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Abstract 

The implementation of a complex hardware Intellectual 
Property (IP) together with complex lower-level software 
and the integration into a system platform poses tough 
challenges to the design and verification engineers. 
Traditionally, embedded software is developed and tested 
towards the end of the development cycle because of late 
availability of lab prototype equipment and hardware IP. 
In this paper, a “software-centric” hardware/software 
implementation and verification methodology for a 3G 
WCDMA modem is presented, with emphasis on physical 
layer software design and early verification. The sub-
system architecture of 3G hardware and software is 
presented along with design and verification steps carried 
out. A versatile SystemC-based test environment is 
described, which links test case modules producing the 
stimuli from protocol stack and hardware components to 
the L1 SW code, executed on a instruction set simulator. 
 
 

1. Introduction 
Currently, third generation (3G) mobile systems are 

being designed for high quality and high data rate 
services. For end-user equipment these systems are most 
often designed as IP blocks, which are then integrated 
together with other IP blocks and subsystems, such as RF 
front-end, connectivity IP (Bluetooth, UARTs), as well as 
software IP blocks (protocol stack, applications). In this 
paper, we focus on software (SW) and hardware (HW) IP 
creation for complex mobile subsystem, such as a physical 
layer (L1) SW and base-band processing HW for a 
Wideband CDMA (WCDMA) user equipment modem 
(UE) for UMTS �[1].  

Figure 1 depicts the top-level architecture of a UMTS 
UE containing the L1 modem HW and L1 SW IP blocks 
as well as other components from an “IP-creator” 
viewpoint. It also indicates the heterogeneous nature of 
interfaces of this subsystem. One can identify HW/HW 
interfaces (e.g. between RF front-end and L1-HW), 
HW/SW interfaces (e.g. interface to the µP) and SW/SW 
interfaces (e.g. interface to the protocol stack). 

The methodology described in this paper addresses the 
following design and verification issues in creation of an 
L1 SW IP: 
�� Complex interfaces to higher layers as well as L1 HW 

�� Verification of L1 SW early in the development cycle 

�� Verification of integrated L1 HW, SW and protocol 
stack 
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In a conventional design and developmental flow, the 
verification of L1 SW, which would be typically executed 
in embedded environment, is done once the HW prototype 
is available. This increases the development cycle time for 
complex wireless systems. Recently, advances have been 
made for incorporating cycle-callable simulation models 
of the µP architecture in a system-level environment 
delivering speed up to 100 kHz �[2]�[3]�[4]�[5]. The 
simulation technology leverages a system level design, 
which is based on transaction-level modeling paradigms �
[6]. This is currently seen as the key enabler using 
SystemC to design systems in a more “software-centric” 
way�[7]�[11]. But these simulation technologies do not 
cover the application-specific verification requirements. A 
verification methodology is required that accounts for the 
heterogeneity of the interfaces of the system lower-level 
embedded control SW and firmware.  

The “software-centric” implementation and verification 
approach presented in this paper enables early verification 
of L1 SW in development cycle. The novelty of solution 
is based in the adaptation of a Testing and Test Control 
Notation (TTCN)�[13] for describing software tests and 
integrating this notation on top of the SystemC. In 
addition, this approach provides the means for capturing 
the stimuli and responses from SW/SW and HW/SW 
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interfaces to enable verification of integrated L1 HW, SW 
and protocol stack. The HW models required for testing 
the L1 SW are captured at different abstraction levels 
(such as high level abstraction for early verification and 
cycle true models for integrated system verification). The 
proposed platform, executed in CoCentricTM System 
Studio (CCSS), includes: 
�� Test framework - Versatile SW verification library 
based on SystemC, in which test-cases are implemented 
and described 

�� Interfaces for integration of L1 SW with test 
framework 

�� L1 HW models at different abstraction levels 

The overall design and verification flow, architecture 
and the design flow of L1 SW and “ software-centric”  
verification platform are described in the next section. The 
subsequent section deals with HW/SW and HW/HW 
interface synthesis followed by concluding remarks.  

