
Analyzing On-Chip Communication in a MPSoC Environment

Mirko Loghi†

loghi@sci.univr.it

Federico Angiolini‡

fangiolini@deis.unibo.it

Davide Bertozzi‡

dbertozzi@deis.unibo.it

Luca Benini‡

lbenini@deis.unibo.it

Roberto Zafalon#

roberto.zafalon@st.com

†Dipartimento di Informatica - University of Verona

Strada Le Grazie, 15 37134 Verona, Italy
‡Dipartimento di Elettronica, Informatica e Sistemistica (DEIS) - University of Bologna

Viale Risorgimento, 2 40134 Bologna, Italy
#Advanced System Technology - Research & Innovation - STMicroelectronics

Via C. Olivetti, 2 20041 Agrate Brianza (MI), Italy

Abstract

This work focuses on communication architecture analy-
sis for multi-processor Systems-on-Chips (MPSoCs), and it
leverages a SystemC-based platform to simulate a complete
multi-processor system at the cycle-accurate and signal-
accurate level. These features allow to stimulate the com-
munication sub-system with functional traffic generated by
real applications running on top of a configurable number
of ARM processors. This opens up the possibility for com-
munication infrastructure exploration and for the investi-
gation of its impact on system performance at the high-
est level of accuracy. Our simulation environment proved
capable of a detailed comparative analysis between two
industry-standard communication architectures, under re-
alistic workloads and different system configurations, point-
ing out the impact of fine grained architectural mismatches
on macroscopic performance differences.

1. Introduction

As technology scales toward deep sub-micron, the inte-
gration of a complete system consisting of a large number
of IP blocks on the same silicon die is becoming technically
feasible. In this context, the communication sub-system of
these complex Systems-on-Chip (SoCs) is increasingly crit-
ical for system performance, and therefore represents a key
component to be investigated during architecture definition
and tuning.

Most current designs are based on shared communica-
tion resources (busses) due to their low cost. Unfortunately,
scalability is limited by serialization for multiple bus ac-
cess requests. As the number of IP blocks to be intercon-
nected increases, on-chip micro-networks of interconnects
(or Networks-on-Chips, NoCs) [1] can provide an adequate

solution [1, 15, 2]. Such a widening design space empha-
sizes the need for a thorough exploration of interconnection
choices, including bus designs of varying complexity and
alternative topologies [13].

This paper proposes a complete platform for analysis
and trade-off exploration of on-chip communication ar-
chitectures, and provides a complete case study of practi-
cal interest: namely, a detailed comparative analysis, under
a number of different architectural configurations, of two
industry-standard communication infrastructures: AMBA
Advanced High Performance Bus (AHB) from ARM and
STBus interconnect from ST Microelectronics.

Our simulation platform for multi-processor sys-
tems generates functional traffic for the communica-
tion architecture by means of real applications run-
ning on top of a scalable number of ARM processors. The
whole system is simulated (communication initiators, pri-
vate as well as shared memories, synchonization devices)
at the cycle-accurate and signal-accurate level, thus min-
imizing the degrees of approximations with respect to
real MPSoCs. This allows a realistic performance anal-
ysis of on-chip interconnects: their performance can
be accurately assessed for different classes of applica-
tions (communication versus computation-dominated traf-
fic), software architectures (stand-alone versus operating
system supported applications) and system configura-
tions (cache size, external memory latency, etc.).

With respect to previous work, our approach targets high
accuracy MPSoC simulation, in that it relies on functional
traffic instead of fixed execution traces, or statistic traffic
generators, or analytical models. In this way, dynamic ef-
fects such as interaction among traffic sources can be taken
into account. Experimental results demonstrate that sub-
tle protocol mismatches and middleware-induced behavior
are indeed responsible for macroscopic performance differ-
ences.

This paper is structured as follows. Section 2 discusses
previous work. Section 3 describes the hardware and soft-
ware architecture of our simulation platform. Section 4 pro-
vides some technical insights about the features of the com-
munication architectures we implemented. Section 5 details
the experimental results with respect to different bench-
marks. Finally, conclusions are drawn in Section 6.

1530-1591/04 $20.00 (c) 2004 IEEE

2. Related work

While methodologies for modelling and evaluation of ar-
chitectures of processing elements are well known, mod-
elling of an extensive range of on-chip communication in-
terconnects and their integration into a single simulation
environment combining processing elements and on-chip
communication is still an active research area. [13] proposes
a hierarchical modeling framework where new communica-
tion architectures can be developed by means of a library of
reusable components.

