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Abstract 

In this paper we study bus-based and switch-based on-
chip networks for an embedded video application, the Smart 
Camera SoC (system on chip). We analyze network 
performance and overall system performance in detail. We 
explore system performance using crossbars with different 
sizes, fixed size but different numbers of ports, and different 
numbers of shared memories. We find that network is a 
performance bottleneck in our design, and the system using 
an optimized NoC can outperform one using a bus by 132%. 
Our simulations are based upon recorded real 
communication traces, which give more accurate system 
performance. Our study finds that for the Smart Camera 
system, a 16-bit/port 3x3 crossbar with two shared 
memories shows 85.7% performance improvement over the 
bus-based model and also has less maximum network 
throughput than the bus-based model. This design example 
illustrates a methodology to quickly and accurately estimate 
the performance of NoC’s at architecture level. 
 
 

1. Introduction 
This paper studies different NoC’s (networks-on-chip) 

for a real multi-core SoC (system-on-chip) system, the 
Princeton Smart Camera system. We use recorded real 
communication traces of a SoC design to conduct a detailed 
NoC design. We comprehensively explore bus and crossbars 
with different sizes, different port widths, and different 
numbers of shared memories. We showed their effects on 
the system performance, maximum throughput, average 
throughput, and network utilization. We find an unoptimized 
network is a performance bottleneck in the Smart Camera 
System. A system using an optimized NoC can outperform 
one using a bus by 132%. We also find high average 
throughput always associates with low network utilization in 
crossbar-based switch for Smart Camera SoC. Our practice 
shows a quick and accurate method to estimate the 
performance of NoC’s at architecture level. 

We adopted a telecommunication network simulator, 
OPNET [12], for our study and developed our own 
simulation method to design the NoC. For the Smart Camera 

System, we find the 16-bit/port 3x3 crossbar with two shared 
memories shows an 85.7% performance improvement over 
bus-based model, while it has less maximum throughput. 

The next section describes related work. In section 3, we 
introduce the Smart Camera SoC, which we used as the case. 
Section 4 shows several models we use in our research. Our 
simulation method is described in section 5, and simulation 
results and analysis are presented in section 6. Section 7 
concludes our work. 

2. Related work 
A key problem in SoC design is overcoming the design 

difficulties of on-chip communication architectures. Surveys 
of networks-on-chip are given by several researchers [1] [2] 
[3] [9]. Some on-chip communication architectures are 
developed based on buses, for example, CoreConnect from 
IBM [4], AMBA from ARM [5], MicroNetwork from 
Sonics [6], and Wishbone from Silicore [13].  Other on-chip 
communication architectures are inspired by multiprocessor 
networks, computer networks, and telecommunication 
networks [7] [8]. 

3. Smart Camera SoC 
We believe the study of on-chip communication 

architectures should be based on real SoC designs. The 
designs should have multiple IP cores, which closely 
cooperate with each other to reach high performance. We 
chose the Smart Camera System [10] for our research, 
because it is a multi-core and relative large and complex 
SoC, and because we can generate traces from the design. 

 
Figure 1. Computation architecture 
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The Princeton Smart Camera system is a high-
performance video processing application that can process 
150 frames per second [14]. To deliver such high 
performance we use a dual pipelined computation 
architecture (Figure 1). Each frame will go through 5 
processing stages. Processors P0, P2, P4, and P1, P3, P5 
form the two pipelines, and processor P6 works for both 
pipelines. Based on the workload, processor P0 handles the 
first processing stage, P2 handles the second processing 
stage, P4 handles the third and fourth processing stages, and 
P6 handles the fifth processing stages for both pipelines. In 
the Smart Camera System, two control functions are 
required. First, a processing control function will decide if a 
processor should process a new frame or not, depending on 
the status of itself and the previous stage.  If the previous 
stage finishes a frame and there is enough space to store the 
result in its own share of memory, a processor can process 
the finished frame from previous stage. Second, an 
arbitration function arbitrates requests for a shared 
communication system, based on the priorities of the 
requests. 

4. Networks-on-chip models 
To make a fair comparison of the on-chip networks, all 

the models use the same set of computation units. We use 
shared embedded memories with a single port for all the 
models. Because the algorithms for each processing stage 
may change, memory requirements for each stage will also 
change. Using a shared memory gives us more flexibility 
than we would have with distributed memories. For the dual 
pipeline computation architecture, a shared memory for each 
pipeline is also a good choice. The arbitration function uses 
the same priority list in all models. The input has the highest 
priority, and from the first to the fifth processing stages each 
one has a lower priority. For the same stage on different 
pipelines, the first pipeline always has a higher priority. 
4.1. Bus-based models 

We used two bus-based models, the processor-controlled 
model and the arbiter-controlled model. In the processor-
controlled model, a bus arbiter handles the arbitration 
function, and the processors and the input handle the 
processing control function (Figure 2). The processors and 
the input are connected to the bus arbiter by 
interconnections, which form a star network. The 
interconnections are used to send requests to and receive 
responses from the bus arbiter. The bus includes a 32-bit 
data bus, a 21-bit address bus, and a 2-bit control bus. There 
are 2 bytes in the memory to record the status of each 
processing stage and the input. After a frame is finished, a 
processor updates its own status and the status of the 
previous processing stage. A processor needs to check the 
status bytes in the memory to decide if it can process a new 
frame.  

