
System Design for DSP Applications Using the MASIC Methodology

Abhijit K. Deb, Axel Jantsch, Johnny Öberg
Department of Microelectronics and Information Technology

Royal Institute of Technology, 164 40 Kista, Sweden
Email: { abhijit | axel | johnny } @ imit.kth.se

Abstract
Expensive top-down iterations are often required in the

design cycle of complex DSP systems. In this paper, we
introduce two levels of abstraction in the design flow by
systematically categorizing the architectural decisions. As
a result, the top-down iteration loop is broken. We also
present a technique to capture and inject the architectural
decisions such that the system models can be created and
simulated efficiently. The concepts are illustrated by a
realistic speech processing example, which is implemented
using the AMBA on-chip architecture. Our methodology
offers a smooth path from the functional modeling phase to
the implementation level, facilitates the reuse of HW and
SW components, and enjoys existing tool support at the
backend.

1. Introduction

Process networks serve as the excellent basis for
building functional models of DSP applications. They are,
however, awkward for specifying the control logic needed
to build complex systems, which often include SW
components to achieve flexibility and HW components for
performance critical parts. To address this problem, the
Y-chart based DSP system design methodology employs a
heterogeneous approach [1][2][3]. Other contemporary
methodologies like the function architecture codesign [4],
and the communication based design [5] tackle design
challenges by separating functionality from architecture.
The ideas in [5] are commercialized in the Cadence Virtual
Component Co-design (VCC) tool. In general, all these
methodologies employ the design flow of Figure 1(a).

In such a design flow, a system designer typically
studies the functionality, takes the system specification,
makes few initial calculations, and proposes an architecture
to implement the functionality. Then the system
performance is evaluated, for instance by simulation [1][2],
and architectural decisions are altered to meet performance.
However, the top-down iteration as shown in Figure 1(a)
takes a lot of time, which hinders the design productivity.

To gain design productivity, our first objective is to
break this top-down iteration into two smaller loops, and
the second objective is to adopt a description formalism to
capture and inject the architectural decisions efficiently.

In this paper, we present a systematic approach to
classify the architectural decisions in two categories:
system level decisions and implementation level decisions.
The basis of this categorization is discussed in Section 2.
We add system level decisions to a functional model to
create an abstract intermediate model, called rate true
model (RTM). Next, implementation level decisions are
added to the RTM to build a cycle true model (CTM) of the
transactions of the implementation architecture. Figure 1(b)
shows that the formulation of the RTM between the
functional model and the CTM breaks the top-down
iteration and achieves the first objective.

The DSP system design methodology MASIC, short for
Maths to ASIC, provides an elegant grammar based
language to build abstract RTM-like system models [6].
The simulation and analysis technique used in MASIC is
presented separately in [7]. To achieve our second
objective, we have enhanced the MASIC language to be
able to describe the architectural details of CTM.

The contribution of this paper is the improvement of the
conventional design flow, which involves top-down
iteration. Additionally, the grammar based language used
in MASIC has been enhanced. Next, in Section 2 we present
the background and basis of the systematic categorization
of the architectural decisions. Our methodology is
described in Section 3, followed by an illustrative example
in Section 4. Section 5 presents the experimental results,
and finally, we conclude this work in Section 6.

2. Background and Motivation

Functional modeling of signal processing applications
usually begins using Kahn Process Network (KPN) [8] or
different forms of dataflow networks like SDF [9], DDF
[10], etc. Processes in a KPN are connected through infinite

Figure 1: (a) Conventional system design flow
(b) proposed design flow

(a)
performance

analysis

architectural
decision

functionality

mapping RTM

implementation level decision

mapping

system level decision

CTM

mapping

(b)

functionality

1530-1591/04 $20.00 (c) 2004 IEEE

length point-to-point FIFOs. Graphically, processes are
drawn as nodes and FIFOs as arcs. Processes read from the
input FIFO when data is available (i.e., blocking read),
perform computation in their private memory, manipulate
their own state space, and write results in an output FIFO
(non-blocking write). An important issue regarding an
optimum implementation of these networks is to find a
schedule to determine which process executes on which
resource at which point in time. There exists an efficient
technique of scheduling SDF networks for a sequential or
parallel implementation [9]. Their approach also solves
another practical problem, which is to find the sizes of the
FIFOs, using a balance equation for each arc between the
processes of a network [10]. Though, finding the FIFO size
is not possible for the general case of KPN, there exists
scheduling technique to find a reasonable upper bound
using simulations with varying input data set [11].

