Designing Self Test Programs for Embedded DSP Cores

Hani Rizk, Chris Papachristou and Francis Wolff
Department of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio 44106

Abstract This paper describes a self test program design techniuniVen’ no instruction-level testability metrics are used incurring
for embedded DSP cores. The method requires minimal knowledge &ccessibility problems for some core components. Instruction
the core’s internals and minimal insertion of external LFSR hardwareSelf-testing was also used in [8], however, they do not provide
without scan insertions. The test program consists of a small set gyStematic testability metrics for instructions. A method using
instructions which operate iteratively on pseudorandom data generatéd PG constraint extraction is in [9].

by the LFSRs to fully test the DSP core components. The method usd@ Our work, we use a metrics-based approach to construct
instruction-based test metrics and a program template as a blueprint{8€ Self-test program. We employ instruction-based testability
generate the test program. The self test scheme has been successfIi§trics to determine whether an instruction sequence exercises
applied on an industrial-strength DSP core and the results compaR®Mponents along the core’s datapath sufficiently. We believe

favorably to other methods using ATPG and pseudorandom BIST, thatthis approach is simple and can be easily implemented once
the testability metrics are calculated. Moreover, using ATPG

1 Introduction and fault simulation, we can enhance our results regarding test

. . . ime and random resistant faults, in like manner as in [7].
i';e\slt;r:g gga?lr;r?eigdedEl?nsbpe;c(i)égscg]r;s Sh);svtgrﬂr-r?i?‘;gr;gost(?j(;t his paper is organized as follows. Section 2 discusses our self-
Yy ging. . fost methodology, including instruction-based test metrics and
bandwidth from the Automated Test Equipment (ATE) due to. ;
introduces a program template as a blueprint for test program

limited speed and number of external pins. The area and P€leneration. Section 3 discusses in detail how we apply our test

formance overhead of invasive DFT such as scan may mak(r%ethodology on an industrial DSP core. The results compare

them prohitive in timing critical applications. Moreover, hard
to test components may be embedded within the core. Finallyf/?vorably tothe use of ATPG and pseudorandom BIST.

IP vendors desire to minimize internal knowledge that may b& Self Test Methodology

revealed indirectly by test sets supplied with their core. The self test program consists of a sequence of instructions
To address these issues, we have developed a self-test meth@gghich, when executed as a loop several times, with different
ology for DSP cores whose basis is to construct a self-test temiandom numbers loaded into the DSP core as data, provides the
plate program using instruction-level controllability and ob-core with good coverage. The objective is to sufficiently exer-
servability metrics on the core’s instruction set. The Se'f-testise each da[apath component and to propagate any errors that
program primarily consists of template instructions and data usesult in the component outputs to an observable output of the
ing minimal additional hardware based on LSFRs. For randongore. We use instruction-level controllability and observability

pattern resistant faults, non-template instructions and data afgetrics [10, 11] to determine the component testability.
provided. Errors are propagated to the output of the core ang 1 The Controllability Metric

can be validated directly or indirectly using a MISR.

The idea of utilizing a processor’s instruction set to construc ohae ggrr:rchibr:L'tXF?]qsggg;so?assziggr;ann ddoonTp;uslftg;ihne I?sptuhtZt
self-test programs has been around for a while [1]. SincI P ' P 9

then, more fully developed approaches have been developed. Aenough random test vectors are provided to a component then

functional-based self-test and validation approach is discusséﬁost of the possible faults will be observable at the compo-

in [2]. Another functional test generation method based on afjents output. The randomness metric is derived from entropy

evolution paradigm is in [3]. The BIST scheme [4] randomizes®> defined in mformauon thegry which measures the average
F,pount of uncertainty regarding the value of a variable. The
0

instruction opcodes, under some restrictions, as well as da llowing equation shows the entropy ofabit variables that
fields to produce self-test code. However, no specific methodo g€q by e
gan take on values 0 " — 1 andp; is the probability that

ogy for constructing the self-test program is provided and ther

is difficulty targeting components with poor controllability and equals.
observability. The method described in [5] uses deterministic
data, however, the test program produced may be too large [6]
attempts to decrease the size of self-test programs by adding
test instructions to the core, however, it requires modification§he controllability metricC(X) quantifies the quality of pseu-

to the core’s controller, while their results show only 20% tesidorandom patterns as they propagate through the embedded
size reduction. The methodology in [7] develops tests for theomponents. The entropy of each component’s output is mea-
individual core components; it also may lead to very large tessured as a result of applying a pseudorandom uniform distri-
programs. Although, the option of pseudorandom patterns ibution to the input of the core. Simulation can be done at the

