

A Case Study in Networks-on-Chip Design for Embedded Video

Jiang Xu1, Wayne Wolf1, Joerg Henkel2, Srimat Chakradhar2, Tiehan Lv1

1. Dept. of Electrical Engineering, Princeton University
2. NEC Laboratories America, Inc.

{jiangxu, wolf, lv}@princeton.edu, {Henkel, chak}@nec-labs.com

Abstract

In this paper we study bus-based and switch-based on-
chip networks for an embedded video application, the Smart
Camera SoC (system on chip). We analyze network
performance and overall system performance in detail. We
explore system performance using crossbars with different
sizes, fixed size but different numbers of ports, and different
numbers of shared memories. We find that network is a
performance bottleneck in our design, and the system using
an optimized NoC can outperform one using a bus by 132%.
Our simulations are based upon recorded real
communication traces, which give more accurate system
performance. Our study finds that for the Smart Camera
system, a 16-bit/port 3x3 crossbar with two shared
memories shows 85.7% performance improvement over the
bus-based model and also has less maximum network
throughput than the bus-based model. This design example
illustrates a methodology to quickly and accurately estimate
the performance of NoC’s at architecture level.

1. Introduction
This paper studies different NoC’s (networks-on-chip)

for a real multi-core SoC (system-on-chip) system, the
Princeton Smart Camera system. We use recorded real
communication traces of a SoC design to conduct a detailed
NoC design. We comprehensively explore bus and crossbars
with different sizes, different port widths, and different
numbers of shared memories. We showed their effects on
the system performance, maximum throughput, average
throughput, and network utilization. We find an unoptimized
network is a performance bottleneck in the Smart Camera
System. A system using an optimized NoC can outperform
one using a bus by 132%. We also find high average
throughput always associates with low network utilization in
crossbar-based switch for Smart Camera SoC. Our practice
shows a quick and accurate method to estimate the
performance of NoC’s at architecture level.

We adopted a telecommunication network simulator,
OPNET [12], for our study and developed our own
simulation method to design the NoC. For the Smart Camera

System, we find the 16-bit/port 3x3 crossbar with two shared
memories shows an 85.7% performance improvement over
bus-based model, while it has less maximum throughput.

The next section describes related work. In section 3, we
introduce the Smart Camera SoC, which we used as the case.
Section 4 shows several models we use in our research. Our
simulation method is described in section 5, and simulation
results and analysis are presented in section 6. Section 7
concludes our work.

2. Related work
A key problem in SoC design is overcoming the design

difficulties of on-chip communication architectures. Surveys
of networks-on-chip are given by several researchers [1] [2]
[3] [9]. Some on-chip communication architectures are
developed based on buses, for example, CoreConnect from
IBM [4], AMBA from ARM [5], MicroNetwork from
Sonics [6], and Wishbone from Silicore [13]. Other on-chip
communication architectures are inspired by multiprocessor
networks, computer networks, and telecommunication
networks [7] [8].

3. Smart Camera SoC
We believe the study of on-chip communication

architectures should be based on real SoC designs. The
designs should have multiple IP cores, which closely
cooperate with each other to reach high performance. We
chose the Smart Camera System [10] for our research,
because it is a multi-core and relative large and complex
SoC, and because we can generate traces from the design.

Figure 1. Computation architecture

1530-1591/04 $20.00 (c) 2004 IEEE

The Princeton Smart Camera system is a high-
performance video processing application that can process
150 frames per second [14]. To deliver such high
performance we use a dual pipelined computation
architecture (Figure 1). Each frame will go through 5
processing stages. Processors P0, P2, P4, and P1, P3, P5
form the two pipelines, and processor P6 works for both
pipelines. Based on the workload, processor P0 handles the
first processing stage, P2 handles the second processing
stage, P4 handles the third and fourth processing stages, and
P6 handles the fifth processing stages for both pipelines. In
the Smart Camera System, two control functions are
required. First, a processing control function will decide if a
processor should process a new frame or not, depending on
the status of itself and the previous stage. If the previous
stage finishes a frame and there is enough space to store the
result in its own share of memory, a processor can process
the finished frame from previous stage. Second, an
arbitration function arbitrates requests for a shared
communication system, based on the priorities of the
requests.