The order and rate of process execution suggested by a
schedule is not enough to build an RTM, We need two
types of synchronization primitives. Firstly: scheduling
assumes the ideal situation that processes have their local
memories. Practical limitations, as would be discussed in
Section 3.3, call for more synchronization before executing
a process according to a schedule. Secondly: scheduling
techniques, for example in [9], do not deal with the system
interface to the environment and buffering of input data.
Hence, the assumption of being able to schedule an input
node at any time has to be synchronized with the
availability of valid data at input. These synchronization
primitives along with the schedule, and the finite FIFO size
as required by the schedule is what we call the system level
decisions. This is the class of decisions where the designer
has less freedom, as these decisions are dictated by the
system interface, available resources, and a schedule for an
optimum implementation of the processes on the resources.
If performance requirements are not met then these
decisions are changed. For example, the number and type
of resources can be increased to add computational power.
Again, as shown in [11], FIFO sizes can be increased to
obtain a better schedule with higher performance.

The implementation level decisions are the class of
decisions where the designer has the freedom to explore the
design space. There is a wide design space related to the
implementation of the communication architecture. For
example, the FIFOs could be implemented using message
passing or shared memory; the single address space of the
shared memory could have centralized or distributed
physical memory; the bus might have different widths,
protocols and arbitration priorities, etc. Instead of buses a
NoC based architecture, as proposed in [12], can be used to
implement the communication architecture.

In our design flow, from functional model through RTM
to CTM, the functionality remains the same. It is only the
protocol of data transaction that evolves from abstract FIFO
channels to bus protocols and component interfaces, like

the bus functional models of embedded cores, etc.
Therefore, to increase design productivity, we need an
abstract way to describe the protocols.

There are different ways of describing a communication
protocol. One way is to specify a state machine that
implements the protocol using an HDL description. This is
a low level approach as the designer has to describe the
system using a finite state space and often needs to deal
with the FSMs at the RT level.

A more abstract way is to specify the grammar of the
protocol and synthesize a controller from it. There exist
academic [13][14][15] and commercial [16] grammar
based tools for protocol description. Though these
approaches do not address the problem of system design,
they demonstrate two clear advantages- firstly: the ease of
protocol description using grammar, and secondly: the
smooth path to HW synthesis from a grammar description.
Inspired by these advantages, we have adopted the
grammar based style in our methodology.

Abstract communication modeling has become a part of
different system modeling languages like, SystemC [17]
and SpecC [18]. However, we argue that grammars provide
a more intuitive and natural way of describing protocols
than the C++ or C language.

3. The MASIC Methodology
3.1 Functional Modeling

Modeling in MASIC begins at the functional level where
individual DSP functions are developed in C or MATLAB
like environment. These functions are connected by FIFO
channels to constitute a network. At this stage, design
issues are primarily algorithmic and verification is
concerned with making sure that the specified signal
processing figures of merits are met. The output of this
level is a set of DSP functions in C without side effects.

3.2 The MASIC Description Language

Grammars are primarily used for pattern matching, and
used in developing compilers for programming languages
using tools like YACC [19]. We use grammars to recognize
a particular signaling pattern, which represents a signaling
protocol, and to produce the desired action when the
pattern is seen at the input stream. The actions could be to
generate a synchronization signal, store data in a buffer, or
call a C function with the data saved in a buffer. There are
two major sections of the MASIC description of a model:
• Grammar rules: used to describe protocols.
• Constraints to the grammar rules: used to specify

architectural resources like FIFOs, synchronization signals,
buses, memories, IOs (i.e., interface), etc.

The syntax of the MASIC grammar rule is shown in
Figure 2. We have added an optional clock_name on top of
the YACC-like grammar rule. Reading different streams at

different speeds symbolizes multiple clocks in a system and
allows modeling of multi-rate systems. The rule in the
figure says: a stream is read at the rate of the given clock .
Next, it says, if a given condition is met and a certain
pattern is seen at the stream, then the associated
action(s) inside the curly braces would take place.

