
Effective Software-Based Self-Test Strategies for On-Line Periodic Testing
of Embedded Processors

Antonis Paschalis
Department of Informatics & Telecommunications

University of Athens, Greece
 paschali@di.uoa.gr

Dimitris Gizopoulos
Department of Informatics

University of Piraeus, Greece
dgizop@unipi.gr

Abstract
Software-based self-test (SBST) strategies are particularly

useful for periodic testing of deeply embedded processors in low-
cost embedded systems that do not require immediate detection of
errors and cannot afford the well-known hardware, software, or
time redundancy mechanisms.

In this paper, first, we identify the stringent characteristics of
an SBST test program to be suitable for on-line periodic testing.
Then, we introduce a new SBST methodology with a new
classification scheme for processor components. After that, we
analyze the self-test routine code styles for the three more effective
test pattern generation (TPG) strategies in order to select the most
effective self-test routine for on-line periodic testing of a
component under test. Finally, we demonstrate the effectiveness of
the proposed SBST methodology for on-line periodic testing by
presenting experimental results for a RISC pipeline processor.

1 Introduction
The problem of testing embedded processors in high-

complexity embedded systems is becoming more and more
challenging at any level of the system life cycle. After
manufacturing testing the embedded system is placed to its natural
environment where operational faults may appear. Cosmic rays,
alpha particles, electromagnetic interference, and power glitches
are some of the main reasons for operational faults appearance.
Operational faults are classified to permanent faults, which exist
indefinitely, intermittent faults, that appear at regular time
intervals and transient faults that appear irregularly and last for
short time [1]. On-line testing aims at detecting and/or correcting
these operational faults by means of concurrent and non-
concurrent testing strategies.

Concurrent on-line test strategies are used to detect all kinds of
operational faults within small time frame (low fault detection
latency) while keeping the system in normal operation. These
strategies utilize hardware redundancy techniques like duplication
with compare, watchdog, and self-checking design [1], [2].
However, when large increase in silicon area is not acceptable,
time or software redundancy techniques provide an alternative for
on-line testing. These techniques are based on duplicating
program statements, executing programs repeatedly [3] or
implementing signature monitoring.

Non-concurrent on-line test strategies are particularly useful
for periodic testing which assures system reliability. On-line
periodic testing is useful in critical applications of embedded
systems when it is combined with a concurrent test scheme to
provide a comprehensive on-line testing strategy. Besides, in
several non-critical low-cost applications of embedded systems
there is no need for immediate detection of errors and thus no
need for hardware, software or time redundancy mechanisms that
increase significantly the system cost. In this case on-line periodic

testing is also particularly useful since it detects permanent faults
and intermittent faults with fairly large duration (when test is
applied periodically).

The on-line periodic testing techniques are usually based on
hardware-based self-test (HBST) techniques, like built-in self-test
(BIST), that provide excellent test quality as they achieve the at-
speed testing goal with high fault coverage. However, in the case
of high performance, low area and low power consumption
embedded processors, the application of HBST techniques is
limited and sometimes prohibited since such embedded processors
cannot tolerate performance degradation, high hardware overhead
and increased power consumption.

Recently, the use of low-cost software-based self-test (SBST)
techniques for on-line periodic testing of embedded processors has
been proposed in [4] as effective alternatives to HBST techniques.
The SBST techniques are non-intrusive in nature as they use the
processor instruction set to perform self-testing. The key concept
of software-based self-test is the generation of an efficient test
program that leads to high fault coverage.

The processor executes periodically an efficient test program
residing in the memory system (e.g. in a flash memory) at its
actual speed (at-speed testing) and very small area, performance
or power consumption overheads are induced for the embedded
system. In the case of on-line periodic testing, the efficient test
program must satisfy the following requirements: small memory
footprint, small execution time and low power consumption [4]. In
addition, there is a demand for low development cost of the
efficient test program particular necessary for the case of low-cost
applications of embedded systems.