2n 1
H(X) = H(po,p1, -, p2n—1) = — »_ pilogap;
0

1530-1591/04 $20.00 (c) 2004 IEEE

Register File External Memory
(Self-Test Program)
L~

P A o ———— ‘
Memory
Controller

Instruction Fields

A B
Multiplier (8 X 8)

‘Opcode ‘ Reg.‘ Immediate ‘

00 Clear
01 Add
10 Sub

Acc (16) '

/8 Processor Local Bus

~

‘ Register File ‘ : =
; DSP Processor core I-a
| >

Figure 1. DSP Datapath

Opcode | Mult Add Sub Clear Acc) .

Add 0 0.79/0.99 | 0.79/0.99 0.79/0.99 Figure 2. Test Program Template Architecture

AddR | 0.73/0.99| 0.85/0.99 0.85/0.99 T . .

Sub0 1 0.70/0.99 0.83/0.99 0.83/0.99 output that v_vam-b_lts wide, for ea<_:h of the good S|mulat|on_s,
SubR | 0.67/0.99 0.86/0.99 0.86/0.99 2 xn faulty simulations were run with a random value replacing
MacO [0.71/0.99| 0.86/0.99 0.86/0.99 the component’s actual output value. Thus if 2000 good simu-
'\C"Ia%R 8-;28-88 0.89/0.99 5751099 8-32;8-33 lations were run, the2000 x 2 x n simulations were run with
TR 5.64/0.00 0.76/0.95 | D.76/0.99 a random erroneous signal at thebit output signal of com-

ponentX, then the approximate observability of compon&nt

Table 1. Controllability/Observability Metrics Table would be calculated using the foIIowing formula:

behavioral level in order to get the probabilities used for these

calculations. O(X) = :5;8;6) ~ 20005;07“; .
n
H(X) H(X) . :
C(X) = = Table 1 also shows the observability metric of each component

of a simple DSP datapath, Figure 1, ranging from 0.0 to 1.0.
C(X) can range from non-controllability, 0.0, to full control- An observability of 1.0 means that every time that an erroneous

lability, 1.0. Values decreasing towards zero represent moré2lué was used at the components output it resulted in an error

coverage effort required by the random number generator it the core’s output. An observability of 0.0 means that errors
the component in the components output had no effect on the value output by

Table 1 shows the controllability metric of each component forIhe core.

a simple DSP datapath example in Figure 1. Each column repﬁ” instructioncoversa component if the metrics it produces on
resents each component's mode or behavior due to control bitgat component are greater or equal to threshold values for the
on the datapath. The component "ALU” has three modes: cleafontrollability, C,, and observability¥y, metrics. From expe-
add, or subtract. The rows of the table represent the different ifi€nce, good initial choices atg = 0.70 andOy = 0.50.
structions that can be used to exercise the componentsinthe c&:3 Test Program Template Architecture

cuit. When running the behavioral simulations to calculate th% mentioned earlier, the goal of the self-test program is to suf-
metrics, we assume that the values which are fed back or stor?(i i : h fthe DSP t dt t
in datapath registers are either known or random. The metrics <0y EXETCISe €ach of The components and fo propagate
for each of the instructions, Table 1, are calculated twice, oncd/y errors that result in the outputs of these components to an

, . . observable output of the core. By using a combination of ran-
assuming that the value previously stored is the constant et v generated data and specific data. this methodoloay will
(i.e. denoted by a "0”) and the other time with a random value Y9 P ’ 9y

denoted by "R in column one. This point is exolained later benerate test vectors that will provide good test coverage of the
y) P P " core. This means providing both a) topological or structural