Efficient mapping of system communication require-
ments on target communication architectures is becoming
an integral part of any system design flow. In [7] a two step
systematic exploration of the communication architecture
design space is addressed. Similarly, the work in [5] aims at
selecting the communication infrastructure that best meets
application communication requirements.

The enabling technology for communication optimiza-
tion is system-level performance analysis. To this pur-
pose, several approaches have been proposed:
(i) The entire system can be simulated using models of
the components and their communication at different lev-
els of abstraction [9, 4].
(ii) Static system performance estimation techniques in-
cluding models of the communication time between
system components. Time estimates are usually either op-
timistic (ignoring dynamic effects such as bus con-
tention) [3] or pessimistic (assumption of worst case sce-
nario) [14].
(iii) Intermediate approaches, deriving set of traces from
an initial cosimulation of the system (assuming ab-
stract data transfers), and forwarding them to an anal-
ysis tool that, for a specified communication architec-
ture, comes up with system performance estimates [7].

A limitation of previous approaches is that perfor-
mance of communication architectures is derived under
non-realistic workloads. Traditionally, parameterized statis-
tic traffic generators are used [6, 16, 8], that, in spite of
their generality, prevent designers from assessing per-
formance in presence of real-life workloads and make it
difficult to account for dynamic effects such as bus con-
tention. The work in [11] goes in this direction.

Our work is based on a simulation environment that
models all hardware and software components of a multi-
processor system at a high level of accuracy, while at the
same time providing sufficient simulation speed to run sig-
nificant applications. We stimulate the communication sub-
system with functional traffic, to provide realistic perfor-
mance estimates and statistics, referred to different classes
of applications.

3. Multiprocessor simulation platform

3.1. Hardware architecture

The architecture of our platform (see Fig.1) is represen-
tative of a large class of homogeneous MPSoC platforms.
It is composed of (i) a configurable number of 32-bit ARM
processors (in this paper, four), (ii) their private memories,
(iii) a shared memory, (iv) a hardware interrupt module, (v)
a hardware semaphore module, (vi) the 32-bit interconnec-
tion among them all. This interconnection can be an AMBA
AHB bus or an STBus arbitrary topology, resulting in dif-
ferent versions of the platform.

Processor cores are modeled by means of an adapted
version of a GPL-licensed ARM Instruction Set Simulator
(ISS) called SWARM [12] and written in C++. Since all of

ARM ARM ARMARM

Interconnection (AMBA or STBus)

device
Interrupt

Private Private Private Private
MemoryMemoryMemoryMemory

Shared
Memory

Semaphore
device

Figure 1. The platform architecture

the hardware devices mentioned above, including the inter-
connection layer, are coded in SystemC, we embedded the
ISS into a SystemC wrapper.

The platform instantiates several memory devices, which
can be used as private or shared memories. Their latency can
be configured to explore interconnection performance under
several conditions. To compare AMBA AHB and STBus in
an unbiased fashion (see Section 4 for more details), memo-
ries were kept as simple as possible and did not feature any
kind of internal buffering: every access, even when part of
a burst, requires the same number of cycles.

The interrupt device allows processors to send interrupt
signals to each other. This hardware primitive is needed for
interprocessor communication and is mapped in the global
adressing space. For an interrupt to be generated, a write
should be issued to a proper address of the device. The
semaphore device is also needed for the synchronization
among the processors; it implements test-and-set opera-
tions, the basic requirement to have semaphores.

3.2. OS and benchmarks

We ported the RTEMS operating system [10] to our plat-
form. Our choice was motivated by the fact that RTEMS
is a lightweight OS for embedded systems, but it offers at
the same time good support for multiprocessing, and pro-
vides native calls for communication and synchronization
in such multiprocessor environments.

We then developed benchmark tasks running on top of
RTEMS and requiring heavy bus activity. The first bench-
mark performs independent matrix multiplications at each
processor, and does not require interprocessor communica-
tion. Operands are stored in the private memories of the pro-
cessors.

A second benchmark implements a pipeline of matrix
multiplications. Each processor executes a matrix multipli-
cation between an input matrix and a private operand ma-
trix, then feeds its output to the logically following proces-
sor. The platform receives a continuous flow of input matri-
ces and produces a continuous flow of output matrices. Ev-
ery core follows a fixed execution pattern: (i) copies an in-
put matrix from shared space to private space; (ii) multipli-
cates it with a matrix already in private space; (iii) copies the
resulting matrix back to shared space. During all of the pro-
cess, interrupt and/or semaphore slaves are queried to keep
synchronization.