SBST techniques functional in nature that use randomized
instruction sequences have been proposed in [5]-[7]. Such
techniques have low test development cost due to their high
abstraction level, but they also have the drawback of achieving
immediate to high fault coverage using a large number of
instruction sequences. Thus, the derived test program has large
size and requires excessive test execution time. In addition, long
fault simulation time is required for fault grading. Therefore, these
techniques are not suitable to on-line periodic testing.

SBST techniques structural in nature, targeting processor
components have been proposed in [8]-[10] as promising
techniques for efficient testing of a processor deeply embedded in
an embedded system. Based on a divide-and-conquer approach,
first, processor components and their corresponding component
operations are identified. Then, for every component under test
(CUT) within the processor and for every operation of the CUT,
test patterns are generated targeting structural faults. After that,
the test patterns are transformed to self-test routines (consisting of
processor instruction sequences) which are used to apply test
patterns to the inputs of the CUT and collect test responses from
the outputs of the CUT. All self-test routines together constitute a

1530-1591/04 $20.00 (c) 2004 IEEE

test program with stringent requirements in code size, data size,
and execution time in order to be suitable to on-line periodic
testing of the embedded processor.

The test patterns are derived by following the three more
effective test pattern generation (TPG) strategies. The first TPG
strategy is based on deterministic automatic test pattern generation
(ATPG) and is usually applied to combinational components,
where instruction-imposed constraint ATPG is feasible. The
second TPG strategy is based on pseudorandom TPG and is
applied to combinational components with irregular structure,
where instruction-imposed constraints can be taken into
consideration. Both TPG strategies are low gate-level strategies,
since they require the knowledge of the gate-level structure of the
embedded processor. The third TPG strategy is based on regular
deterministic TPG [9]-[10] that exploits the inherent regularity of
the most critical to test processor components like arithmetic and
logic components, shifters, comparators, multiplexers, registers
and register files which usually constitute the vast majority of
processor components. In many cases acceptable fault coverage is
derived after testing only these components. This TPG strategy is
a high-level strategy since the derived test patterns are
independent on gate-level implementation and constitute test sets
of constant or linear size.

In this paper, first, we identify the stringent characteristics of
an SBST test program for on-line periodic testing. Then, we
introduce a new SBST methodology for on-line periodic testing
that includes a new classification scheme for processor
components. This scheme is well suitable for the systematic
selection of the convenient TPG strategy for test pattern
derivation, as well as, the systematic transformation of test
patterns to a self-test routine. After that, we analyze the self-test
routine code styles for the three TPG strategies with respect to
code size, data size and execution time characteristics. Such an
analysis is needed to select the most effective self-test routine for
on-line periodic testing according to specific processor component
test pattern characteristics. Finally, we demonstrate the
effectiveness of our SBST methodology for on-line periodic
testing by presenting experimental results for a pipeline RISC
processor of MIPS architecture.

2 On-Line Periodic Test Program Characteristics
On-line periodic testing is performed in-field while the

processor operates at its normal operational environment. The
processor executes the efficient SBST program residing in the
memory system (e.g. in a flash memory) at its actual speed (at-
speed testing) under the supervision of the operating system.

Test program execution may be initiated during system startup
or shutdown thus ensuring system normal operation with respect
to permanent faults, but it imposes large fault detection latency.
Alternatively, the operating system scheduler may identify idle
cycles and issue test program execution or test program may be
executed at regular time intervals with the aid of programmable
timers found in the system. In these cases, the SBST program for
on-line periodic testing is another process that has to compete with
user processes for system resources, CPU cycles and memory.

To alleviate the system operation overhead, a SBST program
should run in the minimum possible number of CPU clock cycles.
An ideal period for test program execution should be the quantum
time cycle assuming an operating system with round robin
scheduling. Typical values of quantum times used in embedded
applications are in the range of a few hundreds of milliseconds
(msec). Although it is possible to have test program execution

span over more than one quantum time, this will lead to further
system operation overhead due to larger context switch overheads.

 In case that the operating system scheduler identifies idle
cycles and issues test program execution, fault detection latency
depends on the test program execution time. The test program
execution time must be as short as possible and less than a
quantum time cycle in order to reduce fault detection latency.