3.3 Rate True Modeling

We reuse the C functions developed at the functional
level and add system level decisions using the MASIC
description language to build an RTM. Constraints to the
rules are used to declare the interface to the environment,
FIFOs, synchronization signals, and the C functions. The
invocation of each function is controlled by a grammar
rule. The functions communicate over dedicated FIFO
channels with atomic bulk transfer capability and timing is
modeled only for major synchronization events. Several
grammar rules read their input streams in parallel and have
an inherent end recursion. Thus the model represents the
concurrent non-terminating behavior of a system. The
concurrent rules are arbitrated by an abstract controller,
which provides scheduling and synchronization of events.

The abstract controller is built using MASIC description
and it maintains the order and rate of function invocation as
determined by a schedule. As mentioned in Section 2, more
synchronization primitives are needed before a function
can be invoked using a schedule. Let us consider the
example SDF network shown in Figure 3(a). Here process
p1 reads one token from arc1, which has a delay of 2 unit;
and produces one token in arc2, which has no delay.
Corresponding values for the other processes and arcs are
shown in the figure. Considering a run time of 1-unit for
process p1 and p2, and 3-units for process p3, an optimal
schedule for the SDF network is shown in Figure 3(b). Here
process p1 and p2 are running on processor1, and process
p3 is running parallelly on processor2. This schedule runs
well if the arc1 has a FIFO depth of two.

Now, if processor2 does not have enough memory it
would write directly to the output FIFO, (i.e., arc1). Since
the size of arc1 is bounded, this operation would overwrite
the FIFO and cause processor1 to read new data before it

has finished processing the old data. To synchronize them
properly, processor2 has to wait until processor1 has
finished reading tokens from arc1 (assuming processor1
has an input buffer), or until processor1 has finished
executing process p1 twice (assuming processor1 has no
input buffer). We shall show how such synchronization can
be easily expressed using grammar rules.

Let us consider the process shown in Figure 4 that reads
data from in_FIFO and writes data to out_FIFO . It reads the
data_Rdy and room_Rdy synchronization signals from the
controller to know if there is data available in in_FIFO and
if there is room available in out_FIFO , respectively.
Assuming that the process has an input and an output data
buffer, a grammar rule with two alternatives is shown in
Figure 5(a). The first alternative specifies: if data is ready
in in_FIFO then it would be copied to in_Buf ; read_Rdy

would be asserted so that another process can start writing
to this FIFO; and a C function would execute on in_Buf

and write result in out_Buf . The second alternative says:
when there is room in the out_FIFO , the out_Buf is copied
to out_FIFO; and the write_Rdy signal is asserted to
indicate that there is new data available in out_FIFO .

Figure 5(b) is more interesting. In this case, we assume
that the process shown in Figure 4 has neither input nor
output data buffer. So, if it receives a data_Rdy signal it
can not start executing the C function. However, if it
receives both data_Rdy and room_Rdy signal, then it
executes the C function directly on the data in in_FIFO and
saves the result in out_FIFO .

The addition of such simple rules keeps the order and
rate of process execution as suggested by a schedule and
adds the necessary synchronization to make the RTM work
correctly with different implementation restrictions. The
MASIC compiler reads the RTM and generates a VHDL
description, which imports the DSP functions in C and
performs a cosimulation using the Foreign Language
Interface (FLI) of the VHDL. System simulation at this level
only considers the computation delay. The computation
delay of the C functions on a target architecture can be
estimated easily when the run-time is data independent.