Additionally, in order to capture the impact of the op-
erating system on system performance, we rewrote the
benchmarks in standalone C/Assembler code. We had to
choose different synchronization techniques for our OS
and non-OS pipelined benchmarks. RTEMS-based code
uses OS queues to exchange matrices between processors,
while C/Assembler code simply uses predefined memory
areas, and achieves synchronization by directly accessing

Simulation Time (s)

0

50

100

150

200

250

2 3 4 6

Number of processors

plain

statistics

statistics, VCD, trace

Figure 2. Simulator performance with
pipelined matrix multiplications

system semaphores. Semaphore checking is performed by
polling. Therefore, although functionally equivalent, some
low-level differences exist between benchmarks: RTEMS
code implicitly uses both semaphores and interrupts, while
C/Assembler code relies on a polling mechanism.

3.3. Code development and analysis support

We developed tools and support libraries to support fast
development and debugging of new applications and bench-
marks on our platform. This is key for establishing a solid
and flexible simulation environment.

Application code, either RTEMS-based or not, can
be easily compiled with standard GNU cross-compilers.
Scripts and makefiles fully automate the process of build-
ing for an SMP platform. Simple function calls, provided
by support libraries of the simulator, allow flexible per-
formance profiling: statistics can be collected during OS
boot, application execution, or critical sections of algo-
rithms. The output of the simulator can be configured
to be very instructive, including (i) statistics about pro-
cessor and interconnection performance (see Section 5
for more details), (ii) VCD waveforms of all bus sig-
nals, and (iii) traces of memory accesses performed by
every core.

Debug functions include a built-in debugger, which al-
lows to set breakpoints, execute code step-by-step and in-
spect memory content; it is additionally capable of dumping
the full internal status of the execution cores. When testing
applications written without underlying OS support (i.e., no
native I/O calls are available), messages and status infor-
mation can still be easily provided to the user by means of
pseudo-instructions.

Simulation accuracy and flexibility have to be traded-off
with simulation speed. However, Fig.2 shows that our plat-
form, despite being signal-accurate and cycle-accurate, is
fast and usable. The chart depicts simulation performance
with the AMBA AHB interconnect, as a function of the
number of processors and of the requested output statis-
tics. When running on a Pentium R© 4 2.26 GHz worksta-
tion, execution times of OS-PIP (the most resource de-
manding benchmark), including RTEMS boot and ten full
pipeline iterations, stayed always below four minutes even
when simulating a six-processor system with all possible
statistics and debug information enabled. Always in this
six-processor scenario, 62,000 to 86,000 CPU cycles could
be simulated per second, depending on the choice of out-
puts. As the chart shows, the overhead of statistics collec-
tion on execution times is almost negligible; a more signif-
icant impact is associated with VCD waveforms and mem-

Figure 3. AMBA, STBus memory transfers (4
wait states)

ory traces, due to substantial hard disk activity (about 300
MB of data in the six-processor benchmark). By disabling
such outputs, or reducing their scope (trimming the amount
of VCD traces to be recorded), speed-ups of around 25%
could be achieved.

4. Bus architectures and protocols

4.1. AMBA AHB

Three distinct buses are actually defined within the
AMBA specification. AMBA Advanced High Perfor-
mance Bus (AHB) is the most performing one and was se-
lected for our analysis, even though we chose to omit sup-
port for some of its features (e.g. locked transfers and
some advanced burst techniques, which are not sup-
ported by ARM cores).

AMBA AHB is based upon a traditional shared bus
topology and exploits pipelining to maximize performance.
It features distinct data and address/control buses. Trans-
fers are composed of an address phase and of a data phase,
and the address phase of a new transfer overlaps with the
data phase of the previous transfer. This allows maximum
throughput while imposing light timing requirements upon
the slaves, but also increases latency: a minimum of three
clock cycles are needed to complete a transfer, two spent
in the arbitration and addressing phase and one (plus wait
states) in the data phase. In our simulations, we assumed
one wait cycle for the slaves, so minimum latency amounted
to four cycles.