 In case that test program is executed at regular time intervals
with the aid of programmable timers, fault detection latency
depends on the time interval between two consecutive test
program executions, as well as, the test program execution time.
The time interval is specified as a tradeoff between user program
performance and fault detection latency with capability of the
system to detect intermittent faults. Also, the test program
execution time must be as short as possible and less than a
quantum time cycle in order to reduce fault detection latency.

Therefore, the main characteristic of an SBST test program to
be suitable for on-line periodic testing is the shortest possible test
execution time which must be less than a quantum time cycle.

The test program execution time can be generally described by
the following equation [11]:

CPU-execution-time = clock-cycle-time ×
 (CPU-clock-cycles +

 pipeline-stall-cycles +
 memory-stall-cycles)

The existence of pipeline stalls and memory stalls increase test
program execution cycles and must be avoided if it is possible.

Pipeline stalls should be avoided by constructing test programs
which do not cause unresolved data hazards. Control hazards are
usually avoided in architectures that implement the branch delay
slot resolution, like MIPS, by proper instruction placement in the
delay slot. However, pipeline stalls are unavoidable when branch
prediction is used to handle branch conditions.

Test programs with big memory footprint (code and data) take
more time to run due to increased number of memory stalls.
Additionally, such a test program may force user programs to be
unloaded from cache memory. When user program resumes, it
will experience cache misses which will affect its performance.
Memory stalls are reduced when test programs take advantage of
temporal and spatial locality.

A common application for on-line periodic testing is mobile
applications where power consumption is of great importance. A
study by Intel [12] shows that 33% of a notebook system power is
consumed in the CPU with a 2-level cache hierarchy system. In
the CPU about 20%-30% of power is consumed in the cache
system and about 30% is consumed in clock circuitry. Considering
the data transfers from external memory in case of a cache miss
the power consumed in the overall memory system increases
furthermore. The processor has to stall when a cache miss occurs.
Extra energy has to be consumed in driving clock-trees and
pulling up and down the external bus between the on-chip cache
and external memory. Therefore, reduction of memory stalls also
reduces power consumption during on-line periodic testing.

Consequently an SBST program for on-line periodic testing
must have the following stringent characteristics:

 The shortest possible test execution time which must be
less than a quantum time cycle.

 Small code without unresolved data hazards and with as
much as possible compact loops that take advantage of
temporal locality and sequentially executed instructions
that take advantage of spatial locality.

 Small data structured in arrays that take advantage of
spatial locality.

3 SBST Methodology for on-line periodic testing

The introduced here SBST methodology for on-line periodic
testing of embedded processors consists of three phases as
follows:

Phase A: Identification of component operations and processor
components with relevant multiplexers, as well as, instructions
that excite component operations and instructions (or instruction
sequences) for controlling or observing processor registers.

Phase B: Classification of processor components in classes
with the same properties and component prioritization for test
development. This new classification scheme is well suitable for
the systematic selection of a convenient TPG strategy for test
pattern derivation, as well as, the systematic transformation of test
patterns to a self-test routine.

Phase C: Development of self-test routines based on specific
self-test routine code styles for the three TPG strategies with
respect to the stringent characteristics for on-line periodic testing.

These phases are explained in more details in the following
subsections.

3.1 Information extraction
The starting point of our SBST methodology is the instruction

format derived from the processor instruction set architecture
(ISA) and the low register transfer level RTL description of the
processor micro-operations derived from the RTL description of
the processor.

Based on this information first we identify the component
operations and the processor components with specific inputs and
outputs that carry out these component operations. At this stage
we identify possible multiplexers appearing in the inputs or the
outputs of the processor components. Then, we map
component/multiplexer inputs and outputs to internal temporary
registers for multi-cycle datapaths or pipeline register fields for
pipelined datapaths.

Then, we identify the instructions that carry out a specific
operation and excite the pertinent processor component with the
corresponding multiplexer(s) and register(s), if they exist.

