System Design for DSP Applications Using the MASIC Methodology

Abhijit K. Deb, Axel Jantsch, Johnny Oberg
Department of Microelectronics and Information Technology
Royal Institute of Technology, 164 40 Kista, Sweden

Email: { abhijit | axel | johnny } @ imit.kth.se

AbStraCt architectural functionality [system level decision | [functionality |
. _ decision unctionall ,7
Expensive top down iterations are often _requwed in the , :/
design cycle of compleRSP systems. In this paper, we | / i
introduce two levels of abstraction in the design flow by| ! Sm-oooooooooo- s

systematically categorizing the architectural decisions. As!
a result, the top-down iteration loop is broken. We also|__
present a technique to capture and inject the architectural
decisions such that the system models can be created ar—~
simulated efficiently. The concepts are illustrated by a
realistic speech processing example, which is implementec
using the AMBA on-chip architecture. Our methodology In this paper, we present a systematic approach to
offers a smooth path from the functional modeling phase telassify the architectural decisions in two categories:
the implementation level, facilitates the reuseHwf and system level decisiorendimplementation level decisions
SW components, and enjoys existing tool support at theThe basis of this categorization is discussed in Section 2.
backend. We add system level decisions to a functional model to
create an abstract intermediate model, calie® true
model (RTM). Next, implementation level decisions are
1. Introduction added to th&®TM to build acycle true mode{CTM) of the
transactions of the implementation architecture. Figure 1(b)
Process networks serve as the excellent basis foshows that the formulation of th&TM between the
building functional modelsof DSP applications. They are, functional model and theCTM breaks the top-down
however, awkward for specifying the control logic needediteration and achieves the first objective.
to build complex systems, which often includew The DSP system design methodologyASIC, short for
components to achieve flexibility andiv components for Maths to ASIGC provides an elegant grammar based
performance critical parts. To address this problem, thdéanguage to build abstra&T™m-like system models [6].
Y-chart basedSP system design methodology employs a The simulation and analysis technique usediBIC is
heterogeneous approach [1][2][3]. Other contemporarypresented separately in [7]. To achieve our second
methodologies like the function architecture codesign [4],0bjective, we have enhanced tREASIC language to be
and the communication based design [5] tackle desigmble to describe the architectural detail€of.
challenges by separating functionality from architecture. The contribution of this paper is the improvement of the
The ideas in [5] are commercialized in the Cadence Virtuatonventional design flow, which involves top-down
Component Co-desigifvCC) tool. In general, all these iteration. Additionally, the grammar based language used
methodologies employ the design flow of Figure 1(a). in MASIC has been enhanced. Next, in Section 2 we present
In such a design flow, a system designer typicallythe background and basis of the systematic categorization
studies the functionality, takes the system specificationpf the architectural decisions. Our methodology is
makes few initial calculations, and proposes an architecturdescribed in Section 3, followed by an illustrative example
to implement the functionality. Then the systemin Section 4. Section 5 presents the experimental results,
performance is evaluated, for instance by simulation [1][2],and finally, we conclude this work in Section 6.
and architectural decisions are altered to meet performance.
However, the top-down iteration as shown in Figure 1(a)2. Background and Motivation
takes a lot of time, which hinders the design productivity.
To gain design productivity, our first objective is to Functional modeling of signal processing applications
break this top-down iteration into two smaller loops, andusually begins using Kahn Process Netw(kRkN) [8] or
the second objective is to adopt a description formalism talifferent forms of dataflow networks lik6DF [9], DDF
capture and inject the architectural decisions efficiently. [10], etc. Processes ink®eN are connected through infinite

——- performance
analysis (a) _________ (b)

