
A SystemC-based Verification Methodology for Complex Wireless Software IP
Guido Post, P.K.Venkataraghavan, Tapan Ray, D.R.Seetharaman

Solutions Group, Synopsys Inc, {post, pkvenkat, tap, drsraman}@synopsys.com

Abstract

The implementation of a complex hardware Intellectual
Property (IP) together with complex lower-level software
and the integration into a system platform poses tough
challenges to the design and verification engineers.
Traditionally, embedded software is developed and tested
towards the end of the development cycle because of late
availability of lab prototype equipment and hardware IP.
In this paper, a “software-centric” hardware/software
implementation and verification methodology for a 3G
WCDMA modem is presented, with emphasis on physical
layer software design and early verification. The sub-
system architecture of 3G hardware and software is
presented along with design and verification steps carried
out. A versatile SystemC-based test environment is
described, which links test case modules producing the
stimuli from protocol stack and hardware components to
the L1 SW code, executed on a instruction set simulator.

1. Introduction
Currently, third generation (3G) mobile systems are

being designed for high quality and high data rate
services. For end-user equipment these systems are most
often designed as IP blocks, which are then integrated
together with other IP blocks and subsystems, such as RF
front-end, connectivity IP (Bluetooth, UARTs), as well as
software IP blocks (protocol stack, applications). In this
paper, we focus on software (SW) and hardware (HW) IP
creation for complex mobile subsystem, such as a physical
layer (L1) SW and base-band processing HW for a
Wideband CDMA (WCDMA) user equipment modem
(UE) for UMTS �[1].

Figure 1 depicts the top-level architecture of a UMTS
UE containing the L1 modem HW and L1 SW IP blocks
as well as other components from an “IP-creator”
viewpoint. It also indicates the heterogeneous nature of
interfaces of this subsystem. One can identify HW/HW
interfaces (e.g. between RF front-end and L1-HW),
HW/SW interfaces (e.g. interface to the µP) and SW/SW
interfaces (e.g. interface to the protocol stack).

The methodology described in this paper addresses the
following design and verification issues in creation of an
L1 SW IP:
�� Complex interfaces to higher layers as well as L1 HW

�� Verification of L1 SW early in the development cycle

�� Verification of integrated L1 HW, SW and protocol
stack

��������	
���������	
���������	
���������	
�����
�� �
	� �� � ���� ����	��	� 	� �
� 	� �
�� �
	� �� � ���� ����	��	� 	� �
� 	� �
�� �
	� �� � ���� ����	��	� 	� �
� 	� �
�� �
	� �� � ���� ����	��	� 	� �
� 	� � 				

In a conventional design and developmental flow, the
verification of L1 SW, which would be typically executed
in embedded environment, is done once the HW prototype
is available. This increases the development cycle time for
complex wireless systems. Recently, advances have been
made for incorporating cycle-callable simulation models
of the µP architecture in a system-level environment
delivering speed up to 100 kHz �[2]�[3]�[4]�[5]. The
simulation technology leverages a system level design,
which is based on transaction-level modeling paradigms �
[6]. This is currently seen as the key enabler using
SystemC to design systems in a more “software-centric”
way�[7]�[11]. But these simulation technologies do not
cover the application-specific verification requirements. A
verification methodology is required that accounts for the
heterogeneity of the interfaces of the system lower-level
embedded control SW and firmware.

The “software-centric” implementation and verification
approach presented in this paper enables early verification
of L1 SW in development cycle. The novelty of solution
is based in the adaptation of a Testing and Test Control
Notation (TTCN)�[13] for describing software tests and
integrating this notation on top of the SystemC. In
addition, this approach provides the means for capturing
the stimuli and responses from SW/SW and HW/SW

1530-1591/04 $20.00 (c) 2004 IEEE

interfaces to enable verification of integrated L1 HW, SW
and protocol stack. The HW models required for testing
the L1 SW are captured at different abstraction levels
(such as high level abstraction for early verification and
cycle true models for integrated system verification). The
proposed platform, executed in CoCentricTM System
Studio (CCSS), includes:
�� Test framework - Versatile SW verification library
based on SystemC, in which test-cases are implemented
and described

�� Interfaces for integration of L1 SW with test
framework

�� L1 HW models at different abstraction levels

The overall design and verification flow, architecture
and the design flow of L1 SW and “ software-centric”
verification platform are described in the next section. The
subsequent section deals with HW/SW and HW/HW
interface synthesis followed by concluding remarks.