4. Networks-on-chip models
To make a fair comparison of the on-chip networks, all

the models use the same set of computation units. We use
shared embedded memories with a single port for all the
models. Because the algorithms for each processing stage
may change, memory requirements for each stage will also
change. Using a shared memory gives us more flexibility
than we would have with distributed memories. For the dual
pipeline computation architecture, a shared memory for each
pipeline is also a good choice. The arbitration function uses
the same priority list in all models. The input has the highest
priority, and from the first to the fifth processing stages each
one has a lower priority. For the same stage on different
pipelines, the first pipeline always has a higher priority.
4.1. Bus-based models

We used two bus-based models, the processor-controlled
model and the arbiter-controlled model. In the processor-
controlled model, a bus arbiter handles the arbitration
function, and the processors and the input handle the
processing control function (Figure 2). The processors and
the input are connected to the bus arbiter by
interconnections, which form a star network. The
interconnections are used to send requests to and receive
responses from the bus arbiter. The bus includes a 32-bit
data bus, a 21-bit address bus, and a 2-bit control bus. There
are 2 bytes in the memory to record the status of each
processing stage and the input. After a frame is finished, a
processor updates its own status and the status of the
previous processing stage. A processor needs to check the
status bytes in the memory to decide if it can process a new
frame.

The arbiter-controlled model uses the same bus as the
processor-controlled model except the arbiter handles both
the arbitration and processing control functions and each
processor and the input are connected to the arbiter by two
interconnections. One interconnection is used to send
requests to the arbiter and receive responses; the other
interconnection is used to send request types. The request
types show if a processing stage is finishing or not. The
arbiter has a 2-byte register to record the status of each
processor and the input, and the register is updated by each
processor and the input. The arbiter simply holds the request
of a processor or the input if it cannot process.

Figure 2. Processor-controlled model

4.2. Switch-based models
Crossbar switches are used to implement the switch-

based models (Figure 3). All switches are input-buffered,
and the buffers connect to a NxN crossbar, where N is the
number of switch ports. A buffer has 55 bits. N is 10 when
using a single shared memory and 11 when using 2 shared
memories. A control unit handles both the arbitration and
processing control functions. We simulated different port
widths, which are 5-bit/port, 8-bit/port, 16-bit/port, 32-
bit/port, and 55-bit/port.

Figure 3. Switch-based model using 10x10 crossbar

A switch uses packets to communicate with the
processors, the input, the output, and the memory. Data,
address, and control information are capsulated in a packet.
There are 4 types of packets: write packet, read packet,
switch response packet, and read response packet. A write
packet includes 3-bit control, 21-bit address, and 32-bit data.
A read packet contains only 3-bit control and 21-bit address.
In a read response packet, there are only 32-bit data for a
read operation. In the 3-bit control information, one bit is for
the request, one bit is the memory control information to
show the packet is for a read or write operation, and the
other bit is the request type to show if a processing stage will
be finished after this request. In a switch response packet,
there is only 1-bit information to tell a processor or the input
that the switch is sending its packet in current clock cycle.

Figure 4. Switch-based model using 3x3 crossbar

We also built switch-based models using two shared
memories. To use two shared memories, the 10x10 crossbar
is replaced by an 11x11 crossbar in figure 3. Processors 0, 2,
4, and 6 share memory 0, and processors 1, 3, and 5 share
memory 1. The input sends frames to memory 1, if and only
if the memory 0 has an unprocessed frame. We also build a
switch-based model using a 3x3 crossbar and an input queue
(Figure 4). The size of the queue is 550-bit when using a
single memory and 605-bit when using two shared
memories.

5. Simulation environment and method
We develop our own trace-driven methodology for NoC

design. Our method uses a hierarchy of models, starting with
telecom-style models and working down to circuit models.
5.1. Simulation environment

We adopted OPNET [12] for on-chip communication
architecture simulations. OPNET is a matured
telecommunication system simulation environment, and we
find it can be used to simulate on-chip systems with some
adaptations. OPNET has some advantages for on-chip
communication analysis. First, it can model many common
phenomena in communication systems. Second, it is fast.
Simulation speed is very important for on-chip
communication architectures, which will be simulated for
billions of clock cycles to get meaningful application-level

results. Third, it is a packet-based simulator. This feature is
particularly useful for our research because we are
simulating packet switching.