It is important to stress here that AMBA AHB does sup-
port bursts, but it treats them as streams of single trans-
actions; bursts are simply a way of arbitrating just once
for multiple transfers, thereby reducing latency. This means
that memories have no way of early detecting bursts and ac-
cordingly make use of prefetching or buffering.

According to the AMBA AHB specification, when one
master owns the bus no other master can perform any trans-
action. This means that high-latency slaves can dramati-
cally reduce bus performance. AMBA AHB provides two
workarounds to this shortcoming. The first is a mechanism
called ”split/retry transfer”: a high-latency slave can option-
ally decide to release the bus while preparing its response to
a master-initiated transaction. However, this mechanism re-
quires more complex slaves and arbiters and, for fast on-
chip memory devices, access times are short enough to pre-
vent advantageous use of split/retry transfers. A second way
of improving bus usage is called ”early burst termination”:
if the arbiter detects that the bus has been busy for too long,
it can interrupt a burst transfer in progress and assign the bus
to another master with pending bus access request. While al-
lowing for better granularity of accesses, this approach does
not actually hide latencies, since a preempted master has to
compete for re-gaining bus access and to resume the sus-
pended transfer.

SEM

INT

SHARED

PRIV 1

PRIV 2
PRIV 2

PRIV 4

PRIV 3

SEM

INT

PRIV 1

SHARED

PRIV 4

PRIV 3

ARM 1

ARM 4

ARM 3

ARM 2

ARM 1

ARM 4

ARM 3

ARM 2

PRIV 3

PRIV 1

PRIV 2

PRIV 4

SEM

INT

SHARED

PRIV 3

PRIV 1

PRIV 2

PRIV 4

SEM

INT

SHARED

ARM 2

ARM 1

ARM 3

ARM 4

ARM 3

ARM 4

ARM 1

ARM 2

Figure 4. Partial crossbars 3+2, 5+4

4.2. STBus

STBus is a flexible communication architecture devel-
oped by STMicroelectronics. Its specifications define three
different protocols; the simplest is called type 1 and sup-
ports simple load/store operations, type 2 adds more com-
plex transfers, pipelining and split transactions, and finally
type 3 adds out-of-order support. Our tests were based on
type 3 protocol.

The topology of an STBus interconnect is also very flex-
ible and can range from a simple shared bus, like AMBA
AHB, to a full crossbar. We analyzed performance obtained
from a variety of topologies.

STBus features two data communication channels, one
from initiators (e.g., processors) to targets (e.g., memories
and dedicated hardware) and the other in the opposite direc-
tion. This allows an initiator to send a request while a tar-
get is sending a response. This overlapping of transfers is
a key performance enhancer. Fig.3, taken from our simu-
lations, shows how STBus is able to speed up transactions
by requesting new bursts while previous ones are still com-
pleting and thus having no idle cycles inbetween. The figure
also shows that our simulator does allow detailed, cycle ac-
curate tracing of all bus signals.

STBus features fast arbitration, and this makes it pos-
sible to complete single read transfers in just two cycles,
versus the three needed by AMBA - one cycle for arbitra-
tion/sending addresses and one for receiving data. When in-
serting a wait state, the minimum latency becomes of three
cycles.

Due to the simple burst protocol supported by AMBA,
as outlined above, in our tests we chose to always use ex-
tremely simple memories without any buffering and
prefetching; this reduces the performance of STBus, but al-
lows a fair comparison of bus performance.

5. Quantitative analysis

In this section, we will present two different types of
quantitative analysis enabled by our simulator. The first is
a performance comparison amongst five interconnections:
AMBA AHB (AMBA), STBus configured as a shared bus
(ST-BUS), STBus set up as a full crossbar (ST-FC), and two
additional STBus partial crossbar topologies ST-32 and ST-
54 (see Fig.4). These interconnects will be tested with the
four benchmarks described in section 3.2: matrix multipli-
cations performed independently by each processor and in
pipeline, with and without an underlying OS (OS-IND, OS-
PIP, ASM-IND and ASM-PIP respectively). All these re-
sults were measured with 8 kB ARM caches and with 1
wait state memories.