2. Design and Verification Flow

��������	������	���	������������	�
��	��������	������	���	������������	�
��	��������	������	���	������������	�
��	��������	������	���	������������	�
��					

Figure 2 depicts the overall design cycle from concept to
silicon/prototype that starts with either system concept or
standardized specification as in current case. From this
system specification, further refinement is done to derive
high-level SW functional specification and algorithm
specification. Once the algorithms are validated, HW/SW
partitioning is decided based on design requirements such
as processing speed, low power and to minimize
interactions between HW and SW. For example, in this
case study, time critical tasks that are to be performed on
a slot basis are implemented in HW, whereas tasks that
are to be accomplished on a frame basis are done in SW.
HW design and verification flow is described in �[8]. The
design and verification flow for SW implementation is

elaborated in the following sub-sections with our case
study as an example.
2.1 SW Design flow – L1 SW

Implementing complex software requires a thorough
requirement analysis to arrive at a detailed functional and
design specification. We used standard software
engineering methodologies based on languages such as
Unified Modeling Language (UML) �[9], and Specification
Description Language (SDL) �[10].

As first step, L1 SW functional specification is created
to capture system requirements in form of use cases and
message sequence charts (MSC). Functional specification
also deals with higher layer interfacing requirements and
the programming requirements of L1 HW.

Detailed design specification is created as a next step
and this acts as a basis for the implementation of L1 SW.
This specification identifies different sub-systems to be
implemented and refines the system scenarios by creating
inter sub-system MSCs. Detailed design specification
contains SDL block and state transition diagrams,
message and interface specifications, abstract data types
and procedure outline.

Finally, representative test scenarios are identified to
create verification test plan. Test cases are described using
MSCs that provide a convenient means to define stimuli to
L1 SW (design under test) from higher layer and L1 HW
(environment) and to show expected responses back from
design under test to the environment. Also timing
constraints are specified at this level.

������� �	� 	���� ��������������� �	� 	���� ��������������� �	� 	���� ��������������� �	� 	���� ��������
The L1 SW performs tasks like idle mode and power

save operation, measurement and data channel control,
tracking and synchronization control, protocol data
processing through the protocol stack API and configure
appropriate registers in the HW. The implementation
architecture is shown in Figure 3. The architecture is split
into two parts: L1 control SW that is HW independent and
L1 firmware that is tightly coupled with L1 HW.

L1 control SW implementation consists of:
�� L1 control state machines (FSM), e.g. such as for
demodulator control etc. Each FSM is mapped to an
RTOS task that performs state dependent processing, for
example, measurement control, physical channel
configuration etc. Thus, each FSM contains several state
service procedures. These procedures process events like
primitives containing information from higher layers,
intra-layer messages, interrupt service routine (ISR)
notifications, timer events etc.

�� The higher-layer interface to RRC (L3) and MAC
(L2) supports primitive related functions. This interface
takes care of centralized buffer management to avoid
duplication of data that is used in other L1 SW modules.
Furthermore, this provides modularity in the design such
that variety of 3rd party protocol stack implementation can
be plugged in by changing implementation of this
interface alone without changing implementation of other
modules in L1 SW. A control SW API is responsible for
L1 software initialization and message passing.

L1 firmware handles HW dependent processing and
performs the L1 HW configuration. It contains:
�� Firmware API to provide API services to control state
machine and to ISR in a state dependent manner

�� Interrupt service routines that process periodic and
intermittent interrupts from HW, dispatches message and
events to control state machines, performs task and
message prioritization, schedules and triggers firmware
driver procedures for time critical functionality.