Finally, we identify appropriate instruction(s) to control the
values of processor component/multiplexer inputs or the
corresponding registers; this is the controllability part of the
methodology. Also, we identify instruction(s) to ensure
propagation of the processor component/ multiplexer outputs or
the corresponding registers to processor primary outputs; this is
the observability part of the methodology. Both the control and
observe processes can be performed using single processor
instructions or an instruction sequence.

3.2 Component classification and test priority
From the information extracted in Phase A we classify the

processor components in the following three classes:

Visible components (VC)
The components of the embedded processor whose inputs and

outputs are visible to Assembly language programmer. For these
components there is at least one instruction or instruction
sequence that controls their inputs or the corresponding registers.
Also, there is at least one instruction or instruction sequence that
ensure propagation of their outputs or the corresponding registers
to processor primary outputs. These components are further
classified in three sub-classes according to the type of their inputs
and outputs (data or addresses).

Data visible components (D-VC): The inputs of these
components receive data test patterns that can be stored: (a) in
fields of an instruction with immediate addressing mode, (b) in the
register file with an instruction with register addressing mode, or
(c) in the data memory. The outputs of these components produce
data responses that can be stored: (a) in the register file, (b) in the
data memory, or (c) in a data register directly connected to register
file or data memory. Such components are: ALUs, shifters,
multipliers, dividers, special data registers, the data fields of
pipeline registers and the register file. In this class also belong the
multiplexers at the inputs or the outputs of these components. The
data visible components have the highest test priority since they
have the highest testability and dominates the processor area.
These components are suitable for on-line periodic testing and in
many cases their testing results in acceptable fault coverage.

Address visible components (A-VC): The inputs and outputs of
these components receive addresses of the memory system. The
values of these addresses depend on the memory positions where
the instructions or the data will store. Thus, these components
become visible with convenient storing of instructions or data in
the memory system. Such components usually appear inside the
instruction fetch unit and the data memory controller (i.e. the
memory address register). In this class also belong special address
registers and the address fields of pipeline registers, as well as, the
multiplexers at the inputs or the outputs of these components.
These components are not suitable for on-line periodic testing,
since they require a lot of distributed memory references and the
derived self-test routines can not take advantage of temporal and
spatial locality which reduces the cache miss overhead. These
components occupy a very small part of processor area and are
partially tested as a side-effect of testing the D-VCs. The A-VCs
are tested after the D-VCs only in case that the fault coverage is
not acceptable.

Mixed (address-data) visible components (M-VC): These
components have inputs and/or outputs of both types (address or
data) which can become visible in a way mentioned above. For
example, in this sub-class the adder used for implementation of
PC-relative addressing is included. These components have the
same characteristics with address visible components.

Partially visible components (PVC)
The components of the embedded processor that generate

control signals and are usually implemented as finite state
machines. Since the control outputs of these components affect the
operation of visible components these components can be
considered as partially visible to Assembly language programmer.
Such a component is the processor control unit. These components
have medium testability. To test such components we adopt
simple high level functional tests like the application of all
instruction opcodes for the case of testing the processor control
logic, as well as, the application of instructions that achieve the
most possible RTL code coverage for the case of testing a specific
finite state machine. These components occupy a very small part
of processor area and may be suitable for on-line periodic testing.

Hidden components (HC)
The components of the embedded processor that are added in a

processor architecture usually to increase its performance, but
they are not visible to the assembly language programmer. These
components include a small portion of pipeline registers (except
address and data fields belonging to visible components), pipeline
control units (e.g. forwarding unit, hazard detection unit), pipeline

multiplexers, branch prediction mechanism and other performance
increasing components related to instruction level parallelism
(ILP) techniques. Besides, registers, multiplexers and control logic
to handle interrupts and exceptions are included in hidden
components. We remark that hidden components, especially those
used for data pipelining, are sufficiently tested as a side-effect of
testing the D-VCs.

3.3 Self-test routine development
The self-test routine development starts with test pattern

derivation and continues with the transformation of test patterns to
self-test routines which satisfies the test program requirements
mentioned above for on-line periodic testing. Test patterns and the
corresponding self-test routine code styles are derived according
to the following three effective TPG strategies.