The arbiter-controlled model uses the same bus as the 
processor-controlled model except the arbiter handles both 
the arbitration and processing control functions and each 
processor and the input are connected to the arbiter by two 
interconnections. One interconnection is used to send 
requests to the arbiter and receive responses; the other 
interconnection is used to send request types. The request 
types show if a processing stage is finishing or not. The 
arbiter has a 2-byte register to record the status of each 
processor and the input, and the register is updated by each 
processor and the input. The arbiter simply holds the request 
of a processor or the input if it cannot process. 

 
Figure 2. Processor-controlled model 

4.2. Switch-based models 
Crossbar switches are used to implement the switch-

based models (Figure 3). All switches are input-buffered, 
and the buffers connect to a NxN crossbar, where N is the 
number of switch ports. A buffer has 55 bits. N is 10 when 
using a single shared memory and 11 when using 2 shared 
memories. A control unit handles both the arbitration and 
processing control functions. We simulated different port 
widths, which are 5-bit/port, 8-bit/port, 16-bit/port, 32-
bit/port, and 55-bit/port. 

 
Figure 3. Switch-based model using 10x10 crossbar 



A switch uses packets to communicate with the 
processors, the input, the output, and the memory. Data, 
address, and control information are capsulated in a packet. 
There are 4 types of packets: write packet, read packet, 
switch response packet, and read response packet. A write 
packet includes 3-bit control, 21-bit address, and 32-bit data. 
A read packet contains only 3-bit control and 21-bit address. 
In a read response packet, there are only 32-bit data for a 
read operation. In the 3-bit control information, one bit is for 
the request, one bit is the memory control information to 
show the packet is for a read or write operation, and the 
other bit is the request type to show if a processing stage will 
be finished after this request. In a switch response packet, 
there is only 1-bit information to tell a processor or the input 
that the switch is sending its packet in current clock cycle. 

 
Figure 4. Switch-based model using 3x3 crossbar 

We also built switch-based models using two shared 
memories. To use two shared memories, the 10x10 crossbar 
is replaced by an 11x11 crossbar in figure 3. Processors 0, 2, 
4, and 6 share memory 0, and processors 1, 3, and 5 share 
memory 1. The input sends frames to memory 1, if and only 
if the memory 0 has an unprocessed frame. We also build a 
switch-based model using a 3x3 crossbar and an input queue 
(Figure 4). The size of the queue is 550-bit when using a 
single memory and 605-bit when using two shared 
memories. 

5. Simulation environment and method 
We develop our own trace-driven methodology for NoC 

design. Our method uses a hierarchy of models, starting with 
telecom-style models and working down to circuit models. 
5.1. Simulation environment 

We adopted OPNET [12] for on-chip communication 
architecture simulations. OPNET is a matured 
telecommunication system simulation environment, and we 
find it can be used to simulate on-chip systems with some 
adaptations. OPNET has some advantages for on-chip 
communication analysis. First, it can model many common 
phenomena in communication systems. Second, it is fast. 
Simulation speed is very important for on-chip 
communication architectures, which will be simulated for 
billions of clock cycles to get meaningful application-level 

results. Third, it is a packet-based simulator. This feature is 
particularly useful for our research because we are 
simulating packet switching. 

OPNET also has some disadvantages. First, it is 
developed for simulating telecommunication systems and 
some on-chip features are not well supported. For example, 
the smallest time unit is the second, where on-chip 
communication architectures need nanosecond or even 
picosecond, and the smallest distance unit is meter instead of 
micrometer. Second, OPNET assumes asynchronous 
communication, so for a synchronous system, designers have 
to explicitly design a clock scheme and a distribution 
networks.  

We made the following adaptations in OPNET. In link 
models, 1) disable the propagation delay pipeline stage and 
2) disable the error model. In transmitter and receiver 
models, set data rate high enough to eliminate the effects of 
transmission delay. (We set data rate to 106 bps, which 
introduces 1 ms transmission delay.) In all node models, 
state transitions should be on clock edges. For the clock, 1) 
use one second to represent one clock cycle and 2) build a 
clock bus to synchronize the system. 
5.2. Simulation level and communication trace 

We simulated our designs using a cycle-accurate 
architecture simulator. Architecture level simulations give 
designers a quick evaluation independent of circuit 
implementations. The delay or processing time of each 
architecture element is based on the complexity of its 
functions and some reference designs. We assume that an 
bus arbiter or switch control unit needs one clock cycle to 
make a decision; memory read takes 3 clock cycles and 
memory write takes 2 clock cycles[11]; bus and long 
interconnects have one clock cycle delay. Because all the 
models obey these rules, the relative performances are 
accurate. 