AMBA AHB Bus Usage (%)

0

5

10

15

20

25

30

35

40

45

50

Bus usage % Bus efficiency %

ASM-IND

OS-IND

ASM-PIP

OS-PIP

AMBA AHB Read Latencies (cycles)

0

5

10

15

20

25

30

35

40

Average
time for read

Max time for
read

Min time for
read

Average wait
for read

Max wait for
read

Min wait for
read

ASM-IND

OS-IND

ASM-PIP

OS-PIP

Figure 5. AMBA AHB analysis

The second type of analyis is an architectural design
space exploration. Based on the most meaningful bench-
mark (OS-PIP), we will explore performance in presence of
different system parameters like cache size, memory laten-
cies and compiler optimizations.

To better describe the metrics that our simulator can
measure, we refer to Fig.5(a).A and 5(b).B, both regarding
AMBA. Fig.5(a).A shows statistics about bus usage during
the execution of the four benchmarks. Two groups of results
are reported: the first one details absolute bus usage, i.e.
data transfers over total execution time, while the second ex-
presses data transfers over the time during which the inter-
connect is busy. The first set of results is indicative of over-
all bus congestion, and shows that three benchmarks put rel-
atively light pressure on system interconnect (around 10%),
while OS-PIP is much more demanding, due to larger mem-
ory footprint and worse memory locality, which increase the
amount of bursts for cache refills.

The second set of metrics is instead more representa-
tive of bus efficiency; higher values are to be desired. The
chart shows that the best efficiency is achieved in OS-PIP,
because the high amount of traffic in this benchmark in-
creases the exploitation of AMBA bus pipelining. It is im-
portant here to remember that, due to the pipelined nature
of AMBA, every access keeps the interconnect busy for a
relatively long time, even though ownership may only re-
fer to either the data or address bus. When pipelining is
not stressed due to infrequent accesses, this fact heavily re-
duces apparent efficiency without significantly improving
throughput.

Fig.5(b).B reports latencies for read accesses. Six groups
of results are shown; the first three ones refer to the num-
ber of cycles needed to complete a transaction, while the last
three the number of wait cycles before the arrival of the first
datum. For each of these sets, average, maximum and min-
imum times are provided. Since read accesses can be bursts
or single, completion times are not strictly correlated to wait
times. Minimum waiting times are three cycles, as expected
from the specifications (see Section 4). Minimum comple-
tion times depend on the benchmark; OS-PIP and ASM-PIP
access synchronization slaves (semaphores etc.) by means
of single read transactions, which can be completed in one
cycle after the waiting time (four cycles total). OS-IND and

Bus Usage (%)

0

5

10

15

20

25

30

35

40

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

Bus Efficiency (%)

0

50

100

150

200

250

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

Figure 6. Bus traffic analysis

ASM-IND instead only perform reads when there is a need
for cache line refills, and thus all reads are bursts; this means
seven cycles added to wait states, totaling ten cycles. Av-
erage times reflect what seen in bus usage statistics; high-
est latencies can be observed for OS-IND, ASM-IND (all
reads are bursts) and OS-PIP, which exhibits both a high
percentage of bursts and heavy interconnection usage. Fi-
nally, maximum times are an interesting metric for worst-
case analysis: 34 cycles might be necessary to complete a
read transfer.

It is possible to extract similar statistics for writes. How-
ever, since ARM does not support burst writes, accesses are
always single and latencies are much more aligned, only de-
pending on bus traffic.

5.1. Interconnection comparison

Fig.6.A and 6.B compare bus traffic on interconnections.
Overall bus traffic is definitively comparable, since it mostly
depends on benchmark features. Bus efficiency, in contrast,
is higher for STBus. Since transfers are composed of one
wait state followed by a single datum, efficiency could be
estimated to be 50%; STBus however is always above that
threshold, because, even in its shared bus topology, it has the
ability to hide some wait states via its dual request/response
channels (refer to Fig.3). AMBA efficiency instead is al-
ways below 50%; this is because AMBA AHB appears to
be busy not only when its data bus is, but also when its ad-
dress bus is, which reduces the percentage of actual transfer
cycles within the length of a transaction. Efficiency would
lie at 50% only if there was a continuous stream of bus
transfers filling the AMBA AHB pipeline, which is not the
case here, especially in benchmarks with low traffic. ST-
FC, ST-32 and ST-54 are able to boost dramatically bus ef-
ficiency, since they allow more transfers in parallel. Since
accesses to shared devices (shared memory, sempahores,
interrupt module) are serialized anyway, the advantage in
ASM-PIP and OS-PIP is still relatively small; but in OS-
IND and ASM-IND, where all accesses are to private mem-

Average Time for Read (cycles)

0

2

4

6

8

10

12

14

16

18

20

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

Figure 7. Reads average latency

ories, crossbars significantly outperform other schemes. ST-
32 achieves 100% efficiency (two memories can be ac-
cessed at a time), while ST-54 and ST-FC hit 200% (four
memories at a time). It is evident that crossbars behave best
when data access is local and no destination conflicts arise.