OPNET also has some disadvantages. First, it is
developed for simulating telecommunication systems and
some on-chip features are not well supported. For example,
the smallest time unit is the second, where on-chip
communication architectures need nanosecond or even
picosecond, and the smallest distance unit is meter instead of
micrometer. Second, OPNET assumes asynchronous
communication, so for a synchronous system, designers have
to explicitly design a clock scheme and a distribution
networks.

We made the following adaptations in OPNET. In link
models, 1) disable the propagation delay pipeline stage and
2) disable the error model. In transmitter and receiver
models, set data rate high enough to eliminate the effects of
transmission delay. (We set data rate to 106 bps, which
introduces 1 ms transmission delay.) In all node models,
state transitions should be on clock edges. For the clock, 1)
use one second to represent one clock cycle and 2) build a
clock bus to synchronize the system.
5.2. Simulation level and communication trace

We simulated our designs using a cycle-accurate
architecture simulator. Architecture level simulations give
designers a quick evaluation independent of circuit
implementations. The delay or processing time of each
architecture element is based on the complexity of its
functions and some reference designs. We assume that an
bus arbiter or switch control unit needs one clock cycle to
make a decision; memory read takes 3 clock cycles and
memory write takes 2 clock cycles[11]; bus and long
interconnects have one clock cycle delay. Because all the
models obey these rules, the relative performances are
accurate.

Figure 5. Recorded communication trace

Since the on-chip networks cannot be co-simulated with
the computation architecture in OPNET, we recorded real
communication traces (Figure 5). The communication traces
are recorded on a processor simulator for each processing
stage and each frame. In this way, we assume an ideal on-
chip network, where communication of one processing stage
only affects the other stage at the beginning and the end of a

frame, but not during a frame. Each processor and the video
input have their own traces. A trace has entries to record
network accesses for each frame. An entry includes access
interval (between current and the last access) in term of
number of clock cycle, source, destination, operation type,
address, data size, and flag to show the end of a frame.
Those traces are used to control the communication
behaviors of according processors in the models.
5.3. Circuit models

We designed some circuit models to determine the
timing restriction. A NoC includes two types of circuits:
logic circuits and interconnections. Bus arbiter and switch
control unit are logic circuits. The bus and the point to point
interconnections in the switch are interconnections. Crossbar
has a little logic circuit and is mainly interconnections. Other
interconnections are between the arbiter and the processors
and the video input. An interconnection includes an input
driver, a wire, and an output driver. The input driver is
usually a chain of sized inverters. Transmission gates will be
used to connect input drivers to a wire, if multiple input
drivers are used. Both the bus and point to point
interconnections have multiple input buffers.

6. Simulation results and analysis
We simulated each model in OPNET using recorded

communication traces for 3x108 clock cycles. We assume
the on-chip communication architectures are synchronous
and running at the same speed as the processors. This is an
optimistic assumption for a bus, while a switch can easily
fulfill this assumption. A bus stretches over a chip to connect
multiple bus masters and slaves, and it usually run at lower
speed than processors. However, for a switch, point to point
interconnects are shorter and thinner than bus interconnects,
and it can run at the same speed as processors.
6.1. Definitions

We use the following definitions for related metrics. The
system performance is the number of frames being
processed in a fixed time. The network throughput of a bus
or a switch is the number of bits transferred by the bus or the
switch in a clock cycle. The network utilization is defined by
formula (1).

throughputMaximum
throughputAverage

nUtilizatio = (1)

Because the system need to process 150 frames per
second, we use the formula (2) to get the required system
frequencies.

