our datapath at the behavioral level. This
is followed by two self-test program refinement phases, 1 and 2.
If sufficient coverage is not reached, the thresholds can be low-
ered a limited amount of times. Finally, a third, non-behavioral,
phase adds instructions with specific patterns inserted to attack
the random pattern resistant cases.
• Global Coverage Phase 1: We begin picking the instruc-
tion that covers the most columns in the metrics table, then we
delete those columns. We continue with the next instruction un-
til we delete all columns in the table. For example, in Table 1,
multiply and add instruction, ”Mac R”, covers three columns.
This instruction is chosen to be part of the self-test program.
Some instructions, such as Load and Out are automatically used
as wrappers in our test program. By ”wrapper” we mean an
instruction sequence that is either used before an instruction to
put the core in a certain state, before that instruction is executed,
or used after the instruction to ensure that any faults detected
by the instruction are propagated to an observable output. If

any components are covered by these wrappers we also remove
their columns from the metrics table.

• Specific Coverage Phase 2: We target individual components
that were not sufficiently exercised in Phase 1. This means that
there was no single instruction that was able to provide good
enough randomness and observability for the component. First
we try to find a sequence of instructions that provides a good
randomness for the component. After that, we need to find a
sequence of instructions that propagates any errors to an ob-
servable output (register). We can use our knowledge of the
core’s behavior in order to accomplish this. At the end we will
have a test program that can be run as a loop multiple times
generating test vectors for the core.

•Optional Fault Coverage Phase: We do not require gate-level
knowledge of the core, but if it is available, two further en-
hancements can be made to improve fault coverage and reduce
the test time. The first enhancement is to use fault simulation
to find which components take longer to get good coverage.
We add instructions exercising that component to the test pro-
gram so that they are executed multiple times per iteration. The
second enhancement is to use ATPG to target random resistant
faults. ATPG is only used on the specific component that con-
tains these faults so that the ATPG tool will have a better chance
of generating good vectors. We add instructions to propagate
the given patterns to the component and then to propagate the
fault to observable output. These instructions are not within the
program loop and are only executed once. While these tech-
niques will increase the length of the test program, nonetheless,
they should reduce the number of times we need to loop through
the program to obtain a sufficient fault coverage, decreasing the
total test time.

2.5 Experimental Environment

We start with a VHDL description of our core and use the
Synopsys Design Compiler to get a gate-level Verilog netlist.
We then construct a self-test program using our strategy. Our
scheme assumes that we only have a high level description of
the core and its instruction set. A Perl script was used to gen-
erate test patterns that would be generated if the test program
was looped through a given number of times. It also inserts
the pseudorandom data patterns which were generated by sim-
ulating the LFSR. These test patterns and the core’s gate level
netlist are fed into the Synopsys fault simulator, Tetramax, to
find the fault coverage of our testing scheme. The Perl script
also outputs a VHDL testbench which is used to simulate the
execution of our test program on the core using the Synop-
sys VHDL Simulator. This is done for verification purposes
to ensure that the the model used for fault simulation behaves
correctly. We use other Perl scripts to compute the testability
metrics. The scripts modify behavioral VHDL code, simulate
the modified code using Synopsys’ VHDL Simulator, and use
the results to compute randomness and observability.

3 Industry-based DSP core

This section discusses a step-by-step implementation of our test
methodology on an industry-based pipelined DSP core. First
we describe the core in some detail, then go over the steps of our
testing scheme and finally we provide results and comparisons.