Deterministic ATPG based TPG strategy
The first TPG strategy is based on deterministic automatic test

pattern generation (ATPG) and is usually applied to combinational
D-VCs, where instruction-imposed constraint ATPG provided by
commercial tools is feasible. This strategy is a low gate-level
strategy, since it requires the knowledge of the gate-level structure
of the embedded processor.

The ATPG based test patterns are transformed to effective self-
test routines with two alternative ways: (a) the test patterns are
transformed to instructions supporting immediate addressing, or
(b) the test patterns are stored in memory system and a loop-based
self-test routine fetches these from the memory system and applies
to CUT.

Let us assume that the instruction function with register
addressing carries out the specific operation “function” and excite
the pertinent D-VC with the corresponding multiplexer(s) and
register(s), if they exist.

The self-test routine code style that generates a small number
of n test patterns for D-VCs with two inputs X and Y by using
instructions with immediate addressing mode, is shown in Figure
1 (following MIPS Assembly language in all figures).

li $s0, pattern_X_1;
li $s1, pattern_Y_1;
function $s2 $s0, $s1;
jal compaction_routine_address;

li $s0, pattern_X_n;
li $s1, pattern_Y_n;
function $s2 $s0, $s1;
jal compaction_routine_address;
li $s3, signature_address;
sw $s2, (signature_displacement) ($s3);

Figure 1: ATPG based code style with immediate instructions

Test patterns are loaded in registers using the li (load
immediate) pseudo-instruction, which the assembler decomposes
to instructions lui and ori without transferring data from
memory. After test pattern application, test responses are
compacted by using a compaction routine, usually a software
MISR routine with negligible aliasing to avoid transferring of data
to memory that imposes data cache miss. At the end the final
signature is unloaded to data memory at the address
signature_address+signature_displacement for error
identification.

This self-test routine has the following characteristics:
 The code size depends linearly on the number of test patterns.

If the number of test patterns is small enough, the code size is
small, as well.

 Code without unresolved data hazards (assuming that the
processor supports forwarding) with sequentially executed
instructions that take advantage of spatial locality.

 There is a high instruction miss rate alleviating by the spatial
locality and depending linearly on the number of test patterns.

 No load data memory reference and only one store data
memory reference impose no data cache miss.

Alternatively, the self-test routine code style that generates a
small number of n test patterns for D-VCs with two inputs X and
Y by using data fetching from the memory system and a loop
based code, is shown in Figure 2.

li $s3, first_pattern_address;
addi $s4, $zero, number_of_test_patterns
add $t0, $zero, $zero;

test_pattern_loop:
lw $s0, 0($s3); # pattern_X
addiu $s3, $s3, 0x0004; # for 32-bit data
lw $s1, 0($s3); # pattern_Y
addiu $s3, $s3, 0x0004;
function $s2 $s0, $s1;
jal compaction_routine_address;
addiu $t0, $t0, 0x0001;
bne $s4, $t0, test_pattern_loop;
li $s5, signature_address;
sw $s2, (signature_displacement) ($s5);

Figure 2: ATPG based code style with data fetching

We assume that the first test pattern is in data memory address
first_pattern_address, as well as, the number of test patterns for
both inputs is number_of_test_patterns. All test patterns are
loaded, then are applied to CUT and afterwards test responses are
compacted. At the end the final signature is unloaded to data
memory for error identification.

This self-test routine has the following characteristics:
 The code size is small and independent of the number of test

patterns.
 Code without unresolved data hazards (assuming that the

processor supports forwarding) with compact loop that takes
advantage of temporal locality.

 There is low instruction miss rate alleviating by the spatial
locality and depending linearly on the number of test patterns.

 There is high data miss rate alleviating by the spatial locality
and depending linearly on the number of test patterns.

Both alternative ways of effective self-test routines are used in
practice for on-line periodic testing since they have short
execution time, assuming that the number of ATPG based test
patterns is small. The former has high instruction miss rate while
the latter has high data miss rate. The selection is mainly based on
test routine execution time and depends on the clock cycles per
instruction (CPI) of the pertinent instructions and especially of
instruction lw.