2. Design and Verification Flow 
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Figure 2 depicts the overall design cycle from concept to 
silicon/prototype that starts with either system concept or 
standardized specification as in current case. From this 
system specification, further refinement is done to derive 
high-level SW functional specification and algorithm 
specification. Once the algorithms are validated, HW/SW 
partitioning is decided based on design requirements such 
as processing speed, low power and to minimize 
interactions between HW and SW. For example, in this 
case study, time critical tasks that are to be performed on 
a slot basis are implemented in HW, whereas tasks that 
are to be accomplished on a frame basis are done in SW. 
HW design and verification flow is described in �[8]. The 
design and verification flow for SW implementation is 

elaborated in the following sub-sections with our case 
study as an example. 
2.1 SW Design flow – L1 SW 

Implementing complex software requires a thorough 
requirement analysis to arrive at a detailed functional and 
design specification. We used standard software 
engineering methodologies based on languages such as 
Unified Modeling Language (UML) �[9], and Specification 
Description Language (SDL) �[10].  

As first step, L1 SW functional specification is created 
to capture system requirements in form of use cases and 
message sequence charts (MSC). Functional specification 
also deals with higher layer interfacing requirements and 
the programming requirements of L1 HW.  

Detailed design specification is created as a next step 
and this acts as a basis for the implementation of L1 SW. 
This specification identifies different sub-systems to be 
implemented and refines the system scenarios by creating 
inter sub-system MSCs. Detailed design specification 
contains SDL block and state transition diagrams, 
message and interface specifications, abstract data types 
and procedure outline. 

Finally, representative test scenarios are identified to 
create verification test plan. Test cases are described using 
MSCs that provide a convenient means to define stimuli to 
L1 SW (design under test) from higher layer and L1 HW 
(environment) and to show expected responses back from 
design under test to the environment. Also timing 
constraints are specified at this level. 
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The L1 SW performs tasks like idle mode and power 

save operation, measurement and data channel control, 
tracking and synchronization control, protocol data 
processing through the protocol stack API and configure 
appropriate registers in the HW. The implementation 
architecture is shown in Figure 3. The architecture is split 
into two parts: L1 control SW that is HW independent and 
L1 firmware that is tightly coupled with L1 HW. 



L1 control SW implementation consists of: 
�� L1 control state machines (FSM), e.g. such as for 
demodulator control etc. Each FSM is mapped to an 
RTOS task that performs state dependent processing, for 
example, measurement control, physical channel 
configuration etc. Thus, each FSM contains several state 
service procedures. These procedures process events like 
primitives containing information from higher layers, 
intra-layer messages, interrupt service routine (ISR) 
notifications, timer events etc. 

�� The higher-layer interface to RRC (L3) and MAC 
(L2) supports primitive related functions. This interface 
takes care of centralized buffer management to avoid 
duplication of data that is used in other L1 SW modules. 
Furthermore, this provides modularity in the design such 
that variety of 3rd party protocol stack implementation can 
be plugged in by changing implementation of this 
interface alone without changing implementation of other 
modules in L1 SW. A control SW API is responsible for 
L1 software initialization and message passing. 

L1 firmware handles HW dependent processing and 
performs the L1 HW configuration. It contains: 
�� Firmware API to provide API services to control state 
machine and to ISR in a state dependent manner 

�� Interrupt service routines that process periodic and 
intermittent interrupts from HW, dispatches message and 
events to control state machines, performs task and 
message prioritization, schedules and triggers firmware 
driver procedures for time critical functionality. 

�� HW drivers to implement firmware state machines 
triggered by calls from ISR or L1 control state machines, 
maintains module dependent HW/SW state information, 
configures HW and obtains state results from HW through 
HW wrapper. 

�� HW wrapper for accessing HW registers and to 
perform HW specific conversions. 

L1 SW is implemented in ANSI-C for an ARM 
processor core using an RTOS. During and after 
implementation, suitable platform and methodology are 
required in order to satisfy verification needs. It is 
desirable that such platform facilitates verification at an 
early stage of software development cycle and also 
provides means to integrate abstractions for higher layer 
and HW, which will enable integrated verification (i.e. L1 
HW, SW and protocol stack). The platform must also be 
capable of integrating the instruction set simulator on 
which L1 SW is running. Next section discusses the 
verification methodology in detail.  

3. “Software-centric” Verification  
In this section, we will describe the verification 

approach for performing the tests at various development 
stages. 