Figure 1: (a) Conventional system design flow
(b) proposed design flow

1530-1591/04 $20.00 (c) 2004 IEEE

length point-to-pointFIFOs. Graphically, processes are the bus functional models of embedded cores, etc.
drawn as nodes arklFOs as arcs. Processes read from theTherefore, to increase design productivity, we need an
input FIFO when data is available (i.e., blocking read), abstract way to describe the protocols.
perform computation in their private memory, manipulate There are different ways of describing a communication
their own state space, and write results in an oo protocol. One way is to specify a state machine that
(non-blocking write). An important issue regarding animplements the protocol using &DL description. This is
optimum implementation of these networks is to find aa low level approach as the designer has to describe the
schedule to determine which process executes on whickystem using a finite state space and often needs to deal
resource at which point in time. There exists an efficientwith theFSMs at theRT level.
technique of schedulingDF networks for a sequential or A more abstract way is to specify the grammar of the
parallel implementation [9]. Their approach also solvesprotocol and synthesize a controller from it. There exist
another practical problem, which is to find the sizes of theacademic [13][14][15] and commercial [16] grammar
FIFOs using abalance equatiorfor each arc between the based tools for protocol description. Though these
processes of a network [10]. Though, finding B0 size approaches do not address the problem of system design,
is not possible for the general caseksfN, there exists they demonstrate two clear advantages- firstly: the ease of
scheduling technique to find a reasonable upper boungrotocol description using grammar, and secondly: the
using simulations with varying input data set [11]. smooth path tedW synthesis from a grammar description.
The order and rate of process execution suggested bylaspired by these advantages, we have adopted the
schedule is not enough to build &M, We need two grammar based style in our methodology.
types of synchronization primitives. Firstly: scheduling Abstract communication modeling has become a part of
assumes the ideal situation that processes have their loddifferent system modeling languages like, SystemC [17]
memories. Practical limitations, as would be discussed irand SpecC [18]. However, we argue that grammars provide
Section 3.3, call for more synchronization before executinga more intuitive and natural way of describing protocols
a process according to a schedule. Secondly: schedulirnthan theC++ or C language.
techniques, for example in [9], do not deal with the system
interface to the environment and buffering of input data.3. The MASIC Methodology
Hence, the assumption of being able to schedule an inp@.1 Functional Modeling
node at anytime has to be synchronized with the
availability of valid data at input. These synchronization Modeling inMASIC begins at the functional level where
primitives along with the schedule, and the fiitEO size individual DSP functions are developed i@ or MATLAB
as required by the schedule is what we calsyfstem level like environment. These functions are connected-IBp
decisions This is the class of decisions where the designechannels to constitute a network. At this stage, design
has less freedom, as these decisions are dictated by tissues are primarily algorithmic and verification is
system interface, available resources, and a schedule for @oncerned with making sure that the specified signal
optimum implementation of the processes on the resourceprocessing figures of merits are met. The output of this
If performance requirements are not met then thesdevelis a set obSPfunctions inC without side effects.
decisions are changed. For example, the number and type
of resources can be increased to add computational poweB.2 The MASIC Description Language
Again, as shown in [11]FIFO sizes can be increased to
obtain a better schedule with higher performance. Grammars are primarily used for pattern matching, and
The implementation level decisionsre the class of used in developing compilers for programming languages
decisions where the designer has the freedom to explore thsing tools likerACC [19]. We use grammars to recognize
design space. There is a wide design space related to tleparticular signaling pattern, which represents a signaling
implementation of the communication architecture. Forprotocol, and to produce the desired action when the
example, theFIFOs could be implemented using messagepattern is seen at the input stream. The actions could be to
passing or shared memory; the single address space of tBenerate a synchronization signal, store data in a buffer, or
shared memory could have centralized or distributedcall aC function with the data saved in a buffer. There are
physical memory; the bus might have different widths,two major sections of thASIC description of anodel:
protocols and arbitration priorities, etc. Instead of buses a Grammar rulesused to describe protocols.
NoC based architecture, as proposed in [12], can be used to Constraints to the grammar rulessed to specify
imp|ement the communication architecture. architectural re_SOUI'CQS I”@FOS, SynChronization Signals,
In our design flow, from functional model througitM buses, memories0s (i.e., interface), etc.

to CTM, the functionality remains the same. It is only the The syntax of theMASIC grammar rule is shown in
protocol of data transaction that evolves from absttad Figure 2. We have added an optiotiatk_ name on top of

channels to bus protocols and component interfaces, likghe yacc-like grammar rule. Reading different streams at

(stream) [@clock_name] : [(condition)] patternl {action1}
| pattern2 {action2}

| reset {action-n}

has finished processing the old data. To synchronize them
properly, processor2 has to wait until processorl has
finished reading tokens from arcl (assuming processorl
has an input buffer), or until processorl has finished

executing procesgl twice (assuming processorl has no
input buffer). We shall show how such synchronization can
8e easily expressed using grammar rules.