Figure 3: (a) An SDF network, (b) schedule for two
parallel processors

(b)

p1 p1 p2

p3processor-2 :

processor-1 :

(a) D

2D

1

1

2

1

21

p3p1

p2

1

2 3

(data_Rdy, room_Rdy) @clk:
 ‘1’, ‘0’ { get(in_FIFO, in_Buf);
 read_Rdy <= ‘1’;
 call c_fun1(in_Buf, out_Buf); }
 | ‘0’, ‘1’ { put (out_Buf, out_FIFO);
 write_Rdy <= ‘1’; }
 |

(a)

(data_Rdy, room_Rdy) @clk:
 ‘1’, ‘0’ { null; }
 | ‘1’, ‘1’ { call c_fun2(in_FIFO, out_FIFO);
 read_Rdy <= ‘1’;
 write_Rdy <= ‘1’; }
 |

(b)

Figure 5: Example grammar rules

(stream) [@clock_name] : [(condition)] pattern1 {action1}

 | pattern2 {action2}

 |

 | reset {action-n}

 ;

Figure 2: General syntax of a grammar rule

Figure 4: A process of a network

in_Buf
exe

process

out_FIFOout_Bufin_FIFO

Even for the data dependent case, the computation time is
bounded in hard real time applications. The estimated
computation time is annotated in the RTM description using
wait statement. The delay due to communication is
unknown at this level.

3.4 Cycle True Modeling

In CTM, the dedicated communication channels of RTM
are mapped to memories and shared buses, and the atomic
bulk transfers between the synchronization points of the
RTM are spread in time. The CTM does not alter the
execution semantics of the RTM because the points of
synchronization are maintained. The design step to create a
CTM from an RTM involves the following tasks:
• Elaborating of the abstract communication channels into

the detailed signaling mechanism required to express the
bus protocol and the arbitration logic. If several functions
are mapped on a single core, the channel between the
functions needs to be implemented using the
communication primitive offered by the operating system.

• Describing the interface of the hardware blocks onto
which the functions are mapped to. To ease reuse of HW
blocks we create the Bus Functional Models (BFM) of
embedded cores and interface description of IP blocks.
MASIC descriptions are used to build these models and
they are saved in a library from where they are
instantiated.

• Adapting the component interfaces to the bus protocol. We
describe the glue logic between the pre-designed blocks
and the bus architecture. The adapters can be saved in the
library and reused. Currently the glue logic is written
manually. However, this task can be automated, for
example, using the approach presented in [20].

Communication architectures add significant amount of
delay due to synchronization overhead [21]. Simulation of
the CTM reveals these effects. If the performance is
unsatisfactory then only the implementation level decisions
need to be changed. This requires the design step from
RTM to CTM to be performed. Thus the formulation of the
RTM between functional model and CTM breaks the top-
down iteration of the conventional design flow. The
resulting design flow is shown in Figure 6. However, if
changing the implementation level decisions are not

enough to meet performance, then the initial mapping and
scheduling needs to be changed. This is indicated by the
dotted line in Figure 6. Next, using an example, we shall
show how the implementation architecture can be
described with ease using our grammar based technique.

4. An illustrative example
4.1 Functional model

Here we are using the Linear Predictive Coding (LPC)
scheme. It samples input values at a rate of 8 kHz. The
speech processing begins by buffering 160 input samples
that corresponds to a 20 ms frame of input data. Then it
performs the windowing operation on the samples and
generates another 160 data. Next, the autocorrelation
function takes this result and computes 11 autocorrelation
lags, which the LPC block reads to compute 10 coefficients.
Finally, the reflection coefficients are computed from the
LPC values. The outputs of this phase are four C functions
that compute the windowing (win), autocorrelation (cor),
LPC (lpc) and reflection (rfl) coefficients.

4.2 Rate True Model

We decide to implement our four DSP functions on four
MIPS32-4K processor cores. For the application at hand, we
use SDF network scheduling technique, which also gives us
the FIFO depth. Since the chosen processor has enough data
cache, we do not need the kind of synchronization shown
in Figure 5. However, few synchronization primitives are
needed to handle the input data buffering and startup
sequence. The interface specification of the system requires
sharing the in_port for downloading the windowing
coefficients at startup, and then starting regular processing
of data. Hence the startup sequence would look like: reset,
downloading coefficients, and then regular data processing.

We add these system level decisions and reuse the
C functions to build an RTM of the system, as shown in
Figure 7. The C functions, interface to the environment,
and the FIFO channels among the functions are declared
using grammar constraints. The grammar rules are used to
describe the order of process execution along with
necessary synchronization. MASIC description of abstract
RTM-like model has been shown elaborately in [6]. Though
this model captures the major synchronization events, it is
still a fairly abstract model, as the implementation
dependent complex protocols of data transactions have not
been included yet. As a result the simulation of RTM is
much faster than that of the CTM.