Our aim is to use and reuse the software-specific 
verification models and test benches for all the steps. One 
main approach is to employ abstraction where 
appropriate. SystemC2.0 provides promising modeling 
paradigms. We will follow the definition of abstraction 
levels as described by the Open SystemC Initiative 
(OSCI)�[11]�[12] and describe their relation to the 
verification steps in our case study. 

Algorithm Level (AL): This level is commonly used 
for capturing the functionality. In our case data-flow 
models (floating-point, fixed-point) of the L1 HW has 
been developed based on ANSI-C and C++ within the 
CCSS environment as described in �[8].  

Programmer’s View (PV): This level abstracts from 
particular bus architecture and makes use of a register 
map representation of the L1 HW. Accesses to HW 
registers are stubbed out and HW behavior isn’t captured 
in a meaningful way. It offers up to 100 MHz execution 
performances, but when it comes to HW dependent 
processing and timed HW/SW interaction this approach 
comes with increased modeling overhead. Since in our 
case a lot of HW/SW interaction is required, we have 
conducted the L1 SW development at the PVT level 
described below. 

Programmer’s View + Timing (PVT): This level 
incorporates a timing-approximate view of the processor’s 
peripherals and instruction set. In our case we make use of 
the ARMULATOR ISS (Instruction Set Simulator). Most 
commonly ISS operate at the PV-level taking only into 
account very basic instruction timing. These kind of ISS 
tools are suitable for initial functional design and 
verification, as well as for performing initial cycle-count 
estimation and profiling. This abstraction usually yields an 
execution performance in the order of 1 MHz. 

Cycle Callable (CC): This level provides cycle-
accurate modeling on the HW/SW interface based on a 
specific bus architecture model. At this level, the 
microprocessor architecture and its peripherals are 
modeled and this allows porting of RTOS to specific 
architectural variants. It abstracts from RT signals and 
provides execution performances up to 100 kHz range. 
Using CC-level processor simulators allows capturing the 
bus loads from instructions fetches as well as from 
accesses to HW peripherals. Thus this approach is used at 
the integration-level verification steps. 

RT Level (RT): This level is used for the cycle-true 
representation of the L1 HW. For the SW verification 
steps it provides less applicability because of the slow 
execution times. 

In the following sections, we will describe the general 
approach required for the separate steps in the SW 
verification flow as well as the seamless use and extension 
of the SW test environment. 



3.1 Unit-level Testing 
For unit level testing of different modules at the PVT-

level, it is possible to reuse the simulation setup with no or 
little changes. For example, verification of demodulator 
control FSM functionality involves modeling of required 
interface abstractions for higher layer and HW. In order to 
implement test cases, concepts and methods of TTCN-3�
[13] are used, and their semantics have been implemented 
on top of SystemC-based runtime library.  
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������	!	shows the conceptual view of a TTCN-3 test 
configuration. Within every configuration there exist one 
main test component (MTC) and optional parallel test 
components (PTC). The MTC and PTCs implement 
particular test scenarios and communicate with the system 
under test (SUT) using dedicated points of control and 
communication (PCO). Communication between test 
components and with the PCOs in TTCN is FIFO-based.  

On the right hand of Figure 4, it is shown how this 
basic concept is mapped to a SystemC configuration. All 
blocks are implemented using SystemC2.0. SystemC 
provides a base class sc_module, which is extended by a 
class TE_Module in order to add TTCN-specific 
capabilities and syntax. All interaction between blocks is 
mainly implemented using method call interfaces and 
event sensitivity providing high simulation speed. In the 
example, we implemented two test components for the 
protocol stack specific test behavior (Radio Resource 
Control - RRC, Medium Access Control - MAC), both 
inheriting from TE_Module. The two PCOs CPHY and 
PHY are in charge of transporting higher-layer primitive 
data from the RRC and MAC component in a FIFO 
manner. They are inherited from the transactor channel 
classes TE_PCO. To facilitate communication between 
SystemC test environment and the ISS, which is 
ARMULATOR in our case, interfaces are developed in 
both sides.  

The ARMULATOR�[14] offers a flexible and powerful 
API, which is customized for both, handling of register 
accesses to the L1 HW as well as for implementing a 
message based interface for SW/SW interfaces from 
higher protocol layers. 