Figure 2: General syntax of a grammar rule

different speeds symbolizes multiple clocks in a system an
allows modeling of multi-rate systems. The rule in the process
figure says: atream is read at the rate of the giveinck . in_FIFO in_But @ out_Buf out FIFO |
Next, it says, if a giverondition is met and a certain
pattern iS seen at the stream, then the associated
action(s) inside the curly braces would take place.

Figure 4: A process of a network

Let us consider the process shown in Figure 4 that reads
data fromin_FIFO and writes data teut_FIFO . It reads the
data_Rdy androom_Rdy synchronization signals from the
)) controller to know if there is data availableiinFiIFoO and

We reuse theC functions devel_o_ped at t_he functional it there is room available inout_FIFO , respectively.
level and add system level decisions using MSIC Agqyming that the process has an input and an output data
description language to build &TM. Constraints to the pytfer, a grammar rule with two alternatives is shown in
rules are used to declare the interface to the environmengigyre 5(a). The first alternative specifies: if data is ready
!:IFOS, ;ynchromzaﬂon S|_gnal_s, and tiefunctions. The ;47in FIFO then it would be copied to_Buf : read Rdy
invocation of each function is controlled by a grammar,yqiq be asserted so that another process can start writing
rule. The functions communicate over dedica@go to this FIFO; and a C function would execute onBuf
channels with atomic bulk transfer capability and timing iS gnq write result irout Buf . The second alternative says:

modeled only for majo.r _synchronizatio.n events. Severalynen there is room in thet FIFO |, theout Buf is copied
grammar rules read their input streams in parallel and havg, ..t FiFo: and the write Rdy signal is asserted to

an inherent end recursion. Thus the model represents thggicate that there is new data availablednFiFo .

concurrent non-terminating behavior of a system. The gigyre 5(b) is more interesting. In this case, we assume
concurrent rules are arbitrated by an abstract controllefy 5t the process shown in Figure 4 has neither input nor
which provides scheduling and synchronization of events. output data buffer. So, if it receivesdaa Rdy signal it

The abstract controller is built usinASIC description a4 ot start executing the C function. However, if it
and it maintains the order and rate of function invocation a$gceives bothdata Rdy and room Rdy signal, then it
determined by a schedule. As mentioned in Section 2, morgyacutes the function directly on the data in FIFO and
synchronization primitives are needed before a functionggyes the result isut FIFO . B
can be invoked using a schedule. Let us consider the —
exampleSDF network shown in Figure 3(a). Here process | “% 6" oo tectio bun:
pl reads one token from arcl, which has a delay of 2 unit; ol € o Bef, out_Buf); }

: : | ‘0%, ‘1" { put (out_Buf, out_FIFO);

and produces one token in arc2, which has no delay. write. Rdy <=°1" }
Corresponding values for the other processes and arcs ar| !~ - @
shown in the figure. Considering a run time of 1-unit for
procesepl andp2, and 3-units for procegs3, an optimal
schedule for th&DF network is shown in Figure 3(b). Here
procesepl andp2 are running on processorl, and process [
p3 is running parallelly on processor2. This schedule runs
well if the arcl has BIFOdepth of two.