Framesocessed
FrequencySystem

Pr
150103 8 ××= (2)

6.2. Network throughput and utilization
When using the same number of shared memories, the

crossbars with wider ports have higher throughput but lower

utilization (Figure 6 and 7). Higher throughput usually gives
better system performance, while lower utilization wastes
network resource (Table 1 and 2). When the port width is
16-bit/port, the crossbar has similar throughput as the
arbiter-controlled system, and the network utilization is only
7.2%, comparing to 18.7% of the arbiter-controlled system.
The 16-bit/port 3x3 crossbar with two shared memory has
the highest utilization 44.2%, while the system performance
is 85.7% higher than the arbiter-controlled model.

Table 1. Network throughput and utilization

Model Name

Maximum
throughput

(bit per
clock cycle

Average
throughput

(bit per
clock cycle)

Network
utilization

32-bit/port 11x11 crossbar
with 2 memories 352 27.0 7.7%

16-bit/port 11x11 crossbar
with 2 memories 176 22.0 12.5%

16-bit/port 3x3 crossbar with
2 memories 48 21.2 44.2%

55-bit/port 10x10 crossbar 550 21.0 3.8%
32-bit/port 10x10 crossbar 320 18.9 5.9%

8-bit/port 11x11 crossbar
with 2 memories 88 13.6 15.5%

16-bit/port 10x10 crossbar 160 11.5 7.2%
16-bit/port 3x3 crossbar 48 11.4 23.8%

Arbiter-controlled 54 10.1 18.7%
Processor-controlled 54 10.2 18.9%

8-bit/port 10x10 crossbar 80 7.3 9.1%
5-bit/port 10x10 crossbar 50 4.7 9.4%

Table 2. System performance

Model Name

Performance
(processed
frames in

3x108 clock
cycles)

Performance
improvement
(refer to the

arbiter-
controlled

model)

Required
frequency
(MHz) to
reach 150
frame per

second
32-bit/port 11x11 crossbar

with 2 memories 130 132.1% 346

16-bit/port 11x11 crossbar
with 2 memories 106 89.3% 425

16-bit/port 3x3 crossbar
with 2 memories 104 85.7% 433

55-bit/port 10x10 crossbar 102 82.1% 441
32-bit/port 10x10 crossbar 91 62.5% 495
8-bit/port 11x11 crossbar

with 2 memories 67 19.6% 672

16-bit/port 10x10 crossbar 57 1.8% 789
16-bit/port 3x3 crossbar 56 0 804

Arbiter-controlled 56 reference 804
Processor-controlled 49 -12.5% 918

8-bit/port 10x10 crossbar 36 -35.7% 1250
5-bit/port 10x10 crossbar 23 -58.9% 1957

6.3. System performance
The simulation results (Table 2) show that in 3x108

clock cycles the arbiter-controlled model processed 56
frames, while the processor-controlled model processed only
49 frames, which is a 12.5% performance decrease.
Although using the same bus, in processor-controlled
system, the processors and the input need to communicate

with memory to handle the processing control function, and
those control communications reduce the effective bus
throughput for data communications.

Figure 6. Network throughput using a single shared memory

Figure 7. Network throughput using two shared memories

If the number of shared memories is the same, switch-
based models with wider ports have higher system

performances (Table 2), higher maximum throughputs, and
higher average throughput (Table 1), and they have lower
transmission clock cycles (Table 3). Except the 5-bit/port
and 8-bit/port 10x10 crossbars, all the models using
crossbars have higher performance than the models using
bus. High effective throughput and low latency make switch-
based models have higher performance than bus-based
models. Switch-based models with two shared memories
have higher system performance than those with a single
shared memory. Because all the processors and the input
need to access memory for data, memory is a performance
bottleneck. Two shared memories increase both the system
performance and average throughput by doubling memory
bandwidth.