Pseudorandom based TPG strategy
The second TPG strategy is based on pseudorandom TPG and

is also usually applied to combinational D-VCs with irregular
structure, where instruction-imposed constraints can be taking into
consideration. The pseudorandom test patterns are transformed to
a loop-based software LFSR self-test routine. This strategy also is
a low gate-level strategy, since it requires the knowledge of the
gate-level structure of the embedded processor.

Let us assume an instruction function with register addressing
that excite the pertinent D-VC as previously.

The self-test routine code style that generates a large number of
pseudo-random test patterns for D-VCs with two inputs X and Y
by using a loop based code, is shown in Figure 3.

li $s3, seed;
li $s4, polynomial;
addi $s5, $zero, number_of_test_patterns;
add $t0, $zero, $zero;

test_pattern_loop:
LFSR generation for $s0; # pattern_X
LFSR generation for $s1; # pattern_Y
function $s2 $s0, $s1;
addiu $t0, $t0, 0x0001;
jal compaction_routine_address;
bne $s5, $t0, test_pattern_loop;
li $s6, signature_address;
sw $s2, (signature_displacement) ($s6);
Figure 3: Pseudorandom based code style

We assume that the number of test patterns for both inputs is
number_of_test_patterns and seed and polynomial are used by the
software implemented LFSRs. All pseudo-random generated test
patterns are applied to CUT and afterwards test responses are
compacted. At the end the final signature is unloaded to data
memory for error identification.

This self-test routine has the following characteristics:
 The code size is small and independent of the number of test

patterns.
 Code without unresolved data hazards (assuming that the

processor supports forwarding) with compact loop that takes
advantage of temporal locality.

 There is low instruction miss rate alleviating by the spatial
locality and depending linearly on the number of test patterns.

 No load data memory reference and only one store data
memory reference impose no data cache miss.

Pseudorandom-based self-test routines are used when a D-VC
with irregular structure is considered for on line periodic testing.
Such test routines usually have large execution time since
processor components are random-pattern resistant and thus a
large number of test patterns must be applied to reach acceptable
fault coverage.

Regular Deterministic based TPG strategy
The third TPG strategy is based on regular determinist TPG

[9]-[10] that exploits the inherent regularity of the most critical to
test processor components like arithmetic and logic components,
shifters, comparators, multiplexers, registers and register files
which usually constitute the vast majority of processor
components. In many cases acceptable fault coverage is derived
after testing only these components. This TPG strategy is a high-
level strategy since the derived test patterns are independent on
gate-level implementation and constitute test sets of constant or
linear size. The regular deterministic based test patterns are
transformed to self-test routines with two alternative ways: (a) the
test patterns are transformed to instructions supporting immediate
addressing mode in case that the test set size is small enough, or
(b) the test patterns are transformed to a loop-based self-test
routine with an initial value, a final value and a specific function
to generate the regular transition from the one value to the other.

In case that the number of regular deterministic test patterns is
small enough, we use the processor instruction set with immediate
addressing mode to generate and apply test patterns as it is shown
in Figure 1. This is also the case for the register file, where all
registers of the register file must receive two patterns. In order to

avoid stores in data memory the testing of register file is done in
two phases, as follows. In the first phase we test the one half of
the register file by using registers of the other half for compaction,
while in the second phase we do the opposite.

Otherwise, let us assume an instruction function with register
addressing that excite the pertinent D-VC as previous.

The self-test routine code style that generates a small number
of regular deterministic test patterns for D-VCs with two inputs X
and Y by using a loop based code, is shown in Figure 4.

li $s0, initial_value_X; # initiate X
li $s3, initial_value_Y;
li $s4, final_value_X;
li $s5, final_value_Y;
add $s1, $s3, $zero; # initiate Y

test_pattern_loop:
function $s2 $s0, $s1;
generate next Y pattern in $s1;
jal compaction_routine_address;
bne $s5, $s1, test_pattern_loop;
add $s1, $s3, $zero; # initiate Y
generate next X pattern in $s0;

 bne $s4, $s0, test_pattern_loop;
li $s6, signature_address;
sw $s2, (signature_displacement) ($s6);

Figure 4: Regular deterministic based loop code style

We have assumed that for every value of input X all values of
input Y are applied to CUT and afterwards test responses are
compacted. In some cases the final value is exactly the initial
value and some instructions are deleted. At the end the final
signature is unloaded to data memory for error identification.