The class TE_TargetComm implements interfacing 
with ARMULATOR from SystemC side and provides all 
required communication to the L1 SW, by using the 
customized peripheral model of the ARMULATOR. This 
includes a serial interface for the higher-layer messages as 
well as a memory-mapped interface that redirects accesses 
to the L1 HW registers to the SystemC test environment. 

Also the synchronization of simulation time, to emulate 
parallel discrete event simulation, is implemented using a 
time-stamped protocol. The ARMULATOR interface 
model dispatches every register access to the memory map 
model to which abstract HW models are attached. These 
models implement HW behavior and responses, such as 
interrupts and updating of registers. In addition register 
access tracing and monitoring functionality are provided 
in HW models. In order to specify time constraints and to 
model time-outs in the test components, a global timer 
queue model is provided in the runtime library, which in 
turn notifies the corresponding events once the timer has 
elapsed. 
3.2 System-level Verification 

For demonstrating system level verification, PLMN 
selection test case is described below as an example. 
When a UE is switched on, the first task is to select a 
public land mobile network (PLMN). Subsequently, UE 
searches for a suitable cell in the selected PLMN to camp 
on. At RRC level, this operation can be viewed as follows. 
The entire process is triggered by a measurement request 
from RRC to UE L1. After doing initial cell search 
operation, UE L1 returns a list of carrier frequencies and 
scrambling codes appended with cell-search information 
to RRC so that RRC can take decision on best cell.  

At lower levels of operation, this involves series of 
firmware calls from L1 control SW for different 
operations such as frequency setting, configuring cell 
searcher HW, etc. Once the HW completes the search 
operation, it returns information by raising an interrupt to 
firmware. This gets packed into primitive and is returned 
back to RRC. 

For verifying this system level task, the entire system 
test case is modeled on CCSS using SystemC. The Idle 
mode behavior of RRC is abstracted with a SystemC 
model. The interface between RRC and L1SW is 
abstracted as SystemC channel. L1SW is implemented on 
top of an RTOS and it is run on an ISS. The HW 
abstraction is modeled to take request from L1SW 
through systemC interface and to provide interrupts at 
appropriate times back to L1SW. 

If the test-case has to be changed for some other 
scenario, for example for cell-reselection, it can be done 
by configuring appropriate datasets (or parameters) for 
RRC behavior model and HW models. 



3.2.1 Test case construction 
In this section, we illustrate how a test case is 

implemented using SystemC2.0 and what kind of test case 
specific constructs are used. In TTCN, each test 
component has a module control part. This is 
implemented as SC_THREAD (control) in the class 
TE_Module using a virtual function to be implemented by 
the child class. TTCN specifies a set of behavioral 
program statements targeted towards the specific 
requirements of test case construction. We implemented 
the semantics of a subset of these statements. Because 
TTCN is a notation and not an executable program, minor 
syntactical changes were required in order to map it to 
SystemC based solution. 
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Figure 5 shows an example of the control thread 

implementation. In the control body, first a timer is 
defined and set to a specific repetition time. Next, a higher 
layer message is constructed from an input file to be sent 
to a specific SW message queue later on. Then it is sent to 
the CPHY PCO and the timer is started. The expected 
result back from the SUT is specified in another message 
definition. A template is provided for verifying the result. 				

A behavioral program statement in TTCN, an alt-
statement, is also shown in Figure 5. An alt-statement 
denotes branching of test behavior, e.g. due to the 
reception and handling of communication and/or timer 
events, and it denotes a set of possible events that are to 

be matched against a particular snapshot. A similar 
semantic is implemented in the SystemC SW verification 
runtime library within the base class TE_Module from 
which each test component class is derived. In the 
example the condition of the alt-branches is checked at the 
moment a snapshot is taken. The first branch (guarded 
branch) is taken, if a local counter fulfills a certain 
condition and if a timer has elapsed. In this case a test 
verdict is set to inconclusive, another message is sent to 
the SUT via the PCO and the timer is restarted; the repeat-
statement triggers a repetitive evaluation of an alt-
statement. The last alt-branch is taken once a message has 
been received back, which matches the contents specified 
in the result template, and the test verdict is set to pass. 
Following this approach a test engineer is able to 
construct verification modules with a syntactical similarity 
to TTCN.  
3.3 Integration-level Testing 

 The test environment as shown in Figure 4, is extended 
without much modification to perform verification of 
integrated L1 HW, SW and protocol stack. L1 HW in the 
test environment can be either cycle accurate HW models 
or abstract behavioral models or a mix of both. While 
using cycle accurate HW models at integration testing, it 
is also possible to model the actual bus interface e.g. using 
AMBA models with the ARM µP �[5]�[15]. 
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Figure 6 shows an example of integration-level testing. 