Table 3. Clock cycles needed to transmit

Model Name
Clock cycles needed to transmit

32-bit data, 21-bit address, and 1-
bit or 2-bit control

55-bit/port 10x10 crossbar 1 (2-bit control)
32-bit/port 10x10 crossbar 2 (2-bit control)

32-bit/port 11x11 crossbar with
2 memories 2 (2-bit control)

16-bit/port 10x10 crossbar 4 (2-bit control)
16-bit/port 11x11 crossbar with

2 memories 4 (2-bit control)
16-bit/port 3x3 crossbar 4 (2-bit control)

16-bit/port 3x3 crossbar with 2
memories 4 (2-bit control)

Processor-controlled 1 (1-bit control)
Arbiter-controlled 1 (1-bit control)

8-bit/port 10x10 crossbar 7 (2-bit control)
8-bit/port 11x11 crossbar with 2

memories 7 (2-bit control)
5-bit/port 10x10 crossbar 11 (2-bit control)
In all the models which have a maximum throughput

around 55 bits per clock cycle, the 3x3 crossbar model with
two shared memories has the highest system performance
and the lowest maximum throughput (Table 2). The 3x3
crossbar model with a single shared memory has the same
performance as the arbiter-controlled model. The 5-bit/port
10x10 crossbar model with a single shared memory has the
lowest performance.

Overall, the 3x3 crossbar model with two shared
memories is a good choice for Smart Camera SoC. It only
needs a 443MHz system frequency to reach 150 frames per
second system performance. Since the 3x3 crossbar has the
lowest maximum throughput, it will use relatively small
area.

7. Conclusion
Our study shows the NoC is a performance bottleneck in

our case, and it is also possible in other designs using the
similar communication architecture. Using the Smart
Camera SoC as a case study, this research explores bus and
crossbars with different sizes, different port widths, and
different numbers of shared memories. Larger crossbar (or

crossbar with wider ports) has higher average throughput
and higher system performance. High average throughput
usually associates with high maximum throughput and high
system performance, but with low network utilization. For
the Princeton Smart Camera system, we find the 16-bit/port
3x3 crossbar with two shared memories shows an 85.7%
performance improvement over the processor-controlled
model, while it has lowest maximum throughput. And the
16-bit/port 3x3 crossbar with a single shared memory has
the same system performance and lowest maximum
throughput as the processor-controlled model. We adopted
the telecommunication system simulator, OPNET, and
simulate the cycle-accurate architecture-level model of each
NoC. All the simulations use the recorded communication
traces, which give better accuracy. This method is only need
less than one day to finish 3x108 clock cycle simulation for
each model.

References
[1] L. Benini, G. De Micheli, “Networks on chip: a new paradigm
for systems on chip design”, Design, Automation and Test in
Europe Conference, 2002.
[2] William J. Dally, Brian Towles, “Route packets, not wires: on-
chip interconnection networks”, Proceedings of the 38th Design
Automation Conference, 2001.
[3] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage,
"Networks on Silicon: Combining Best-Effort And Guaranteed

Services" Design, Automation and Test in Europe Conference,
March, 2002.
[4] R. Hofmann, B. Drerup, “Next generation CoreConnect
processor local bus architecture”, Annual IEEE International
ASIC/SOC Conference, 25-28 Sept. 2002.
[5] D. Flynn, “AMBA: enabling reusable on-chip designs”, IEEE
Micro, Volume: 17 Issue: 4, July-Aug. 1997
[6] D. Wingard, “MicroNetwork-based integration for SOCs”,
Design Automation Conference, 18-22 June 2001.
[7] T. Dumitras, R. Marculescu, “On-chip stochastic
communication” Design, Automation and Test in Europe
Conference, 2003.
[8] M. Galles, “Spider: a high-speed network interconnect”, IEEE
Micro, Volume: 17 Issue: 1 ,1997, Page(s): 34 -39.
[9] A. Hemani, A. Jantsch, ect, “Network on chip: An architecture
for billion transistor era”, Proceeding of the IEEE NorChip
Conference, November 2000.
[10] Wayne Wolf, Burak Ozer, and Tiehan Lv, "Smart cameras for
embedded systems," IEEE Computer, 35(9), September 2002, pp.
48-53.
[11] Micron 18Mb SYNCBURST SRAM specification,
http://www.micron.com
[12] http://www.opnet.com
[13] http://www.silicore.net
[14] Wayne Wolf, Tiehan Lv, and Burak Ozer, "An Architectural
Design Study for a High-Speed Smart Camera", IEEE MICRO
MSP-02 Workshop, 2002

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