2.2 The Observability Metric coverage of the core’s components and b) good quality control-
The observability metrio(X), quantifies the ability of prop- lability and observability metrics. This will hopefully mean that
agating an erroneous value within the datapath to the core’s olthe self test program also provides a high fault coverage for the
servable output. This can be calculated by the total number afore. Figure 2 shows the self-test template architecture which
errors observed at the core’s outpd,,., divided by the total maodifies the instruction stream between the memory and core.
number of simulations with random errors applied at the outpulnstructions from memory are treated as templates and various
of the component within the datapatt{,X). instruction fields are instantiated with pseudorandom data dur-
For ann-bit signal there ar@™ — 1 possible erroneous values. ing testing. Instantiated instructions are then passed on to the
For components with large output signals it would take too longache or processor core. Although, special test instructions can
to perform all2”™ — 1 possible faulty simulations for each good be added, they are only visible to the the template architecture
simulation, so a good heuristic resulte®ir n. For example,a and not the processor core itself. The output of the core can
good circuit was simulated 2000 times. If a component had athen be fed into a response analyzer, e.g. MISR.

Build Testability Metrics
C(X) Controllability
O(X) Observability

any components are covered by these wrappers we also remove
their columns from the metrics table.

e Specific Coverage Phase 2: We target individual components
that were not sufficiently exercised in Phase 1. This means that
there was no single instruction that was able to provide good
enough randomness and observability for the component. First
we try to find a sequence of instructions that provides a good
randomness for the component. After that, we need to find a
sequence of instructions that propagates any errors to an ob-
servable output (register). We can use our knowledge of the
core’s behavior in order to accomplish this. At the end we will
have a test program that can be run as a loop multiple times

Global Coverage Phase 1

Selected Instructions

Behavioral

Instruction sequences

Sufficient Coverage?

Optional

Specific Coverage Phase 2 I

Lower Threshold

Fault Coverage Phase 3 generating test vectors for the core.
Gate—Level Net List
Peduce Test Time ¢ Optional Fault Coverage Phase: We do not require gate-level
knowledge of the core, but if it is available, two further en-
Figure 3. Self-Test Template Generation flow hancements can be made to improve fault coverage and reduce

the test time. The first enhancement is to use fault simulation
Several pseudorandom number generators (i.e. LFSRs) ai@ find which components take longer to get good coverage.
used by the architecture. Load pseudorandom data instructiopge add instructions exercising that component to the test pro-
are created from unused opcodes from the DSP core’s architegram so that they are executed multiple times per iteration. The
ture which are trapped beforehand by the template architecturgecond enhancement is to use ATPG to target random resistant
The instructions immediate field is then filled with the LFSR1faults. ATPG is only used on the specific component that con-
data and then the opcode is transformed as a normal load igins these faults so that the ATPG tool will have a better chance
struction. of generating good vectors. We add instructions to propagate
When constructing our test program we do not take into conthe given patterns to the component and then to propagate the
sideration the different registers that make up the register filgault to observable output. These instructions are not within the
This is because a register file may contain many registers, argtogram loop and are only executed once. While these tech-
it would take a long test program to cover all of them. We stillniques will increase the length of the test program, nonetheless,
want to exercise each of the registers that make up the registgfey should reduce the number of times we need to loop through
file, so we add hardware that masks the register addresses UsRé program to obtain a sufficient fault coverage, decreasing the
by the test program, exercising a different group of registergotal test time.
each iteration through the test program. Exclusive-ORing the
LFSR2 to the instructions register fields is one method whicl2.5 Experimental Environment
can be used to change the register field instance of the self-test
program. This allows reuse of the same program to exerciséd/e start with a VHDL description of our core and use the
other registers during datapath coverage by using test loops. Synopsys Design Compiler to get a gate-level Verilog netlist.