Only one HW component (multi-path searcher) exists as 
cycle accurate model while the other HW components are 

void RRC::control() { 

  int x=0; 

TE_Timer cs_timer (repitition_time_ms, SC_MS); 

TE_Message<CPHY_Measurement_Req>  

               cphy_req(plmn_setup.str(),L23INT_PORT); 

cphy->send(cphy_req); 

cs_timer.start(); 

TE_Message<CPHY_Measurement_Ind>       

               cphy_ind(result_template.str()); 

 

alt { 

  alt_gbranch ((x<nbr_retries),cs_timer.timeout()) { 

     setverdict(incon); 

     cphy->send(cphy_req); 

     cs_timer.start(); 

     x++; 

     repeat(); 

  } 

alt_gbranch ((x==nbr_retries),cs_timer.timeout()) { 

     setverdict(fail);     

  } 

alt_branch (cphy->receive(cphy_ind) { 

     setverdict(pass); 

  } 

  … 

} 



represented as abstract behavioral models as required for 
this specific test scenario. Also, the µP bus interface is 
integrated in the test environment. 

 This verification flow can be extended to include 
FPGA based testing for board bring up once the L1 HW 
prototype is available. Concepts on how to integrate a 
FPGA prototype to a system-level simulation environment 
like CCSS are described in �[16]. 
3.4 Interface Synthesis  

The HW/SW interfaces, SW/SW interfaces to protocol 
stacks have to be included in the L1 SW code as well as in 
the SystemC test environment to establish communication 
between L1 SW and protocol stack as well as between L1 
SW and L1 HW in the test environment. We have used 
XML-based approach to automate interface synthesis 
from the corresponding specifications. The automation 
ensures that derived interface specification is correct by 
construction and is consistent, considering the huge 
amount of interface data to be handled over SW-SW 
interface and several hundreds of registers that are to be 
accessed through SW-HW interface. 

For the SW-SW interface we made use of the fact that 
in 3G standard, higher layer messages are based on 
Information Elements (IEs) and IEs are specified 
completely using abstract syntax notation or ASN.1 �[17]. 
Higher layer primitives in 3G specification are generic 
and do not constrain implementation. We defined the 
implementation specific primitives in ASN.1 and they are 
based on IEs defined in the standard. These primitives 
along with defined IEs are given as input to a commercial 
ASN.1 to C compiler. The compiler generates the header 
files for L1 SW code and for the test environment. 

HW-SW interface specification is driven by 
requirements of HW programmability, which in turn 
depends on 3G specifications itself and also on the 
implementation of HW controller. The starting point for 
HW/SW interface generation (design) is a table-based 
specification of register map that is an outcome of HW 
controller implementation. This specification is then 
converted using scripts to automatically generate:  
�� HW/SW interface in form of header file that is used 
for implementing HW wrapper part of L1 firmware. 

�� HW/SW interface in form of HDL that is used in HW 
µP interface implementation. 

�� C interface file that is used to model the µP interface 
in the SystemC based test environment. 

4. Conclusion 
In this paper, we described a complete design and 

verification flow for HW/SW implementation for a 
complex wireless IP. The versatility and reusability of the 
“ software centric”  verification flow was demonstrated 
using 3G L1 HW/SW as a case study, which can be 

applicable to other systems as well. The methodology 
presented includes a SystemC-based platform 
incorporating standardized Testing and Test Control 
Notation concepts for early verification of L1 SW at unit 
level, system level and for verification of integrated L1 
HW, SW and protocol stack. There is a significant gain in 
terms of reuse of simulation environment to meet 
verification challenges at various levels of testing. An 
automated procedure for interface synthesis was 
presented, which ensured easy and consistent construction 
of huge amount of interface data.  
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