Now, if processor2 does not have enough memory it The addition of such simple rules keeps the order and
would write directly to the outplrIFO, (i.e., arcl). Since rate of process execution as suggested by a schedule and
the size of arcl is bounded, this operation would overwriteyqqds the necessary synchronization to makexlin work
the FIFO and cause processorl to read new data before forrectly with different implementation restrictions. The

2D MASIC compiler reads theRTM and generates ®HDL

3.3 Rate True Modeling

(data_Rdy, room_Rdy) @clk:
‘17, ‘0" { null;
| ‘1, ‘1" { call c_fun2(in_FIFO, out_FIFO);
read_Rdy <=1
write_Rdy <=1"; }

(b)

Figure 5: Example grammar rules

1
@ 2 processor-1:| p1 | pl | p2
1

1
é 3 processor-2 : p3

(@ (b)
Figure 3: (a) An SDF network, (b) schedule for two
parallel processors

description, which imports th®SP functions in C and
performs a cosimulation using the Foreign Language
Interface(FLI) of theVHDL. System simulation at this level
only considers the computation delay. The computation
delay of the C functions on a target architecture can be
estimated easily when the run-time is data independent.

Even for the data dependent case, the computation time &nough to meet performance, then the initial mapping and
bounded in hard real time applications. The estimatedcheduling needs to be changed. This is indicated by the
computation time is annotated in tR&M description using dotted line in Figure 6. Next, using an example, we shall

wait statement. The delay due to communication isshow how the implementation architecture can be

unknown at this level. described with ease using our grammar based technique.

3.4 Cycle True Modeling 4. An illustrative example

. L 4.1 Functional model
In CTM, the dedicated communication channelRofM

are mapped to memories and shared buses, and the atomicCHere we are using the Linear Predictive CodibgC)
bulk transfers between the synchronization points of thescheme. It samples input values at a rate of 8 kHz. The
RTM are spread in time. TheTM does not alter the speech processing begins by buffering 160 input samples
execution semantics of thRTM because the points of that corresponds to a 20 ms frame of input data. Then it
synchronization are maintained. The design step to creategerforms the windowing operation on the samples and
CTM from anRTM involves the following tasks: generates another 160 data. Next, the autocorrelation
* Elaborating of the abstract communication channels into - fynction takes this result and computes 11 autocorrelation
the detailed signaling mechanism required to express the |35, which the.PC block reads to compute 10 coefficients.
bus protocol and th_e arbitration logic. If several functions Finally, the reflection coefficients are computed from the
are mapped on a single core, the channel betweenthe | b yalues. The outputs of this phase are four C functions

functions needs to be implemented using the that compute the windowingwif), autocorrelation cpr),
communication primitive offered by the operating system. LPC (pc) and reflectiondi) coefficients
« Describing the interface of the hardware blocks onto P ’

which the functions are mapped to. To ease reusi\of
blocks we create thBus Functional Model8FM) of
embedded cores and interface descriptiol dfiocks.
MASIC descriptions are used to build these models and
they are saved in a library from where they are

4.2 Rate True Model

We decide to implement our folSP functions on four
MIPS32-4Kprocessor cores. For the application at hand, we
instantiated. useSDF network _scheduling technique, which also gives us
. Adapting the component interfaces to the bus protocol. weh€FIFOdepth. Since the chosen processor has enough data
describe the glue logic between the pre-designed blocks ¢ache, we do not need the kind of synchronization shown
and the bus architecture. The adapters can be saved in thdé" Figure 5. However, few synchronization primitives are

library and reused. Currently the glue logic is written needed to handle the input data buffering and startup
manually. However, this task can be automated, for sequence. The interface specification of the system requires
example, using the approach presented in [20]. sharing thein_port for downloading the windowing

Communication architectures add significant amount Ofcoefficients at startup, and then starting regular processing

delay due to synchronization overhead [21]. Simulation oiOf data. Hence th? _startup sequence would look like: rgset,
the CTM reveals these effects. If the performance iSdownloadlng coefficients, and then regu_lar data processing.
unsatisfactory then only the implementation level decisions fWe _add thebsgldsystem Iefverll decisions andhreusg the
need to be changed. This requires the design step from. unctions to build arRTM of the system, as shown in
RTM to CTM to be performed. Thus the formulation of the '9uré 7. The Cfunctions, interface to the environment,
RTM between functional model ar@T™™ breaks the top- and theFIFO channels among the functions are declared
down iteration of the conventional design flow. The USING grammar constraints. The grammar rules are used to

resulting design flow is shown in Figure 6. However, if describe the order_ Of_ process execution along with
changing the implementation level decisions are nothecessary synchronizatioRASIC description of abstract