Figure 6: The complete design flow

component
library

MASIC Compiler
performance

back-annotation CTM (synthesis model)

MASIC
description

C
functions

MASIC Compiler

RTM (simulation model)

functionalitysystem level decision

implementation level decision

Figure 7: Rate true model of the LPC codec

lpc
in_port

dataBufcoefBuf winBuf corBuf lpcBuf

coef_out
rflcorwin

4.3 Cycle True Model

We decide to realize the RTM using the AMBA on-chip
architecture. The functional blocks would become the bus
masters and the buffer instances would be mapped to the
slave units. The abstract channels of the RTM are
elaborated according to the AMBA AHB specification [22],
and the interfaces on the DSP blocks are elaborated to the
BFM of the MIPS32-4K core [23]. A simplified view of the
architecture is shown below. The data and control lines are
shown in solid and thin arrows, respectively. The request
and grant lines between masters and arbiter are not drawn.

The AMBA AHB uses separate read and write buses
operating through a centrally multiplexed architecture. To
gain performance, it works in a pipelined fashion where the
address-phase of a transfer proceeds simultaneously with
the data-phase of the previous transfer. In this section we
shall show how these complex protocols can be described
using our grammar based technique.

The control, address and data buses are represented as
internal signals using grammar constraints. We connect the
read and write data buses to the read and write data ports of
the core BFM. The address and control information of the
master, which wins the arbitration, are propagated to the
slaves through the address bus HADDR. The address
decoder, shown in Figure 8, selects a slave by
combinational decode of the higher bits of the address bus
HADDR. Figure 9 shows the grammar rule for the address
decoder. The clock information is absent in the grammar
rule, which symbolizes a combinational behavior, and the
decoding logic is described using the pattern-action pairs.

Depending on the slave select signal, the appropriate
slave unit is selected and the control signal CTRL tells the
type of transaction that needs to be performed. The
aggregate signal CTRL is composed of several AHB signals
like HWRITE, HTRANS, HBURST, etc. Figure 10 shows the

grammar description involved in the slave module that
includes a memory and a controller. The memory behavior
is described as: if the condition CS is true, then a '1' at RWS

causes a write and a '0' at RWS causes a read. The next line
fetches the address from the address-phase of the transfer.
It says to read the address (HADDR) at the arrival of the
HCLK if the HSEL signal is high, which is the address-
phase. By default, the clock is implemented as rising edge
triggered and the reset as an asynchronous reset.

Next, the slave controller reads the aggregate control
word, separated by commas. If the first bit pattern is seen,
then it asserts the chip select signal and de-asserts the RWS
so that the RAM outputs (i.e. a read operation) a single
word. The second pattern causes a write operation. The
third pattern initiates a burst read of unspecified length.
The first transfer of a burst uses HTRANS="10", followed by
"11" for the remaining transfer and terminates with a "00" .
This whole information is described as follows: if a pattern
of ('1', '0', "10", "001") is seen, the first data of the
burst is supplied and then it looks for a pattern labeled as
branch1 . The branch1 , as described below, is repeated
until there is a "11" at the HTRANS input; the other inputs
are don't cares, represented by the '-' s. Finally, branch1

terminates when a "00" is seen at HTRANS.
Similarly, the rest of the architecture and the glue logic

for the MIPS cores are described. We avoid the state based
description and explicitly describe the transactions, from
where the compiler generates the controller in VHDL.

-- the memory block of slave_0
(RWS) : (CS) '1' { MEM(ADDR) <= HWDATA; }
 | '0' { HRDATA_0 <= MEM(ADDR); }
 ;

-- fetching the HADDR at the rising edge of the HCLK
-- of the address cycle
(HSEL) @HCLK : '1' { ADDR <= HADDR };