�� HW drivers to implement firmware state machines
triggered by calls from ISR or L1 control state machines,
maintains module dependent HW/SW state information,
configures HW and obtains state results from HW through
HW wrapper.

�� HW wrapper for accessing HW registers and to
perform HW specific conversions.

L1 SW is implemented in ANSI-C for an ARM
processor core using an RTOS. During and after
implementation, suitable platform and methodology are
required in order to satisfy verification needs. It is
desirable that such platform facilitates verification at an
early stage of software development cycle and also
provides means to integrate abstractions for higher layer
and HW, which will enable integrated verification (i.e. L1
HW, SW and protocol stack). The platform must also be
capable of integrating the instruction set simulator on
which L1 SW is running. Next section discusses the
verification methodology in detail.

3. “Software-centric” Verification
In this section, we will describe the verification

approach for performing the tests at various development
stages.

Our aim is to use and reuse the software-specific
verification models and test benches for all the steps. One
main approach is to employ abstraction where
appropriate. SystemC2.0 provides promising modeling
paradigms. We will follow the definition of abstraction
levels as described by the Open SystemC Initiative
(OSCI)�[11]�[12] and describe their relation to the
verification steps in our case study.

Algorithm Level (AL): This level is commonly used
for capturing the functionality. In our case data-flow
models (floating-point, fixed-point) of the L1 HW has
been developed based on ANSI-C and C++ within the
CCSS environment as described in �[8].

Programmer’s View (PV): This level abstracts from
particular bus architecture and makes use of a register
map representation of the L1 HW. Accesses to HW
registers are stubbed out and HW behavior isn’t captured
in a meaningful way. It offers up to 100 MHz execution
performances, but when it comes to HW dependent
processing and timed HW/SW interaction this approach
comes with increased modeling overhead. Since in our
case a lot of HW/SW interaction is required, we have
conducted the L1 SW development at the PVT level
described below.

Programmer’s View + Timing (PVT): This level
incorporates a timing-approximate view of the processor’s
peripherals and instruction set. In our case we make use of
the ARMULATOR ISS (Instruction Set Simulator). Most
commonly ISS operate at the PV-level taking only into
account very basic instruction timing. These kind of ISS
tools are suitable for initial functional design and
verification, as well as for performing initial cycle-count
estimation and profiling. This abstraction usually yields an
execution performance in the order of 1 MHz.

Cycle Callable (CC): This level provides cycle-
accurate modeling on the HW/SW interface based on a
specific bus architecture model. At this level, the
microprocessor architecture and its peripherals are
modeled and this allows porting of RTOS to specific
architectural variants. It abstracts from RT signals and
provides execution performances up to 100 kHz range.
Using CC-level processor simulators allows capturing the
bus loads from instructions fetches as well as from
accesses to HW peripherals. Thus this approach is used at
the integration-level verification steps.

RT Level (RT): This level is used for the cycle-true
representation of the L1 HW. For the SW verification
steps it provides less applicability because of the slow
execution times.

In the following sections, we will describe the general
approach required for the separate steps in the SW
verification flow as well as the seamless use and extension
of the SW test environment.

3.1 Unit-level Testing
For unit level testing of different modules at the PVT-

level, it is possible to reuse the simulation setup with no or
little changes. For example, verification of demodulator
control FSM functionality involves modeling of required
interface abstractions for higher layer and HW. In order to
implement test cases, concepts and methods of TTCN-3�
[13] are used, and their semantics have been implemented
on top of SystemC-based runtime library.

������!�	"�������!�	"�������!�	"�������!�	"�� � �# �	��	

 "$� � �# �	��	

 "$� � �# �	��	

 "$� � �# �	��	

 "$ ����� 	��� �	� �� ������ ���� 	� � � 	� 	��� �	� �� ������ ���� 	� � � 	� 	��� �	� �� ������ ���� 	� � � 	� 	��� �	� �� ������ ���� 	� � � 	
% � # # �� �	��	� & � ��% "	
 �� �	� � � ���� % �� �% � # # �� �	��	� & � ��% "	
 �� �	� � � ���� % �� �% � # # �� �	��	� & � ��% "	
 �� �	� � � ���� % �� �% � # # �� �	��	� & � ��% "	
 �� �	� � � ���� % �� �	

	

������	!	shows the conceptual view of a TTCN-3 test
configuration. Within every configuration there exist one
main test component (MTC) and optional parallel test
components (PTC). The MTC and PTCs implement
particular test scenarios and communicate with the system
under test (SUT) using dedicated points of control and
communication (PCO). Communication between test
components and with the PCOs in TTCN is FIFO-based.