_ _ RTM-like model has been shown elaborately in [6]. Though
this model captures the major synchronization events, it is
MASIC C

SIC still a fairly abstract model, as the implementation
description dependent complex protocols of data transactions have not
[RTM (simulation model)]

been included yet. As a result the simulationRaiM is
much faster than that of tigIM.

coefBuf dataBuf winBuf corBuf IpcBuf
| implementation level decision | ——
MASIC Compiler Co%ﬁgfem
performance i f coef_out
. i cor
—|baCk annotation CTM (synthesis model)] in_port

Figure 6: The complete design flow Figure 7: Rate true model of the LPC codec

4.3 Cycle True Model grammar description involved in the slave module that
includes a memory and a controller. The memory behavior
We decide to realize thRTM using theAMBA on-chip s described as: if the conditiasis true, then a' atrRws
architecture. The functional blocks would become the bugauses a write and@ atRwsauses a read. The next line
masters and the buffer instances would be mapped to tifetches the address from the address-phase of the transfer.
slave units. The abstract channels of tR&M are It says to read the addre@$ADDR) at the arrival of the
elaborated according to theBA AHB specification [22], HCLK if the HSEL signal is high, which is the address-
and the interfaces on theSP blocks are elaborated to the phase. By default, the clock is implemented as rising edge
BFM of the MIPS32-4Kcore [23]. A simplified view of the triggered and the reset as an asynchronous reset.
architecture is shown below. The data and control lines are Next, the slave controller reads the aggregate control
shown in solid and thin arrows, respectively. The requestvord, separated by commas. If the first bit pattern is seen,
and grant lines between masters and arbiter are not drawnthen it asserts the chip select signal and de-assertBe

so that theRAM outputs (i.e. a read operation) a single
oo N word. The second pattern causes a write op_gration. The
gl g gfraoore e N third pattern initiates a burst read of unspecified length.
8 ¢ |z |nwoatao —— e [T B The first transfer of a burst usesrANS="10", followed by
lER | 9/:'\ \@— gl £ |% *11" for the remaining transfer and terminates withoa .

‘CTRL . FWDATA » This whole information is described as follows: if a pattern
el - deeL 1 . of (1,0, 10", "001") is seen, the first data of the
IR e 2 s burst is supplied and then it looks for a pattern labeled as
g| 5 |3|HwoatAL ROATA (: HRDATA 0 %« 5 S branchl . The branchl , as described below, is repeated

¢ " " FOATAL until there is a'11* at theHTRANSInput; the other inputs
. . are don't cares, represented by 'thes. Finally, branch1l
. . terminates when@o" is seen aliTRANS

Figure 8: Simplified view of the AMBA architecture Similarly, the rest of the architecture and the glue logic

The AMBA AHB uses separate read and write busedor theMIPS cores are described. We avoid the state based

operating through a centrally multiplexed architecture. Todescription and explicitly describe the transactions, from
gain performance, it works in a pipelined fashion where thevhere the compiler generates the controllerHL .
address-phase of a transfer proceeds simultaneously wit—————"""—~""""
the data-phase of the previous transfer. In this section wi (RWS>|(C%> ID{A%M&AE_DQ)EDJ'DVVD%T}A}
shall show how these complex protocols can be describe ;
USing our grammar based teChnique' -- fetching the HADDR at the rising edge of the HCLK
The control, address and data buses are represented | - of the address cycle
internal signals using grammar constraints. We connect th (HSEL) @HCLIC: 1 { ADDR <= HADDR)

read and write data buses to the read and write data ports - Protocol of AMBA Slave Controller
the coreBFM. The address and control information of the (HS,E& oo { s BRST) @HCLK
master, which wins the arbitration, are propagated to thq RREADY <01}
slaves through the address bH#DDR. The address L. "0%. "000 (1SS T 1
decoder, shown in Figure 8, selects a slave by 11, 0,107, 001 (e e
combinational decode of the higher bits of the address bu RREADY <01}
HADDR. Figure 9 shows the grammar rule for the addresg branchl
decoder. The clock information is absent in the grammal ', 12,710% 001 £CS 5= 1
rule, which symbolizes a combinational behavior, and the| brancha HREADY <=1}
decoding logic is described using the pattern-action pairs. e