Fig.7 shows average completion latencies in read ac-
cesses. STBus is faster and exhibits lower latencies. ST-
BUS has an edge of one to about two cycles over AMBA,
mostly due to arbitration (which ST-BUS always performs
one cycle faster), and in part also to the ability of some-
times hiding one wait state. Once more, crossbars show
a substantial advantage in OS-IND and ASM-IND bench-
marks; ST-FC and ST-54, where no conflict on private mem-
ories ever arises, both achieve the minimum theoretical la-
tency of nine cycles (all reads are bursts). ST-32 trails im-
mediately behind ST-FC and ST-54 in these benchmarks,
with rare conflicts which do not occur sistematically be-
cause execution times shift among conflicting processors.
OS-PIP still shows significant improvement for crossbar de-
signs. ASM-PIP, in contrast, puts ST-BUS at the same level
of crossbars, and sometimes the shared bus even proves
slightly faster. This can be explained with the continuous
semaphore polling performed by this (and only this) bench-
mark; while crossbars may have an advantage in private
memory accesses, the resulting speedup only gives proces-
sors more opportunities to poll the semaphore device, which
becomes a bottleneck. Unpredictability of conflict patterns
can then explain why a simple shared bus can sometimes
slightly outperform crossbars.

We want to stress again that our research is not focused
on proving that one interconnect or one topology is better
than another, especially since the benchmarks highlight that
designs having the highest cost in terms of silicon area out-
perform the others. Our interest is in understanding perfor-
mance differences, and the best way to do that is to ana-
lyze as accurately as possible bus traffic and interactions.
The tool we developed, in contrast to previous approaches,
makes no assumptions on traffic and describes interconnect
performance in detail, while at the same time allowing thor-
ough exploration of the design space.

5.2. Architectural exploration

The chart in Fig.8 describes the impact of the presence of
RTEMS on interconnection performance. Bus traffic spikes
up for OS-PIP with respect to ASM-PIP; this is due, as men-
tioned above, to the larger memory footprint and worse lo-
cality of the OS-PIP benchmark. Average latencies for read
accesses, not depicted here, show a similar pattern; heav-
ier bus traffic increases them, by up to 150% in the AMBA
case.

Fig.9.A shows total execution time of the OS-PIP bench-
mark, in scenarios having different cache and memory la-

26�YV��QRQ�26��%XV�8VDJH����

�

�

��

��

��

��

��

��

��

$60�3,3 26�3,3

$0%$
67�%86
67�)&
67���
67���

Figure 8. OS overhead analysis

OS-PIP Execution Time (cycles)

0

500000

1000000

1500000

2000000

2500000

3000000

1,
1kB

4,
1kB

8,
1kB

1,
4kB

4,
4kB

8,
4kB

1,
8kB

4,
8kB

8,
8kB

External memory latency, Cache size

AMBA

ST-BUS

ST-FC

OS-PIP on ST-BUS Execution Time (cycles)

0

500000

1000000

1500000

2000000

2500000

3000000

1, 1kB 4, 1kB 8, 1kB 1, 4kB 4, 4kB 8, 4kB 1, 8kB 4, 8kB 8, 8kB

External memory latency, Cache size

 -O0

 -O2

Figure 9. Performance as a function of sys-
tem variables

tency settings. Cache sizes of 1 kB, 4 kB and 8 kB and
memories with 1, 4 and 8 wait states are explored. Three
interesting comparisons can be made by looking at this
graph. The first is again an analysis of interconnection
performance, this time as a function of different environ-
ments. As expected, STBus always exhibits an advantage,
in that it cuts execution times from 9% to 35% with re-
spect to AMBA (from 18% to 58% with ST-FC). ST-54 (not
graphed) performs almost identically to ST-FC, while ST-32
(not graphed) once again trails behind other crossbars, but
is still faster than both buses. When comparing more effi-
cient interconnections to less efficient ones, gains are low-
est when the traffic is lightest, i.e. with big caches and fast
memories, but progressively increase with interconnection
congestion.