This self-test routine has the following characteristics:
 The code size is small and independent of the number of

test patterns.
 Code without unresolved data hazards (assuming that the

processor supports forwarding) with compact loop that
takes advantage of temporal locality.

 There is low instruction miss rate alleviating by the spatial
locality and depending linearly on the number of test
patterns.

 No load data memory reference and only one store data
memory reference impose no data cache miss.

We remark that in any case nop instructions are inserted
accordingly when forwarding is not supported. Also, similar self-
test routines can be derived without any effort if we consider an
instruction function_I with immediate addressing to carry out the
specific operation “function”.

TPG strategy applicability for on-line periodic testing
Comparing the applicability of the three TPG strategies for on-

line periodic testing in order to select the most effective one for a
specific number of test patterns, we conclude that:

 The deterministic ATPG based TPG strategy is applicable to
combinational D-VCs in case that the number of test patterns
is small enough.

 The pseudo-random based TPG strategy is usually applicable
to combinational D-VC with irregular structure in case that the
larger number of test patterns leads to affordable execution
time.

 The regular deterministic TPG strategy is applicable to
combinational or sequential D-VCs with inherent regularity
which dominate the processor area and cover the vast majority
of faults.

4 Experimental results
A 32-bit embedded RISC processor core of MIPS architecture

named Plasma that implements 3-stage pipeline with forwarding
is used to demonstrate the effectiveness of the proposed SBST
methodology for on-line periodic testing [13]. The Plasma core
was enhanced with a fast parallel multiplier [14] and was
synthesized with area optimization at 26,080 gates targeting a
0.35um technology library. The design runs at a clock frequency
of 57 MHz. Mentor Graphics suite was used for VHDL synthesis,
functional and fault simulation (Leonardo, ModelSim and
FlexTest products, respectively).

The CUTs with the highest priority for on-line periodic testing
are the D-VCs (parallel multiplier, serial divider, register file,
shifter and ALU), the PVC (control logic) and the memory
controller which is 73% D-VC (memory data register and data
multiplexers), 23% A-VC (memory address register) and 4% PVC
(special control). The D-VCs dominate the processor area (92%).

We have applied to all CUTs the most effective TPG strategies
with low development cost and we have achieved an acceptable
high fault coverage of 95.6%. We have used regular deterministic
code style (RegD) with loops (L) or immediate type instructions
(I) for all D-VCs except the shifter where we use ATPG
deterministic code style (AtpgD) with immediate type instructions
(I). Also we have used functional tests (FT) for the control logic.
For every self-test routine a final signature is derived after
compaction of all responses by using a shared software MISR
routine of 8 words. At the end of periodic testing 7 signatures, one
for every CUT, are unloaded to data memory for fault detection.

Component gate count and classification, self-test program
statistics (code style, program size in words, CPU clock cycles
and data memory references – loads and stores), along with the
achieved single stuck-at fault coverage and the percentage of the
processor overall fault coverage which is missing from each of the
CUTs, are presented in specific columns of Table 1, respectively.

The derived self-test program for on-line periodic testing has
the required stringent characteristics:

 A very small code of only 808 words without pipeline stalls
that takes advantage of temporal locality and spatial locality.

 A small number of only 87 memory data references that
imposes a small number of data cache misses. The only CUT
that requires 80 loads and stores for test application is the
memory controller.

 A very short CPU execution time of 9,905 clock cycles.
Assuming an average instruction/data cache miss rate of 5%
and a miss penalty of 20 clock cycles, the test execution time
is less than 11.000 clock cycles or less than 200 usec which is
much less than a quantum time cycle.