3.1 The DSP Datapath
Our DSP core, shown in Fig. 6, is designed as a four stage
pipelined RISC-based Load/Store processor. The core uses a
17 bit instruction as input and has an 8 bit output. We use a
fixed 17-bit instruction format, shown in Fig. 4, consisting of a
5-bit opcode field, and a destination register field. Depending
on the opcode, there is a data field (bits 11-4), or two source
register fields. The core contains a register file made of six-
teen 8-bit registers and a functional unit that includes a com-
plex MAC datapath. Since a pipeline architecture was used,
read after write hazards had to be considered. To take care of
the hazards a temporary (forwarding) register, was used. The
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third stage of the core contains a buffer whose output is used
by instructions such as ”Ld” and ”Out”. For most other instruc-
tions the results of the MAC datapath (Figure 5) are used. The
input to the MAC consists of seven control bits and two 8-bit
operands which come from the specified registers in the regis-
ter file; their values are fetched in the second stage. The control
bits are the output of a decoder in the second stage. The MAC
datapath in Fig. 5 outputs an 8 bit result to theMacReg which is
connected to the multiplexer MUX7. The inputs and outputs of
the MAC use 8-bit fixed point integers formatted with four bits
to the left and four to the right of the decimal point. The MAC
contains an 8-bit multiplier that outputs a sign extended prod-
uct to 18 bits. The result of the adder/subtracter is then written
into one of two 18-bit accumulators,AccA and AccB. The
contents of the accumulators are fed into a shifter whose output
is fed back into the adder/subtracter. The MAC also contains
a truncater, which truncates the data to the right of the decimal
point. The arithmetic shifter is controlled by bitsc andd;the di-
rection and amount of shift is determined by the four bit signed

integer from theA input. The limiter clips the maximum pos-
itive and negative values of the 18-bit input integer producing
an 8-bit output integer.
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3.2 DSP Testability Metrics
Table 2 shows a subset of DSP instructions (i.e. rows) for con-
trollability and observability metrics. A subset of the columns
are also shown which represent each of the shaded components
of Fig. 6. For example, the shifter has two control bits and
therefore requires four columns. The first row beneath the col-
umn names contains the number of faults of the component.
• DSP controllability issues. To calculate the controllabil-
ity of a component’s inputs we get their probability distribu-
tion through the simulation of the core’s behavior while exe-
cuting an instruction sequence. We found that we needed more
than 2000 iterations to get good results for the randomness of
components with large inputs. To avoid long simulations, we
wrote a perl script which operates on the core’s behavioral de-
scription and produces a C++ program that would simulate the
circuit behavior and calculate the controllability metrics much
faster. Nonetheless, some components have 2 input ports each
18-bit wide, or a total of 36 input lines, thus taking too long
to simulate236 iterations. However, for most of these 2 input
port components we were able to assure that their 2 input port
signals are statistically independent. Recall that if two events
X and Y are independent then their entropies are related as
H(X, Y ) = H (X) + H (Y ). Thus, forn-bit input ports we
have:C(X, Y ) = (1/2n) (C(X) + C(Y )). This assumption
allowed us to find the controllability of most components in
reasonable time. However, sometimes input independence can
not be assured, e.g. in case of reconvergent fanouts as shown
in Fig. 5 for the adder output merging into theMUXb. Gen-
erally, in cases like this, we need to perform longer simulations
to compute the controllability metrics.



 Multiplier    :0   Shifter 00    :1 Shifter 01       :2 Shifter 10     :3 Shifter 11     :4  Add / Sub 0    :5 Add / Sub 1   :6  Acc A 0     :7
2162 2028 700 404

load 0.99,0.00 0.18,0.00 0.35,0.00 0.71,0.00
0.99,0.00 0.99,0.00 0.85,0.00 0.99,0.00