2.4 Test Program Template Generation We then construct a self-test program using our strategy. Our
scheme assumes that we only have a high level description of

Flgure 3 shows the program generation flow for cho_osmg th?he core and its instruction set. A Perl script was used to gen-
instructions that make up the self-test program. The first step is

to construct a "Metrics Table” that provides the controllability érate test patterns that v_vould be generat_e dif the test program
as looped through a given number of times. It also inserts

and observability metrics produced by each instruction for eacﬁ’}e pseudorandom data patterns which were generated by sim-

of the components on our datapath at the behavioral level. This _..)
is followed by two self-test program refinement phases, 1 and éﬁatlng the LFSR. These test patterns and the core’s gate level

- . retlist are fed into the Synopsys fault simulator, Tetramax, to
If sufficient coverage is not reached, the thresholds can be low:- . .
- : . . . ind the fault coverage of our testing scheme. The Perl script
ered a limited amount of times. Finally, a third, non-behavioral, P .
; . . o . Iso outputs a VHDL testbench which is used to simulate the
phase adds instructions with specific patterns inserted to attac : .
: execution of our test program on the core using the Synop-
the random pattern resistant cases.

« Global Coverage Phase 1: We begin picking the instrucSYS VHDL Simulator. This is done for verification purposes

tion that covers the most columns in the metrics table, then wteO ensure that the the model used for fault simulation behaves

delete those columns. We continue with the next instruction un(_:orrectly. We use other Perl scripts to compute the testability

. : . metrics. The scripts modify behavioral VHDL code, simulate
til we delete all columns in the table. For example, in Table 1 . . \)

: . L i the modified code using Synopsys’ VHDL Simulator, and use
multiply and add instruction, "Mac R”, covers three columns.

This instruction is chosen to be part of the self-test program. the results to compute randomness and observability.

Some instructions, such as Load and Out are automatically used

as wrappers in our test program. By "wrapper” we mean areT)’ IndUStry'based DSP core

instruction sequence that is either used before an instruction to |)) . .

put the core in a certain state, before that instruction is executedNiS Section discusses a step-by-step implementation of our test
or used after the instruction to ensure that any faults detectdg€thodology on an industry-based pipelined DSP core. First

by the instruction are propagated to an observable output. e describe the core in some detail, then go over the steps of our
testing scheme and finally we provide results and comparisons.

3.1 The DSP Datapath

Our DSP core, shown in Fig. 6, is designed as a four stagéive and negative values of the 18-bit input integer producing
pipelined RISC-based Load/Store processor. The core uses? 8-bit output integer.

integer from theA input. The limiter clips the maximum pos-

17 bit instruction as input and has an 8 bit output. We use a Inrucion i

fixed 17-bit instruction format, shown in Fig. 4, consisting of a

5-bit opcode field, and a destination register field. Depending inr

on the opcode, there is a data field (bits 11-4), or two source)(l .
register fields. The core contains a register file made of six- e b o - opcodo (16 15 @

teen 8-bit registers and a functional unit that includes a com- e

plex MAC datapath. Since a pipeline architecture was useg,— o ™ "

read after write hazards had to be considered. To take care [of >

or a
j) A B (7-4)
the hazards a temporary (forwarding) register, was used. The N WA e

16-12 11-8
Opcode Reg A

7-4 3-0
Reg B Dest Reg Format 1

16-12

Opcode Value to be Loaded D:s:OReg

Format 2

16-12 11-8
Opcode XXXX

7-4 3-0
Source Reg XXXX Format 3

16-12 11-8
00010 XXXX

7-4 3-0
Source Reg Dest Reg Format 4

Figure 4. Instruction set

Control Bits

Control Bits !!IH!IH
c f

adder/subtracter
a=0 for addition
a=1 for subtraction

mux
bisthe select bit

shifter

c=0d=0 do nothing

c=0d=1 shift

c=1d=0 clear data, output all zero

ACCA

eisthe write enable for this register
y

ACCB
f isthe write enable for this register

mux
gisthe select bit

control (7)
Dest reg Not

8 8 4 control (10)

RD1==RA | |wnz =RA | RDJ RE| |RDZ:RBI

Stage 2
Decode

And And And
Op Fetch
I Butter . I Buffer I I Buffer But ﬂBuf " Buffer
A B DestRegl Control
¥ + ‘ — ¥
\L MUX 0/L \1 MUX 0/"
|
2 /‘J 3 v a
1 o /1
\ MU)l(/ 7(6-0)