The second analysis regards performance improvement
due to cache size. A 4 kB cache can bring 4% to 26% speed-
ups in execution time with respect to a 1 kB cache; with 8
kB, speed-ups range from 20% to 48%. The widest gaps, as
expected, can be noticed with relatively slow interconnec-
tions and high latency memories.

A third assessment that can be made is about memory la-
tency impact on execution times. Increasing memory wait
states from 1 to 4 slows down execution times from 35% to
104%, and 8 wait states even from 84% to 370%. This once
more stresses the importance of fast memories, even though

big caches and fast interconnections help somehow.
Finally, Fig.9.B highlights the impact of software op-

timization. The chart was computed comparing execution
times on ST-BUS of the OS-PIP benchmark, when com-
piled with the -O0 (unoptimized) flag versus the usual -
O2 (optimized). Compiler optimizations, thanks to smarter
register allocation policies, cut down on external memory
accesses, thus dramatically improving performance. In the
ST-BUS case (other interconnections show similar speed-
ups), optimized code achieves 31% to 52% lower execu-
tion times. In percentage, improvements are more notice-
able when bus traffic is already low, i.e. in scenarios with
big caches and fast memories.

6. Conclusions

In this paper we presented a MPSoC simulator designed
to evaluate and compare interconnection architectures at a
high level of accuracy; AMBA AHB and STBus were tested
as an example of the simulator capabilities. STBus is more
complex and powerful than AMBA, and benchmark results
confirmed performance expectations. Our simulator proved
capable of analyzing in detail similarities and differences
between these architectures.

Further developments will extend the platform to other
dedicated devices, such as a DMA controller, and to addi-
tional system cores, like StrongARM and PowerPC. Other
interconnects, in addition to AMBA AHB and STBus, are
being ported too; this includes AMBA AXI, multilayer
AMBA AHB, and the ×pipes NoC. Finally, a linux port
onto the platform is currently under consideration.

References

[1] L. Benini and G. Micheli. Networks on chips: a new soc paradigm. IEEE
Computer, 35(1):70–78, January 2002.

[2] A. Brinkmann, J. Niemann, I. Hehemann, D. Langen, M. Porrmann, and
U. Ruckert. On-chip interconnects for next generation systems-on-chips.
IEEE ASIC/SOC Conf., pages 212–215, September 2002.

[3] M. Gasteier and M. Glesner. Bus-based communication synthesis. ACM Tran.
Des. Autom. Electron. Syst., pages 1–11, January 1999.

[4] K. Hines and G. Borriello. Optimizing communication in embedded system
cosimulation. Int. Workshop on Hardware/Software Codesign, pages 121–125,
1997.

[5] M. Kreutz, L. Carro, A. Zeferino, and A. Susin. Communication architectures
for systems-on-chip. Symposium on Integrated Circuits an Systems Design,
pages 14–19, September 2001.

[6] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the traffic performance
characteristics of system-on-chip communication architectures, 2001.

[7] K. Lahiri, A. Raghunathan, and S. Dey. System-level performance analysis
for designing on-chip communication architectures. IEEE Trans. On CAD of
Ics and Systems, 20(6):768–783, June 2001.

[8] V. Lahtinen, E. Salminen, K. Kuusilinna, and T. Hamalainen. Comparison
of synthesized bus and crossbar interconnection architectures. ISCAS, pages
V433–V436, May 2003.

[9] J. Rowson and A. Sangiovanni-Vincentelli. Interface based design. DAC,
pages 178–183, June 1997.

[10] RTEMS home page, http://www.rtems.com.
[11] K. K. Ryu, E. Shin, and V. J. Mooney. A comparison of five different mul-

tiprocessor soc bus architectures. EUROMICRO, pages 202–209, September
2001.

[12] Software ARM, http://www.g141.com/projects/swarm/.
[13] S. M. Xinping Zhu. A hierarchical modeling framework for on-chip com-

munication architectures. In Proceedings of International Conference on
Computer-Aided Design 2002, November 2002.

[14] T. Yen and W. Wolf. Communication synthesis for distributed embedded sys-
tems. Int. Conf. On CAD, pages 288–294, November 1995.

[15] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin. A study on com-
munication issues for systems-on-chip. SBCCI, pages 121–126, September
2002.

[16] Y. Zhang and M. Irwin. Power and performance comparison of crossbars and
buses as on-chip interconnect structures. Asilomar Conference on Signals,
Systems and Computers, 1:378–383, October 1999.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