 
Figure 5. Recorded communication trace 

Since the on-chip networks cannot be co-simulated with 
the computation architecture in OPNET, we recorded real 
communication traces (Figure 5). The communication traces 
are recorded on a processor simulator for each processing 
stage and each frame. In this way, we assume an ideal on-
chip network, where communication of one processing stage 
only affects the other stage at the beginning and the end of a 



frame, but not during a frame. Each processor and the video 
input have their own traces. A trace has entries to record 
network accesses for each frame. An entry includes access 
interval (between current and the last access) in term of 
number of clock cycle, source, destination, operation type, 
address, data size, and flag to show the end of a frame. 
Those traces are used to control the communication 
behaviors of according processors in the models. 
5.3. Circuit models 

We designed some circuit models to determine the 
timing restriction. A NoC includes two types of circuits: 
logic circuits and interconnections. Bus arbiter and switch 
control unit are logic circuits. The bus and the point to point 
interconnections in the switch are interconnections. Crossbar 
has a little logic circuit and is mainly interconnections. Other 
interconnections are between the arbiter and the processors 
and the video input. An interconnection includes an input 
driver, a wire, and an output driver. The input driver is 
usually a chain of sized inverters. Transmission gates will be 
used to connect input drivers to a wire, if multiple input 
drivers are used. Both the bus and point to point 
interconnections have multiple input buffers. 

6. Simulation results and analysis 
We simulated each model in OPNET using recorded 

communication traces for 3x108 clock cycles. We assume 
the on-chip communication architectures are synchronous 
and running at the same speed as the processors. This is an 
optimistic assumption for a bus, while a switch can easily 
fulfill this assumption. A bus stretches over a chip to connect 
multiple bus masters and slaves, and it usually run at lower 
speed than processors. However, for a switch, point to point 
interconnects are shorter and thinner than bus interconnects, 
and it can run at the same speed as processors. 
6.1. Definitions 

We use the following definitions for related metrics. The 
system performance is the number of frames being 
processed in a fixed time. The network throughput of a bus 
or a switch is the number of bits transferred by the bus or the 
switch in a clock cycle. The network utilization is defined by 
formula (1). 

throughputMaximum
throughputAverage

nUtilizatio =     (1) 

Because the system need to process 150 frames per 
second, we use the formula (2) to get the required system 
frequencies. 

Framesocessed
FrequencySystem

Pr
150103 8 ××=   (2) 

6.2. Network throughput and utilization 
When using the same number of shared memories, the 

crossbars with wider ports have higher throughput but lower 

utilization (Figure 6 and 7). Higher throughput usually gives 
better system performance, while lower utilization wastes 
network resource (Table 1 and 2). When the port width is 
16-bit/port, the crossbar has similar throughput as the 
arbiter-controlled system, and the network utilization is only 
7.2%, comparing to 18.7% of the arbiter-controlled system. 
The 16-bit/port 3x3 crossbar with two shared memory has 
the highest utilization 44.2%, while the system performance 
is 85.7% higher than the arbiter-controlled model. 

Table 1. Network throughput and utilization 

Model Name 

Maximum 
throughput 

(bit per 
clock cycle 

Average 
throughput 

(bit per 
clock cycle) 

Network 
utilization

32-bit/port 11x11 crossbar 
with 2 memories 352 27.0 7.7% 

16-bit/port 11x11 crossbar 
with 2 memories 176 22.0 12.5% 

16-bit/port 3x3 crossbar with 
2 memories 48 21.2 44.2% 

55-bit/port 10x10 crossbar 550 21.0 3.8% 
32-bit/port 10x10 crossbar 320 18.9 5.9% 

8-bit/port 11x11 crossbar 
with 2 memories 88 13.6 15.5% 

16-bit/port 10x10 crossbar 160 11.5 7.2% 
16-bit/port 3x3 crossbar 48 11.4 23.8% 

Arbiter-controlled 54 10.1 18.7% 
Processor-controlled 54 10.2 18.9% 

8-bit/port 10x10 crossbar 80 7.3 9.1% 
5-bit/port 10x10 crossbar 50 4.7 9.4% 

Table 2. System performance 

Model Name 

Performance 
(processed 
frames in 

3x108 clock 
cycles) 

Performance 
improvement
(refer to the 

arbiter-
controlled 

model) 