I —
A e Control 2 skip

Stage 4
writeback 8

Figure 6. Four-stage pipeline core design
3.2 DSP Testability Metrics
Table 2 shows a subset of DSP instructions (i.e. rows) for con-
trollability and observability metrics. A subset of the columns

are also shown which represent each of the shaded components
of Fig. 6. For example, the shifter has two control bits and
therefore requires four columns. The first row beneath the col-
umn names contains the number of faults of the component.
e DSP controllability issues To calculate the controllabil-
ity of a component’s inputs we get their probability distribu-
tion through the simulation of the core’s behavior while exe-
Figure 5. MAC datapath cuting an instruction sequence. We found that we needed more
third stage of the core contains a buffer whose output is usetthan 2000 iterations to get good results for the randomness of
by instructions such as "Ld” and "Out”. For most other instruc-components with large inputs. To avoid long simulations, we
tions the results of the MAC datapath (Figure 5) are used. Therote a perl script which operates on the core’s behavioral de-
input to the MAC consists of seven control bits and two 8-bitscription and produces a C++ program that would simulate the
operands which come from the specified registers in the regisircuit behavior and calculate the controllability metrics much
ter file; their values are fetched in the second stage. The contrédster. Nonetheless, some components have 2 input ports each
bits are the output of a decoder in the second stage. The MACS-bit wide, or a total of 36 input lines, thus taking too long
datapath in Fig. 5 outputs an 8 bit result to MacReg whichis to simulate23¢ iterations. However, for most of these 2 input
connected to the multiplexer MUX7. The inputs and outputs oport components we were able to assure that their 2 input port
the MAC use 8-bit fixed point integers formatted with four bits signals are statistically independent. Recall that if two events
to the left and four to the right of the decimal point. The MAC X andY are independent then their entropies are related as
contains an 8-bit multiplier that outputs a sign extended prod# (X,Y) = H (X) + H (Y). Thus, forn-bit input ports we
uct to 18 bits. The result of the adder/subtracter is then writtehave:C(X,Y) = (1/2n) (C(X) + C(Y)). This assumption
into one of two 18-bit accumulatorsiccA and AccB. The allowed us to find the controllability of most components in
contents of the accumulators are fed into a shifter whose outputasonable time. However, sometimes input independence can
is fed back into the adder/subtracter. The MAC also containgot be assured, e.g. in case of reconvergent fanouts as shown
a truncater, which truncates the data to the right of the decimah Fig. 5 for the adder output merging into tAéU X,. Gen-
point. The arithmetic shifter is controlled by bitandd;the di- erally, in cases like this, we need to perform longer simulations
rection and amount of shift is determined by the four bit signedo compute the controllability metrics.

Muttiplier :0|Sh||ter00 1 ‘Sh\herm :2 Shifter10 :3 [Shifter11 :4 |Add/Sub0 :5 |Add/Subl 6 |AccAO 7 CO|UmnS 4’ 7, 9, 13, 14, 20' 28’ 29, nOt a” Shown |n Ta.ble 2'

2162 2028 700 404 3)] 8
foad e S case— This means there was no single instruction that was able to pro-
S —— 18070 035089 2% {yide randomness and observability to these component above
pleyshitzc the thresholds. Our approach is based on several observations.
T — — 50 t-°*— a) Improve metrics by using a sequence of instructions. First
Mac+ 0.99,0.71 X 0.18,0.69 0.35,0.69 0.71,0.00
MactR __ 0990.14__ [0.99,051 X 0.85,051 X sss000] WE use instructions that pI’OVIde sufficient randomness for the
Mac- 0.99,0.70 X 0.18,0.69 0.35,0.69 0.71,0.00) .
MacR 099,014 X _[0.09.051 X besosix_pesoon | cOMponent’s input and then we try to propagate the compo-
Mact+ 0.99,0.70 X 0.18,0.69 0.35,0.69 0.35,0.00)
Mact!R __ 0.99,0.14 _ [0.99,051 X 085,051 X 10.55,0.00 nent’s results to an observable Output.
Mact- 0.99,0.70 X 0.18,0.68 0.35,0.69 0.35,0.00
Heci? DAL Dnsl X ess0szxpssonn | b) Eliminate columns whose control bits are not set by any in-
MpyR 0.99,0.71 X 99,0.70 X 0.35,0.70 0.71,0.00
Mot 099070 X 16,060 035069 0w | struction. Thus for column 4, representing the shifter with con-
MpytR 0.99,0.69 X 99,0.68 X 0.35,0.68 0.35,0.00 . B . .
T 18,070 035070 70w] trol bits set to "11”, there are no instructions that set its control