-- Protocol of AMBA Slave Controller
(HSEL, HWRITE, HTRANS, HBURST) @HCLK
 : '1', '0', "10", "000" { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 | '1', '1', "10", "000" { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 | '1', '0', "10", "001" { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 branch1

 | '1', '1', "10", "001" { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 branch2

 | reset { CS <= '0';
 RWS <= '0';
 HREADY <= '0'; }
 ;

branch1 : '-', '-', "11", '-' { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 branch1

 | '-', '-', "00", '-'
 ;

branch2 : '-', '-', "11", '-' { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 branch2

 | '-', '-', "00", '-'
 ;

Figure 10: MASIC description of the slave

-- grammar rule for the address decoder

(HADDR_HIGH_BIT) : "00" { HSELv <= "0001"; }
 | "01" { HSELv <= "0010"; }
 | "10" { HSELv <= "0100"; }
 | "11" { HSELv <= "1000"; }
 ;

Figure 9: MASIC description of address decoder

arbiter

address
decoder

HADDR_0
CTRL

HADDR

CTRL_1

CTRL_0

HADDR_1

HWDATA_0

HRDATA_0

HSEL_1

HSEL_0

HRDATA

HWDATA

HWDATA_1

HRDATA_1

Figure 8: Simplified view of the AMBA architecture

sl
av

e#
0

co
nt

ro
lle

r

m
em

or
y

sl
av

e#
1

co
nt

ro
lle

r

m
em

or
y

m
as

te
r#

0

gl
ue

 lo
gi

c

M
IP

S
 c

or
e

m
as

te
r#

1

gl
ue

 lo
gi

c

M
IP

S
 c

or
e

5. Results

The experiments are performed using two examples: the
LPC codec described in the previous section and a Σ∆
demodulator. The Σ∆ demodulator has two FIR filters of
length 31 and 69, one integrator and one differentiator. The
DSP functions are developed in C during the functional
modeling phase, and reused to build an RTM, and then an
AMBA based CTM. The BFMs of MIPS32-4K cores are used
as masters. Table 1 compares the code size of the MASIC
description of the RTM and CTM, and the VHDL description
of the CTM. The increase in productivity in term of the
design-hour could be guessed from the bulk of VHDL code
and the number of states. In the MASIC approach, the
system transactions are expressed in abstract grammar,
from where the VHDL is generated by the MASIC compiler.

Table 2 shows the simulation time of these designs for
1 sec of input data. The RTM simulates much faster than
the CTM, as the RTM does not use any intricate signaling
protocol. Such speedups are highly beneficial considering
the iterative nature of the design flow.

The VHDL description of the CTM of the LPC design is
synthesized using the Synopsys Design Compiler. The cell
area was 3784 gates using the lsi_10k as target technology.
This area does not include the cores or the memory cells.
Those were used as black boxes during synthesis.

Table-1: Code size and number of states
Word count

LPC Σ∆
MASIC description of RTM 305 276
MASIC description of CTM 2998 2437
Cycle true VHDL description 15865 11952

Number of states in VHDL model 176 142

Table-2: Simulation time
Simulation time

Generated VHDL
LPC Σ∆

RTM 13 min 47.7 sec 8 min 36.1 sec
CTM 51 min 41.2 sec 37 min 23.5 sec

6. Conclusion

We have presented a methodology that breaks the top-
down iteration of the conventional design flow. It takes less
time to create and simulate the RTM, which is highly
advantageous in an iterative design flow. Though the work
is described in the context of the MASIC methodology, any
DSP system design methodology would benefit from the
systematic formulation of the intermediate abstraction level
of the RTM. In addition, we have enhanced the MASIC
language to be able to describe the details of the CTM.

So far only SDF examples have been considered.
However, the methodology is not restricted to SDFs. To
model a process network in general a dynamic scheduler
needs to be built. Since the RTM is meant for efficient
simulation, we are considering the compilation of the
MASIC description of RTM to SystemC, instead of VHDL.

7. References
[1] B. Kienhuis, Ed Deprettere, K. Vissers and P. van der Wolf, "An

Approach for Quantitative Analysis of Application Specific
Dataflow Architectures," in Proc. IEEE Conf. Application Specific
Systems, Architectures and Processors, pp. 338-349, Jul. 1997.

[2] P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei and K. Vissers, "An
MPEG-2 Decoder Case Styde as a Driver for a System Level Design
Methodology," in Proc. CODES, pp. 33-37, May 1999.