On the right hand of Figure 4, it is shown how this
basic concept is mapped to a SystemC configuration. All
blocks are implemented using SystemC2.0. SystemC
provides a base class sc_module, which is extended by a
class TE_Module in order to add TTCN-specific
capabilities and syntax. All interaction between blocks is
mainly implemented using method call interfaces and
event sensitivity providing high simulation speed. In the
example, we implemented two test components for the
protocol stack specific test behavior (Radio Resource
Control - RRC, Medium Access Control - MAC), both
inheriting from TE_Module. The two PCOs CPHY and
PHY are in charge of transporting higher-layer primitive
data from the RRC and MAC component in a FIFO
manner. They are inherited from the transactor channel
classes TE_PCO. To facilitate communication between
SystemC test environment and the ISS, which is
ARMULATOR in our case, interfaces are developed in
both sides.

The ARMULATOR�[14] offers a flexible and powerful
API, which is customized for both, handling of register
accesses to the L1 HW as well as for implementing a
message based interface for SW/SW interfaces from
higher protocol layers.

The class TE_TargetComm implements interfacing
with ARMULATOR from SystemC side and provides all
required communication to the L1 SW, by using the
customized peripheral model of the ARMULATOR. This
includes a serial interface for the higher-layer messages as
well as a memory-mapped interface that redirects accesses
to the L1 HW registers to the SystemC test environment.

Also the synchronization of simulation time, to emulate
parallel discrete event simulation, is implemented using a
time-stamped protocol. The ARMULATOR interface
model dispatches every register access to the memory map
model to which abstract HW models are attached. These
models implement HW behavior and responses, such as
interrupts and updating of registers. In addition register
access tracing and monitoring functionality are provided
in HW models. In order to specify time constraints and to
model time-outs in the test components, a global timer
queue model is provided in the runtime library, which in
turn notifies the corresponding events once the timer has
elapsed.
3.2 System-level Verification

For demonstrating system level verification, PLMN
selection test case is described below as an example.
When a UE is switched on, the first task is to select a
public land mobile network (PLMN). Subsequently, UE
searches for a suitable cell in the selected PLMN to camp
on. At RRC level, this operation can be viewed as follows.
The entire process is triggered by a measurement request
from RRC to UE L1. After doing initial cell search
operation, UE L1 returns a list of carrier frequencies and
scrambling codes appended with cell-search information
to RRC so that RRC can take decision on best cell.

At lower levels of operation, this involves series of
firmware calls from L1 control SW for different
operations such as frequency setting, configuring cell
searcher HW, etc. Once the HW completes the search
operation, it returns information by raising an interrupt to
firmware. This gets packed into primitive and is returned
back to RRC.

For verifying this system level task, the entire system
test case is modeled on CCSS using SystemC. The Idle
mode behavior of RRC is abstracted with a SystemC
model. The interface between RRC and L1SW is
abstracted as SystemC channel. L1SW is implemented on
top of an RTOS and it is run on an ISS. The HW
abstraction is modeled to take request from L1SW
through systemC interface and to provide interrupts at
appropriate times back to L1SW.

If the test-case has to be changed for some other
scenario, for example for cell-reselection, it can be done
by configuring appropriate datasets (or parameters) for
RRC behavior model and HW models.

3.2.1 Test case construction
In this section, we illustrate how a test case is

implemented using SystemC2.0 and what kind of test case
specific constructs are used. In TTCN, each test
component has a module control part. This is
implemented as SC_THREAD (control) in the class
TE_Module using a virtual function to be implemented by
the child class. TTCN specifies a set of behavioral
program statements targeted towards the specific
requirements of test case construction. We implemented
the semantics of a subset of these statements. Because
TTCN is a notation and not an executable program, minor
syntactical changes were required in order to map it to
SystemC based solution.