mpy 0.99,0.71  X  0.18,0.70 0.35,0.69 0.71,0.00
Mpyshift   
Mpyshiftmac

Out 1,0 .18,0 .36,0 0.71,0.00
Outr 1,0 1,0 . .83,0 1,0
Mac+ 0.99,0.71  X  0.18,0.69 0.35,0.69 0.71,0.00
Mac+R 0.99,0.14   0.99,0.51   X 0.85,0.51 X 0.99,0.00
Mac- 0.99,0.70  X 0.18,0.69 0.35,0.69   0.71,0.00
Mac-R 0.99,0.14  X 0.99,0.51   X 0.85,0.51  X 0.99,0.00
Mact+ 0.99,0.70  X 0.18,0.69 0.35,0.69  0.35,0.00
Mact+R 0.99,0.14   0.99,0.51   X 0.85,0.51 X 0.55,0.00
Mact- 0.99,0.70  X 0.18,0.68 0.35,0.69  0.35,0.00
Mact-R 0.99,0.14 0.99,0.51   X 0.85,0.52  X 0.55,0.00
MpyR 0.99,0.71  X  0.99,0.70  X 0.35,0.70 0.71,0.00
mpyt 0.99,0.70  X 0.18,0.69 0.35,0.69 0.35,0.00
MpytR 0.99,0.69  X  0.99,0.68  X 0.35,0.68   0.35,0.00
shift 0.99,0.71  X  0.18,0.70  0.35,0.70  0.71,0.00

Table 2. Controllability/Observability Metrics Table

• DSP observability issues. To describe the sequential be-
havior of an instruction sequence or a feedback loop, we unroll
the loop. For example, the loop around the MAC datapath in
Fig. 5 demonstrates the unrolling of the MAC datapath. Thus
theMUX component becomes unrolled as two separate com-
ponents:MUXLimiter

g before the limiter, andMUXShifter
g

before the shifter. When calculating the metrics, we treat these
different instances of the components as if they were actually
different components. When deciding if an instruction suffi-
ciently covers the MUX, we would check the testability metrics
provided for bothMUXLimiter

g andMUXShifter
g . If either

of these metrics values are good enough, then we say that the
component has been sufficiently covered. Note, we calculate
the metrics for each instruction twice, once assuming that the
accumulators contain a zero value and another time assuming
that they contain a random value denoted by an ”R”. To get
the core into the assumed state we have to precede the instruc-
tion in the test program with a group of other instructions. The
first four instructions in the table are used to set the core to an
expected state. The Load instruction is used to load the pseu-
dorandomly generated data into the registers which are used as
operands for the other instructions.
We choseCθ, 0.70 to be our controllability threshold andOθ,
0.50 to be our observability threshold. If both of these thresh-
olds are met then we mark, ”X”, the column as being covered.
3.3 Self Test Phases
• Phase 1. In this phase we choose from the instructions listed
in the metrics table to construct the self-test program. Since
each test sequence begins with the Load instruction several
columns (not shown in Table 2) are covered and removed from
the table. Our covering algorithm now selects the next instruc-
tion that covers the most columns, here being MpyR, covering
eleven. We continue choosing instructions to be added to our
self-test program in this manner until none of the remaining
columns are marked as being sufficiently covered by any of the
instructions. Table 3 is derived at the end of Phase 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
18,23 22,19  23,24,27 19,25,26

load X X(M7)    X(M7) X(temp)    X(temp) X X
mpy X A B X X(M7)   X(M7) X X(M7)   X(M7) X(temp)   X(temp) X(temp)   X(temp) X X

Mpyshift   B A
Mpyshiftmac A B X 

Out X X(M7)  X(M7) X(temp)  X(temp) X X
MactA-R X  X A
MpyRB X X B B X X(M7)   X(M7) X X(M7)   X(M7) X(temp)   X(temp) X(temp) X(temp) X X

ShiftRB X X B B X X(M7) X(temp) X(temp) X

Table 3. Instructions chosen at the end of Phase 1
• Phase 2. In this phase we target the individual compo-
nents that were not sufficiently covered in Phase 1, specifically,

columns 4, 7, 9, 13, 14, 20, 28, 29, not all shown in Table 2.
This means there was no single instruction that was able to pro-
vide randomness and observability to these component above
the thresholds. Our approach is based on several observations.
a) Improve metrics by using a sequence of instructions. First
we use instructions that provide sufficient randomness for the
component’s input and then we try to propagate the compo-
nent’s results to an observable output.
b) Eliminate columns whose control bits are not set by any in-
struction. Thus for column 4, representing the shifter with con-
trol bits set to ”11”, there are no instructions that set its control
bits to ”11”, meaning we can discard this column.
We continue this process in this manner choosing instruction
sequences to cover the rest of columns, thus producing the final
test program. Fig. 7 shows the assembled binary, instructions
and component coverage of a portion of the test program.