Required 
frequency 
(MHz) to 
reach 150 
frame per 

second 
32-bit/port 11x11 crossbar 

with 2 memories 130 132.1% 346 

16-bit/port 11x11 crossbar 
with 2 memories 106 89.3% 425 

16-bit/port 3x3 crossbar 
with 2 memories 104 85.7% 433 

55-bit/port 10x10 crossbar 102 82.1% 441 
32-bit/port 10x10 crossbar 91 62.5% 495 
8-bit/port 11x11 crossbar 

with 2 memories 67 19.6% 672 

16-bit/port 10x10 crossbar 57 1.8% 789 
16-bit/port 3x3 crossbar 56 0 804 

Arbiter-controlled 56 reference 804 
Processor-controlled 49 -12.5% 918 

8-bit/port 10x10 crossbar 36 -35.7% 1250 
5-bit/port 10x10 crossbar 23 -58.9% 1957 

6.3. System performance 
The simulation results (Table 2) show that in 3x108 

clock cycles the arbiter-controlled model processed 56 
frames, while the processor-controlled model processed only 
49 frames, which is a 12.5% performance decrease. 
Although using the same bus, in processor-controlled 
system, the processors and the input need to communicate 



with memory to handle the processing control function, and 
those control communications reduce the effective bus 
throughput for data communications. 

 
Figure 6. Network throughput using a single shared memory 

 
Figure 7. Network throughput using two shared memories 

If the number of shared memories is the same, switch-
based models with wider ports have higher system 

performances (Table 2), higher maximum throughputs, and 
higher average throughput (Table 1), and they have lower 
transmission clock cycles (Table 3). Except the 5-bit/port 
and 8-bit/port 10x10 crossbars, all the models using 
crossbars have higher performance than the models using 
bus. High effective throughput and low latency make switch-
based models have higher performance than bus-based 
models. Switch-based models with two shared memories 
have higher system performance than those with a single 
shared memory. Because all the processors and the input 
need to access memory for data, memory is a performance 
bottleneck. Two shared memories increase both the system 
performance and average throughput by doubling memory 
bandwidth.  

Table 3. Clock cycles needed to transmit 

Model Name 
Clock cycles needed to transmit 

32-bit data, 21-bit address, and 1-
bit or 2-bit control 

55-bit/port 10x10 crossbar 1 (2-bit control) 
32-bit/port 10x10 crossbar 2 (2-bit control) 

32-bit/port 11x11 crossbar with 
2 memories 2 (2-bit control) 

16-bit/port 10x10 crossbar 4 (2-bit control) 
16-bit/port 11x11 crossbar with 

2 memories 4 (2-bit control) 
16-bit/port 3x3 crossbar 4 (2-bit control) 

16-bit/port 3x3 crossbar with 2 
memories 4 (2-bit control) 

Processor-controlled 1 (1-bit control) 
Arbiter-controlled 1 (1-bit control) 

8-bit/port 10x10 crossbar 7 (2-bit control) 
8-bit/port 11x11 crossbar with 2 

memories 7 (2-bit control) 
5-bit/port 10x10 crossbar 11 (2-bit control) 
In all the models which have a maximum throughput 

around 55 bits per clock cycle, the 3x3 crossbar model with 
two shared memories has the highest system performance 
and the lowest maximum throughput (Table 2). The 3x3 
crossbar model with a single shared memory has the same 
performance as the arbiter-controlled model. The 5-bit/port 
10x10 crossbar model with a single shared memory has the 
lowest performance. 

Overall, the 3x3 crossbar model with two shared 
memories is a good choice for Smart Camera SoC. It only 
needs a 443MHz system frequency to reach 150 frames per 
second system performance. Since the 3x3 crossbar has the 
lowest maximum throughput, it will use relatively small 
area. 

7. Conclusion 
Our study shows the NoC is a performance bottleneck in 

our case, and it is also possible in other designs using the 
similar communication architecture. Using the Smart 
Camera SoC as a case study, this research explores bus and 
crossbars with different sizes, different port widths, and 
different numbers of shared memories. Larger crossbar (or 



crossbar with wider ports) has higher average throughput 
and higher system performance. High average throughput 
usually associates with high maximum throughput and high 
system performance, but with low network utilization. For 
the Princeton Smart Camera system, we find the 16-bit/port 
3x3 crossbar with two shared memories shows an 85.7% 
performance improvement over the processor-controlled 
model, while it has lowest maximum throughput. And the 
16-bit/port 3x3 crossbar with a single shared memory has 
the same system performance and lowest maximum 
throughput as the processor-controlled model. We adopted 
the telecommunication system simulator, OPNET, and 
simulate the cycle-accurate architecture-level model of each 
NoC. All the simulations use the recorded communication 
traces, which give better accuracy. This method is only need 
less than one day to finish 3x108 clock cycle simulation for 
each model. 
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