������'�	
���	����	�(�%#
�������'�	
���	����	�(�%#
�������'�	
���	����	�(�%#
�������'�	
���	����	�(�%#
�
Figure 5 shows an example of the control thread

implementation. In the control body, first a timer is
defined and set to a specific repetition time. Next, a higher
layer message is constructed from an input file to be sent
to a specific SW message queue later on. Then it is sent to
the CPHY PCO and the timer is started. The expected
result back from the SUT is specified in another message
definition. A template is provided for verifying the result. 				

A behavioral program statement in TTCN, an alt-
statement, is also shown in Figure 5. An alt-statement
denotes branching of test behavior, e.g. due to the
reception and handling of communication and/or timer
events, and it denotes a set of possible events that are to

be matched against a particular snapshot. A similar
semantic is implemented in the SystemC SW verification
runtime library within the base class TE_Module from
which each test component class is derived. In the
example the condition of the alt-branches is checked at the
moment a snapshot is taken. The first branch (guarded
branch) is taken, if a local counter fulfills a certain
condition and if a timer has elapsed. In this case a test
verdict is set to inconclusive, another message is sent to
the SUT via the PCO and the timer is restarted; the repeat-
statement triggers a repetitive evaluation of an alt-
statement. The last alt-branch is taken once a message has
been received back, which matches the contents specified
in the result template, and the test verdict is set to pass.
Following this approach a test engineer is able to
construct verification modules with a syntactical similarity
to TTCN.
3.3 Integration-level Testing

 The test environment as shown in Figure 4, is extended
without much modification to perform verification of
integrated L1 HW, SW and protocol stack. L1 HW in the
test environment can be either cycle accurate HW models
or abstract behavioral models or a mix of both. While
using cycle accurate HW models at integration testing, it
is also possible to model the actual bus interface e.g. using
AMBA models with the ARM µP �[5]�[15].

������) �	 *� � ��� ���������) �	 *� � ��� ���������) �	 *� � ��� ���������) �	 *� � ��� �������" �� ����+	 � & ���%"" �� ����+	 � & ���%"" �� ����+	 � & ���%"" �� ����+	 � & ���%" ����, ���� 	, ���� 	, ���� 	, ���� 	

���	� � � ��� � %�� �	�� �	-� �������� �
���	� � � ��� � %�� �	�� �	-� �������� �
���	� � � ��� � %�� �	�� �	-� �������� �
���	� � � ��� � %�� �	�� �	-� �������� � ����
�� �
	������ �
�� �
	������ �
�� �
	������ �
�� �
	������ �
Figure 6 shows an example of integration-level testing.

Only one HW component (multi-path searcher) exists as
cycle accurate model while the other HW components are

void RRC::control() {

 int x=0;

TE_Timer cs_timer (repitition_time_ms, SC_MS);

TE_Message<CPHY_Measurement_Req>

 cphy_req(plmn_setup.str(),L23INT_PORT);

cphy->send(cphy_req);

cs_timer.start();

TE_Message<CPHY_Measurement_Ind>

 cphy_ind(result_template.str());

alt {

 alt_gbranch ((x<nbr_retries),cs_timer.timeout()) {

 setverdict(incon);

 cphy->send(cphy_req);

 cs_timer.start();

 x++;

 repeat();

 }

alt_gbranch ((x==nbr_retries),cs_timer.timeout()) {

 setverdict(fail);

 }

alt_branch (cphy->receive(cphy_ind) {

 setverdict(pass);

 }

 …

}

represented as abstract behavioral models as required for
this specific test scenario. Also, the µP bus interface is
integrated in the test environment.