Bit Code Symbolic Code Columns covered and comments

00111XXXXXXXX0001   ld rnd,R1         
00101XXXXXXXX0000   ld rnd,R0         // 15,31,32,22
01100000000010010   MPYB R0,R1,R2     // 0,10,17,19,21,25,26,30 randomize accb
00001000000100000   out R2            // 
00000011100000011   ld "01110000",R3
10000001111110100   SHIFTB R3,R4      // ShiftB7
00000000000010101   ld "00000001",R5
00101XXXXXXXX0110   ld rnd,R6
11100011001010111   MACB+ R6,R5,R7
00001000001100000   out R6             //29,16 Phase2 gets temp_reg 
00111XXXXXXXX1000   ld rnd,R8
00101XXXXXXXX1001   ld rnd,R9          // end randomization seq
01100100010011010   MPYB R8,R9,R10     // 3,18,23,24,27 MPYBR
00001000010100000   out R10
01100000000010010   MPYB R0,R1,R2      // randomize accb
10000001111110100   SHIFTB R3,R4       // ShiftB7
11100011001010111   MACB+ R6,R5,R7     // End randomization seq 
10000100011111010   SHIFTB R8,R15,R10  // 2,5 ShiftBR
10001001111110100   SHIFTA R3,R4         // 7 Phase2 Observe ACCA
00001000001000000   out R4
00001000010100000   out R10
01101000000010010   MPYA R0,R1,R2      // 8 randomize acca
00001000000100000   out R2
10001001111110100   SHIFTA R3,R4       //13 ShiftA7  
00001000001000000   out R4             // Phase2   
11101011001010111   MACA+ R6,R5,R7     // end randomization seq
10000001111110100   SHIFTB R3,R4       // 9 Phase2 Observe ACCB
00001000001000000   out R4
11011100010011011   MACTA- R8,R9,R11   // 1,6,12  MACTA-R
00001000010110000   out R11
00000000100001100   ld "00010000",R12
01100000011001101   MPYB R0,R12,R13    // 28  Phase2
00001000011010000   out R13            // 20   
00001000000000000   out R0             // 16 Output random value

Figure 7. Self Test Program after Phase 2

• Fault Coverage Produced by Our Scheme. We use Synop-
sys’s ATPG and fault simulation tool, Tetramax, to determine
the fault coverage. The test program shown in Figure 7 is used
as input for a Perl script which simulates the behavior of the
LFSRs and generates the test vectors that would be fed to the
core. We choose to loop through the self-test program 6000
times. The program contains 34 instructions so looping through
it 6000 times would generate34×6000 = 204, 000 test vectors.
If we assume that the core has a 500Mhz clock, then the total
test time would be 0.408ms. The results show that our testing
scheme provides 98.14% fault coverage and a test coverage of
98.33% on the core.

3.4 Test Phase 3: Enhancements

We will discuss three enhancements that can be implemented
after phases 1 and 2.
• Control bit constraints . First, for each component on the
datapath that has control bits we use Tetramax to get the possi-
ble fault coverage on that component with its control bits con-
strained. For example, the shifter has two control bits. When
we constrain the bits so that they cannot have a value of ”11”
we find that only 3 faults cannot be detected and we get 99.86%
fault coverage on the shifter. If we constrain the control bits so
that they cannot be ”00,” 59 faults go undetected and the fault
coverage is 97.21%. If the control bits are not allowed to be