bits to "11”, meaning we can discard this column.

We continue this process in this manner choosing instruction
e DSP observability issues To describe the sequential be- sequences to cover the rest of columns, thus producing the final
havior of an instruction sequence or a feedback loop, we unrotest program. Fig. 7 shows the assembled binary, instructions
the loop. For example, the loop around the MAC datapath irand component coverage of a portion of the test program.

Fig. 5 demonstrates the unrolling of the MAC datapath. Thus

Bit Code Synbol i ¢ Code Col ums covered and comments

the MU X component becomes unrolled as two separate com-
00111 XXXXXXXX0001 Id rnd, Rl

Table 2. Controllability/Observability Metrics Table

. Limiter imi Shifter
ponents: MU X, before the limiter, and/UX,, 1180000000010010 WPYS o/ R1, 2 1 0,10.17. 18, 21, 25,26,30 randoni ze acch
before the shifter. When calculating the metrics, we treat thes3313999991999%0 out &2\ oo+ ks y

different instances of the components as if they were actuallyfiscosssooiotes i Fosombeys rs | M I8
different components. When deciding if an instruction suffi-351o6aaamanotis vk R ks, k7

. ™ . 00001000001100000 out R6
ciently covers the MUX, we would check the testability metricsoo111xoxxxxx1000 Id rnd, r8 e
00101 XXXXXXXX1001 end randoni zation seq

/129,16 Phase2 gets tenp_reg
. . ;) 11
provided for bOth]\/IUX;”m”eT and MUXgShlfteT_ If either 01100100010011010 PYB %, R9, RL0 /1 3,18, 23, 24,27 MPYBR
11
11
11
11

. 00010000101200(1)0 ouIYBRlo -
of these metrics values ar.e.good enough, then we say that thg35000990010010 W o R 2 aceb
component has been sufficiently covered. Note, we calculatBiooseo1iiosie S ors o min R0 1/ 58 sandomzation seq
the metrics for each instruction twice, once assuming that th&001000001000000 out re !/ 7 Phase2 hserve ACA

. . .00001000010100000 out R10
accumulators contain a zero value and another time assumMiMgoio0000010010 VRYA RO, R, R2 /1 8 randoni ze acca

randonmi ze acch
Shi ft B7

i "R 0001001111110100 SH FTA R, R //13 ShiftA7
that they contain a random value denoted by an "R”. To gejg001001111110100 St FIA R3, J113 shit

the core into the assumed state we have to precede the iNStrdgd o1 o otes hrrs esRe, X 11 gnd random zation 29
tion in the test program with a group of other instructions. Th Ogggﬁggg?ég?gggg ﬁ,&tc—rgfl‘lpg, RO.RLL /7 1,6,12 MCTAR
first four instructions in the table are used to set the core to aoo0000100001100 1d "00010000", R12

01100000011001101 MPYB RO, R12, R13 28 Phase2

expected state. The Load instruction is used to load the pseppooioo0011010000 out Ri3 % 20 cutput random val us
dorandomly generated data into the registers which are used as

operands for the other instructions. Figure 7. Self Test Program after Phase 2

We choseCy, 0.70 to be our controllability threshold aid®;, e Fault Coverage Produced by Our Scheme We use Synop-
0.50 to be our observability threshold. If both of these threshsys's ATPG and fault simulation tool, Tetramax, to determine
olds are met then we mark, "X”, the column as being covered.the fault coverage. The test program shown in Figure 7 is used