Depending on the slave select signal, the appropriatf ' fws o
slave unit is selected and the control sigb@RL tells the ; HREADY <1073
type of transaction that needs to be performed. Thg branchi ;- = "1, {cs <=1
aggregate signa@TRL is composed of severaHB signals FREADY << 1)
like HWRITE, HTRANS, HBURST, etc. Figure 10 shows the branchl

-- grammar rule for the address decoder l

(HADDR_HIGH_BIT) : "00" { HSELv <= "0001"; } branch2 :*,*,"11", ' {CS <=1}

5 ey o) e

| "11" { HSELv <= "1000"; }

|, 00",

Figure 9: MASIC description of address decoder Figure 10: MASIC description of the slave

7.
[1

The experiments are performed using two examples: the
LPC codec described in the previous section anéaa
demodulator. The&eA demodulator has tw&IR filters of [2]
length 31 and 69, one integrator and one differentiator. The
DSP functions are developed in C during the functional
modeling phase, and reused to buildramM, and then an [3]
AMBA based CTM.The BFMs of MIPS32-4Kcores are used [4]
as masters. Table 1 compares the code size dfiAsC
description of th&@TM andCTM, and theVHDL description
of the CTM. The increase in productivity in term of the
design-hour could be guessed from the bulkigbL code
and the number of states. In tiMASIC approach, the
system transactions are expressed in abstract grammd?!
from where the/HDL is generated by tHdASIC compiler.

Table 2 shows the simulation time of these designs for
1 sec of input data. ThRTM simulates much faster than [7]
the CTM, as theRTM does not use any intricate signaling
protocol. Such speedups are highly beneficial considering
the iterative nature of the design flow. (8]

The VHDL description of theCTM of the LPC designis
synthesized using the Synopsys Design Compiler. The celf!
area was 3784 gates using thie 10kas target technology.
This area does not include the cores or the memory cellgio)
Those were used as black boxes during synthesis.

5. Results

(5]

Table-1: Code size and number of states

Word count [11]
LPC A
MASIC description of RTM 305 276
MASIC description of CTM 2998 2437 [12]
Cycle true VHDL description 15865 11952
Number of states in VHDL model 176 142

Table-2: Simulation time [13]

Simulation time

Generated VHDL

LPC

: 4 [14]
RTM 13 min 47.7 sec 8 min 36.1 sec
CTM 51 min 41.2 sec 37 min 23.5 sec

[15]
6. Conclusion

We have presented a methodology that breaks the topt®!
down iteration of the conventional design flow. It takes less
time to create and simulate tiRTM, which is highly [17]
advantageous in an iterative design flow. Though the work
is described in the context of tMASIC methodology, any
DSP system design methodology would benefit from the
systematic formulation of the intermediate abstraction level19]
of the RTM. In addition, we have enhanced tMASIC
language to be able to describe the details ofThe.

So far only SDF examples have been considered.
However, the methodology is not restrictedIDFs. To [21]
model a process network in general a dynamic scheduler
needs to be built. Since tlRTM is meant for efficient [22]
simulation, we are considering the compilation of thep,3
MASIC description oRTM to SystemC, instead ®HDL.

(20]

References

B. Kienhuis, Ed Deprettere, K. Vissers and P. van der Wolf, "An
Approach for Quantitative Analysis of Application Specific
Dataflow Architectures,” ifProc. IEEE Conf. Application Specific
Systems, Architectures and Processpps,338-349, Jul. 1997.

P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei and K. Vissers, "An
MPEG-2 Decoder Case Styde as a Driver for a System Level Design
Methodology," inProc. CODESpp. 33-37, May 1999.