[3] E.A. de Kock et al., "YAPI: Application Modeling for Signal
Processing Application," in Proc. DAC., pp. 402-405, Jun. 2000.

[4] M. Sgroi, L. Lavagno and A. Sangiovanni-Vincentelli, "Formal
Models for Embedded Systems Design," IEEE Design & Test of
Comp., vol. 17, no. 2, pp. 14-27, Jun. 2000.

[5] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey and A.
Sangiovanni-Vincentelli, "System-Level Design: Orthogonalization
of Concerns and Platform based Design," IEEE TCAD, vol. 19, pp.
1523-1543, Dec. 2000.

[6] A. Hemani, Abhijit K. Deb, J. Öberg, A. Postula, D. Lindqvist and
B. Fjellborg, "System Level Virtual Prototyping of DSP SOCs Using
Grammar Based Approach," Kluwer Design Automation for
Embedded Systems, vol. 5, no. 3, pp. 295-311, Aug. 2000.

[7] A. Hemani, A. Postula, Abhijit K. Deb, D. Lindqvist and B.
Fjellborg, "A Divide and Conquer Approach to System Level
Verification of DSP ASICs," in Proc. IEEE Int. High Level Design
Validation and Test, pp. 87-92, San Diego, California, Nov. 1999.

[8] G. Kahn, "The Semantics of a Simple Language for Parallel
Programming," in Proc. IFIP Congress '74, pp. 471-474, Aug. 1974.

[9] E.A Lee and D.G. Messerschmitt, "Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing,"
IEEE Trans. Comp., vol.C-36, no. 1, pp. 24-35, Jan. 1987.

[10] J.T. Buck and E.A. Lee, "Scheduling Dynamic Dataflow Graphs
with Bounded Memory Using the Token Flow Model," in Proc. Int.
Conf. Acoustics Speech & Signal Processing, pp. 429-432, vol. 1,
Apr. 1993.

[11] T. Basten and J. Hoogerbrugge, "Efficient Execution of Process
Networks,” in Proc. Communicating Process Architectures, pp. 1-
14, IOS Press, Amsterdam, 2001.

[12] S. Kumar et al., "A Network on Chip Architecture and Design
Methodology," in Proc. IEEE Comp. Society Annual Symposium on
VLSI, pp. 105-112, Apr. 2002.

[13] A. Seawright, F. Brewer, "Clairvoyant: A Synthesis System for
Production-based Specification," IEEE TVLSI, vol. 2 no. 2, pp. 172-
185, June 1994.

[14] J. Öberg, A. Kumar, and A. Hemani, "Grammar-Based hardware
synthesis from port size independent specifications," IEEE TVLSI,
vol. 8, no. 2, pp. 184-194, April 2000.

[15] R. Siegmund and D. Müller, "Automatic Synthesis of
Communication Controller Hardware from Protocol Specifications,"
IEEE Design & Test of Comp., vol. 19 no. 4, pp. 84-95, Jul-Aug.
2002.

[16] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe,
J. Buck, "A system for compiling and debugging structured data
processing controllers," in Proc. Euro DAC., pp. 86-91, Sept. 1996.

[17] T. Grötker et al., System Design with SystemC, Kluwer Academic
Publishers, Norwell, MA, 2002.

[18] R. Dömer, D.D. Gajski and A. Gerstlauer, "SpecC Methodology for
High-Level Modeling," in Proc. 9th IEEE/DATC Electronic Design
Processes Workshop, Monterey, CA, Apr. 2002.

[19] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, MA, 1986.

[20] R. Passerone, J.A. Rowson and A. Sangiovanni-Vincentelli,
"Automatic Synthesis of Interfaces between Incompatible
Protocols," in Proc. DAC., pp. 8-13, Jun. 1998.

[21] K. Lahiri, A. Raghunathan and S. Dey, "System-Level Performance
Analysis for Designing On-Chip Communication Architectures,"
IEEE TCAD, vol. 20, no. 6, pp. 768-783, Jun. 2001.

[22] AMBA on-chip bus specification [Online], http://www.arm.com
[23] MIPS32 4K Processor Core Family Integrator's Manual, [Online],

http://www.mips.com

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