3.3 Self Test Phases as input for a Perl script which simulates the behavior of the

e Phase 1 In this phase we choose from the instructions listed-FSRS and generates the test vectors that would be fed to the
in the metrics table to construct the self-test program. Sincgore. We choose to loop through the self-test program 6000
each test sequence begins with the Load instruction severin€s. The program contains 34 instructions so looping through
columns (not shown in Table 2) are covered and removed frorf 6000 times would generaga x 6000 = 204, 000 test vectors.

the table. Our covering algorithm now selects the next instruclf We assume that the core has a 500Mhz clock, then the total
tion that covers the most columns, here being MpyR, coverindfSt time woqld be 0.408ms. The results show that our testing
eleven. We continue choosing instructions to be added to ogicheme provides 98.14% fault coverage and a test coverage of
self-test program in this manner until none of the remaining?8-33% on the core.

columns are marked as being sufficiently covered by any of th8.4 Test Phase 3: Enhancements

instructions. Table 3 is derived at the end of Phase 1. We will discuss three enhancements that can be implemented

0/ 1/2[3 4 5] 6 7/ 8] 9|10/ 11/12] 13 1415 16{17] 18] 19[2021] 22 23 24 25 26 272829/30[31 37 after phasesland 2.
= 3 e Tk e Control bit constraints. First, for each component on the

T S X xnx xenn e xeems)xems) emxens | K1 L datapath that has control bits we use Tetramax to get the possi-

NG X ble fault coverage on that component with its control bits con-

T A . . T K e ema 4 strained. For example, the shifter has two control bits. When
WE = e e, L we constrain the bits so that they cannot have a value of "11”
we find that only 3 faults cannot be detected and we get 99.86%

Table 3. Instructions chosen at the end of Phase 1 fault coverage on the shifter. If we constrain the control bits so

e Phase 2. In this phase we target the individual compo- that they cannot be "00,” 59 faults go undetected and the fault
nents that were not sufficiently covered in Phase 1, specificallgoverage is 97.21%. If the control bits are not allowed to be

"01,” 1829 faults go undetected and we only get 13.4% faulBIST. For this method a 17 bit wide LFSR generates the 17
coverage for the shifter. If the control bits are not allowed tobit test vectors. We decided to generate all 131,071 test vec-
be "10,” only 1 fault goes undetected and the shifter has a fautbrs that could be generated by the LFSR. The reason is that the
coverage of 99.95%. Finally, if we constrain the control bitsLFSR does not take into account the core’s present state or the
so that they can only be "00” and "01”, 5 faults go undetecteccore’s behavior while generating test vectors.

and we get a 99.76% fault coverage for the shifter. From th&he experimental results for our testing scheme provided good
above results we see that it is not really important to exercise thfault coverage. Running the original self-test program for 6000
shifter when it's control bits have values of "11” and "10”, so iterations we got a fault coverage of 98.14%. Running the en-
we can discard the columns representing the shifter with thedenced self-test program for 6000 iterations we got a fault cov-
control bit values from the metrics table (columns 3 and 4). erage of 98.42%. As mentioned before the real benefit of the
e Increasing component execution frequency It may take = enhancements was the shortening the total test time, while still
longer to test some components than others. Through fault simxchieving high fault coverage.

ulation we are able to find out how many test vectors it takes fo& Conclusion

sufficient fault coverage to be achieved on the different compo-

nents. Speeding up the time it takes for the larger componen}¥® have developed a method for testing embedded DSP cores
to achieve good fault coverage may have a noticable effect dpaS€d on self test programs. In order to demonstrate our method
the required test length for the entire core. Executing the inVe used an industry-based design of a DSP pipelined core. Our
structions that exercise the shifter and adder more than on&Perimental results showed that our approach can achieve very
per iteration in our program, causes the fault coverage to ris@/gh fault coverage within a reasonable test time.

more rapidly, allowing us to shorten our test time. In fact, weCUr st scheme requires no modifications to the embedded
only need to use the first 27,346 test vectors generated by tf@"€ itself which is important in high performance DSP de-
enhanced program in order to detect more faults than were d&i9nS- Moreover, only the core’s instruction set and higher-level
tected when we used the original program to generate 204 octghavioral information is needed to construct the self-test pro-
test vectors. "~ gram. We use controllability and observability metrics to eval-