E.A. de Kock et al., "YAPI: Application Modeling for Signal
Processing Application," iRroc. DAC.,pp. 402-405, Jun. 2000.

M. Sgroi, L. Lavagno and A. Sangiovanni-Vincentelli, "Formal
Models for Embedded Systems DesigEEE Design & Test of
Comp, vol. 17, no. 2, pp. 14-27, Jun. 2000.

K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey and A.
Sangiovanni-Vincentelli, "System-Level Design: Orthogonalization
of Concerns and Platform based DesigBEE TCAD vol. 19, pp.
1523-1543, Dec. 2000.

A. Hemani, Abhijit K. Deb, J. Oberg, A. Postula, D. Lindgvist and
B. Fjellborg, "System Level Virtual Prototyping of DSP SOCs Using
Grammar Based ApproactKluwer Design Automation for
Embedded Systemsl. 5, no. 3, pp. 295-311, Aug. 2000.

A. Hemani, A. Postula, Abhijit K. Deb, D. Lindgvist and B.
Fjellborg, "A Divide and Conquer Approach to System Level
Verification of DSP ASICs," ifProc. IEEE Int. High Level Design
Validation and Testpp. 87-92, San Diego, California, Nov. 1999.
G. Kahn, "The Semantics of a Simple Language for Parallel
Programming," irProc. IFIP Congress '74op. 471-474, Aug. 1974.
E.A Lee and D.G. Messerschmitt, "Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing,"
IEEE Trans. Compyol.C-36, no. 1, pp. 24-35, Jan. 1987.

J.T. Buck and E.A. Lee, "Scheduling Dynamic Dataflow Graphs
with Bounded Memory Using the Token Flow Model,'Hroc. Int.
Conf. Acoustics Speech & Signal Processimg,429-432, vol. 1,

Apr. 1993.

T. Basten and J. Hoogerbrugge, "Efficient Execution of Process
Networks,” inProc. Communicating Process Architectunes, 1-

14, 10S Press, Amsterdam, 2001.

S. Kumar et al., "A Network on Chip Architecture and Design
Methodology," inProc. IEEE Comp. Society Annual Symposium on
VLS| pp. 105-112, Apr. 2002.

A. Seawright, F. Brewer, "Clairvoyant: A Synthesis System for
Production-based SpecificatiodEEE TVLS] vol. 2 no. 2, pp. 172-
185, June 1994.

J. Oberg, A. Kumar, and A. Hemani, "Grammar-Based hardware
synthesis from port size independent specificatidBE5E TVLS)

vol. 8, no. 2, pp. 184-194, April 2000.

R. Siegmund and D. Mdiller, "Automatic Synthesis of
Communication Controller Hardware from Protocol Specifications,"
IEEE Design & Test of Comprol. 19 no. 4, pp. 84-95, Jul-Aug.
2002.

A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe,
J. Buck, "A system for compiling and debugging structured data
processing controllers," iAroc. Euro DAC., pp. 86-91, Sept. 1996.
T. Grotker et al.System Design with SystepdQuwer Academic
Publishers, Norwell, MA, 2002.

] R. Domer, D.D. Gajski and A. Gerstlauer, "SpecC Methodology for

High-Level Modeling," inProc. 9" IEEE/DATC Electronic Design
Processes Workshpplonterey, CA, Apr. 2002.

A. V. Aho, R. Sethi and J. D. Ullmag@ompilers: Principles,
Techniques, and Togladdison-Wesley, MA, 1986.

R. Passerone, J.A. Rowson and A. Sangiovanni-Vincentelli,
"Automatic Synthesis of Interfaces between Incompatible
Protocols," inProc. DAC, pp. 8-13, Jun. 1998.

K. Lahiri, A. Raghunathan and S. Dey, "System-Level Performance
Analysis for Designing On-Chip Communication Architectures,"”
IEEE TCAD vol. 20, no. 6, pp. 768-783, Jun. 2001.

AMBA on-chip bus specification [Online], http://www.arm.com
MIPS32 4K Processor Core Family Integrator's Manual, [Online],
http://www.mips.com

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