”01,” 1829 faults go undetected and we only get 13.4% fault
coverage for the shifter. If the control bits are not allowed to
be ”10,” only 1 fault goes undetected and the shifter has a fault
coverage of 99.95%. Finally, if we constrain the control bits
so that they can only be ”00” and ”01”, 5 faults go undetected
and we get a 99.76% fault coverage for the shifter. From the
above results we see that it is not really important to exercise the
shifter when it’s control bits have values of ”11” and ”10”, so
we can discard the columns representing the shifter with these
control bit values from the metrics table (columns 3 and 4).
• Increasing component execution frequency. It may take
longer to test some components than others. Through fault sim-
ulation we are able to find out how many test vectors it takes for
sufficient fault coverage to be achieved on the different compo-
nents. Speeding up the time it takes for the larger components
to achieve good fault coverage may have a noticable effect on
the required test length for the entire core. Executing the in-
structions that exercise the shifter and adder more than once
per iteration in our program, causes the fault coverage to rise
more rapidly, allowing us to shorten our test time. In fact, we
only need to use the first 27,346 test vectors generated by the
enhanced program in order to detect more faults than were de-
tected when we used the original program to generate 204,000
test vectors.
• Random Resistant Patterns. Some components may con-
tain random resistant faults, which still may not be detected
after looping through the test program a reasonable amount of
times. If the tester wants to increase fault coverage he can find
which components contain undetected faults through fault sim-
ulation. ATPG is used specifically on that component to find
which test patterns are needed to detect these faults and in-
structions are added that will place these specific patterns on
the component’s inputs and propagate any errors on the com-
ponent’s output to an observable output. These instructions are
also stored in memory, but unlike the other instructions that
made up the self-test program these instructions are only exe-
cuted once.
One disadvantage of this method is that it can take up a lot of
memory. It took 21 lines to test the adder with just one pat-
tern given by ATPG. If we wanted to detect every single fault
we would have to go through this process for the other ATPG
patterns on the adder and then for other patterns on each of the
components that did not achieve 100% test coverage after loop-
ing through our original self-test program. It may also be very
hard, to figure out how to use the instruction set to get some
of the ATPG patterns to the target component and to propagate
any errors to an observable output [9].

3.5 Discussion

For comparison purposes, we generated test patterns with the
Tetramax ATPG tool. The test only gave us an 8.51% fault
coverage. Because our core is a relatively complex circuit, it
is just too hard for the ATPG tool to determine good sequential
test patterns. ATPG tools work on the gate level, so they do
not have a high level description. For example, the simple fact
that we need to use the output instruction in order to output
the value of a register is very useful when trying to make faults
observable, but a gate-level ATPG tool does not have the benefit
of this information.
We also compared our scheme to a regular pseudorandom

BIST. For this method a 17 bit wide LFSR generates the 17
bit test vectors. We decided to generate all 131,071 test vec-
tors that could be generated by the LFSR. The reason is that the
LFSR does not take into account the core’s present state or the
core’s behavior while generating test vectors.
The experimental results for our testing scheme provided good
fault coverage. Running the original self-test program for 6000
iterations we got a fault coverage of 98.14%. Running the en-
hanced self-test program for 6000 iterations we got a fault cov-
erage of 98.42%. As mentioned before the real benefit of the
enhancements was the shortening the total test time, while still
achieving high fault coverage.

4 Conclusion
We have developed a method for testing embedded DSP cores
based on self test programs. In order to demonstrate our method
we used an industry-based design of a DSP pipelined core. Our
experimental results showed that our approach can achieve very
high fault coverage within a reasonable test time.
Our test scheme requires no modifications to the embedded
core itself which is important in high performance DSP de-
signs. Moreover, only the core’s instruction set and higher-level
behavioral information is needed to construct the self-test pro-
gram. We use controllability and observability metrics to eval-
uate how well the different instructions in the instruction set
exercise the core components. These metrics do not require
gate-level knowledge of the core, but if it is available our pro-
posed enhancements to the test program improve fault coverage
and reduce test time.
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