« Random Resistant Patterns Some components may con- uate how well the different instructions in the instruction set
tain random resistant faults, which still may not be detecte(ﬂ’xercl'Se Itklle colredcom?or?ents. 'I;)hes_fe_ metnc;l dk?l not require
after looping through the test program a reasonable amount §t€-1€vel knowledge of the core, but it it is available our pro-
times. If the tester wants to increase fault coverage he can ﬁn%ozed gnhancements to the test program improve fault coverage
which components contain undetected faults through fault sin2"d reduce testtime.

ulation. ATPG is used specifically on that component to findReferences

which test patterns are needed to detect these faults and 1] 3. Hayes, E.J. McCluskey, "Testability Considerations in

structions are added that will place these specific patterns on * wjicroprocessor-Based DesignEEE ComputerMarch 1980.

the component’s inputs and propagate any errors on the comp] J. Shen, J. Abraham, "Native mode functional test generation for
ponent’s output to an observable output. These instructions are processors with applications to self-test and design validation,”
also stored in memory, but unlike the other instructions that Intern. Test Conf. (ITC-1998), Oct. 1998.

made up the self-test program these instructions are only exef3] F. Comno, G. Cumani, M. S. Reorda, G. Squillero, "Fully auto-
cuted once. matic test program generation for microprocessor cof@ssign
One disadvantage of this method is that it can take up a lot of _ Automation and Testin Europe (DATE-200Bjarch 2003.
memory. It took 21 lines to test the adder with just one pat- [4] Batcher, K.; Papachristou, C. "Instruction Randgmlzatlon Self
tern given by ATPG. If we wanted to detect every single fault &St for Processor CoredfEE VLS| Test Symposiy999.

. [5] Lai, W-C., Krstic A., Cheng K-T., "Test Program Synthesis
we would have to go through this process for the other ATPG for Path Delay Faults in Microprocessor Coresiiternat. Test
patterns on the adder and then for other patterns on each of the ~gnference (ITC-2000pp. 1080-1089, 2000.
components that did not achieve 100% test coverage after loopps] Lai, w., Cheng, K-T. Cheng, "Instruction-Level DFT for Testing
ing through our original self-test program. It may also be very processor and IP Cores in System-on-a-Chipesign Automa-
hard, to figure out how to use the instruction set to get some tion Conf. (DAC-2001)2001.
of the ATPG patterns to the target component and to propagat§?] Chen L, Dey S., "deFUSE: a Deterministic Functional Self-
any errors to an observable output [9]. Test Methodology for ProcessorsEEE, VLS| Test Symposiym

3.5 Discussion PP.255-262, 2000.
' 8] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, Y. Zo-
p

For comparison purposes, we generated test patterns with the rian, "Low-cost software-based self-testing of RISC processor
Tetramax ATPG tool. The test only gave us an 8.51% fault ~ cores,” Design Automation and Test in Europe (DATE-2Q03)
coverage. Because our core is a relatively complex circuit, it March 2003.

is just too hard for the ATPG tool to determine good sequential[®] ChenL., RaviS., Raghunathan A., Dey S., A scalable software-
test patterns. ATPG tools work on the gate level, so they do ~ Pased self-test methodology for programmable processDes,
not have a high level description. For example, the simple fa sign Automation Conf. (DAC-2003)une 2003.

" . L 0] Ravikumar, C. P., Saund G. S., Agrawal N., "A STAFAN-
that we need to !Jse t'he output Instruction !n order to outp Like Functional Testability Measure for Register-Level Circuits,”
the value of a register is very useful when trying to make faults_ IEEE Fourth Asian Test Symposiupp. 192-198, 1995.
observable, but a gate-level ATPG tool does not have the benefiti) corno F, Prinetto P., Sonza M., "Testability Analysis and ATPG
of this information. on Behavioral RT-Level VHDL,Internat. Test Conference (ITC-
We also compared our scheme to a regular pseudorandom 97), pp. 753-759, 1997.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