5 Conclusions
We have shown that the introduced here SBST methodology for
embedded processors results in very effective SBST strategies for
on-line periodic testing. Both types of permanent and intermittent
faults are detected by a small embedded test program with test
execution time much less than a quantum time cycle. SBST for
on-line periodic testing can be applied to improve reliability of
low-cost embedded systems based on embedded processors where
hardware, software or time redundancy can not be applied due to
their excessive cost in terms of silicon area and execution time.

References
[1] H. Al-Assad, B. T. Murray, J. P. Hayes, “Online BIST for Embedded

Systems”, in IEEE Design & Test of Computers, vol.15, no.4, Oct.-
Dec. 1998, pp.17-24.

[2] M. Nicolaidis, Y. Zorian, “On-line Testing for VLSI – A
Compendium of approaches”, in Journal of Electronic Testing:
Theory and Applications, Vol. 12, No. 1-2, 1998, pp 7-20

[3] N. Oh, E. J. McCluskey, “Error Detection by Selective Procedure
Call Duplication for Low Energy Consumption”, in IEEE Trans. on
Reliability, Vol. 51, No. 4 December 2002 pp.392-402

[4] G. Xenoulis, D.Gizopoulos, N. Kranitis, A.Paschalis, “Low-Cost On-
Line Software-Based Self-Testing for Embedded Processor Cores”,
in Proc. of IEEE International On-Line Testing Symposium 2003,
pp. 149-154.

[5] J. Shen, J. Abraham, “Native mode functional test generation for
processors with applications to self-test and design validation”, in
Proc. of IEEE International Test Conference 1998, pp. 990-999.

[6] K. Batcher, C. Papachristou, “Instruction randomization self test for
processor cores”, in Proc. of the VLSI Test Symposium 1999, pp.
34-40.

[7] P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS – A
Microprocessor Functional BIST Method”, in Proc. of the IEEE
International Test Conference 2002, pp. 590-598.

[8] Li Chen, S. Dey, “Software-Based Self-Testing Methodology for
Processor Cores”, IEEE Transactions on CAD of Integrated Circuits
and Systems, vo.20, no.3, pp. 369-380, March 2001.

[9] N. Kranitis, D. Gizopoulos, A. Paschalis, Y. Zorian, “Instruction-
Based Self-Testing of Processor Cores”, in Proc. of the IEEE VLSI
Test Symposium 2002, pp. 223-228.

[10] N. Kranitis, G. Xenoulis, A. Paschalis, D. Gizopoulos, Y. Zorian,
“Application and Analysis of RT-Level Software-Based Self-Testing
for Embedded Processor Cores”, in Proc. of IEEE International Test
Conference 2003.

[11] J. Hennessy, D. Patterson, “Computer Architecture A Quantitative
Approach”, MKP, 1996.

[12] Intel Corporation, Mobile Power Guidelines 2000, Dec 11, 1998.
[13] Plasma CPU Model. http://www.opencores.org/projects/mips
[14] J. Phil, E. Sand, Arithmetic Module Generator for High Performance

VLSI Designs. http://www.fysel.ntnu.no/modgen

Component Gate Count
(gates)

Classification Code Style Size
(words)

CPU Clock
Cycles

Data
Refer.

FC
(%)

Miss. FC
 (%)

Parallel Mul. – Serial Div. 11,601 D-VC RegD (L + I) 68 6,848 2 96.3 1.8
Register File 9,905 D-VC RegD (I) 278 1,302 1 97.8 0.7
Memory controller 1,119 73% D-VC RegD (I) 113 357 81 90.3 0.3
Shifter 682 D-VC AtpgD (I) 195 571 1 99.9 0.0
ALU 491 D-VC RegD (L + I) 61 582 1 96.8 0.1
Control Logic 230 PVC FT 85 245 1 89.3 0.1
Pipeline 885 HC 98.4 0.0
Remaining 1,167 39% D-VC 8 63.1 1.4
Total 26,080 92% D-VC 808 9,905 87 95.6 4.4

Table 1: Component gate count and classification, self-test program statistics and fault coverage of MIPS Plasma for on-line periodic testing.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