 This verification flow can be extended to include
FPGA based testing for board bring up once the L1 HW
prototype is available. Concepts on how to integrate a
FPGA prototype to a system-level simulation environment
like CCSS are described in �[16].
3.4 Interface Synthesis

The HW/SW interfaces, SW/SW interfaces to protocol
stacks have to be included in the L1 SW code as well as in
the SystemC test environment to establish communication
between L1 SW and protocol stack as well as between L1
SW and L1 HW in the test environment. We have used
XML-based approach to automate interface synthesis
from the corresponding specifications. The automation
ensures that derived interface specification is correct by
construction and is consistent, considering the huge
amount of interface data to be handled over SW-SW
interface and several hundreds of registers that are to be
accessed through SW-HW interface.

For the SW-SW interface we made use of the fact that
in 3G standard, higher layer messages are based on
Information Elements (IEs) and IEs are specified
completely using abstract syntax notation or ASN.1 �[17].
Higher layer primitives in 3G specification are generic
and do not constrain implementation. We defined the
implementation specific primitives in ASN.1 and they are
based on IEs defined in the standard. These primitives
along with defined IEs are given as input to a commercial
ASN.1 to C compiler. The compiler generates the header
files for L1 SW code and for the test environment.

HW-SW interface specification is driven by
requirements of HW programmability, which in turn
depends on 3G specifications itself and also on the
implementation of HW controller. The starting point for
HW/SW interface generation (design) is a table-based
specification of register map that is an outcome of HW
controller implementation. This specification is then
converted using scripts to automatically generate:
�� HW/SW interface in form of header file that is used
for implementing HW wrapper part of L1 firmware.

�� HW/SW interface in form of HDL that is used in HW
µP interface implementation.

�� C interface file that is used to model the µP interface
in the SystemC based test environment.

4. Conclusion
In this paper, we described a complete design and

verification flow for HW/SW implementation for a
complex wireless IP. The versatility and reusability of the
“ software centric” verification flow was demonstrated
using 3G L1 HW/SW as a case study, which can be

applicable to other systems as well. The methodology
presented includes a SystemC-based platform
incorporating standardized Testing and Test Control
Notation concepts for early verification of L1 SW at unit
level, system level and for verification of integrated L1
HW, SW and protocol stack. There is a significant gain in
terms of reuse of simulation environment to meet
verification challenges at various levels of testing. An
automated procedure for interface synthesis was
presented, which ensured easy and consistent construction
of huge amount of interface data.

5. References
[1] F. Longoni, et al, Radio Access Network Architecture, pp.

51-67, “ WCDMA for UMTS” , eds. H. Holma, A. Tosklala,
Wiley, 2001.

[2] Jon Connell, Bruce Johnson , Early Hardware/Software
Integration Using SystemC 2.0, ESC San Francisco 2002.

[3] J. Connell, ARM System-Level Modeling, Ver 1.0, June
25, 2003; http://www.arm.com/

[4] S. Pees, et al, LISA Machine Description Language for
Cycle-Accurate Models of Programmable DSP
Architectures, in Proc. of the DAC, June 1999.

[5] Synopsys ARM design ware (processor model),
http://www.synopsys.com/products/designware

[6] Sudeep P,” Transaction Level Modelingof SoC with
SystemC2.0” , http://www.systemc.org/

[7] M.Caldari, et al,” SystemC Modeling of a Bluetooth
Transceiver” , DATE-2003

[8] H. Dawid, et al, “ Efficient Design flow from System level
to Hardware in CoCentric System Studio” , in proceedings
of the 2002 DATE, Designer’ s Forum, pp. 3-7, 2002.

[9] Unified Modeling Language UML, Rational ,
http://www.rational.com/uml/resources/documentation

[10] ITU, Z.100: SDL formal definition, Introduction

[11] Th. Grötker, et al, System Design with SystemC, Kluwer
Academic Publishers Group, 2002. ISBN.

[12] Open SystemC Initiative, http://www.systemc.org/.

[13] ETSI, Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 1:
TTCN-3 core language, ETSI ES 201 873-1, August 2002.

[14] Armulator, ARM, http://www.arm.com/devtools/

[15] Synopsys AMBA design ware (verification IP),
http://www.synopsys.com/products/designware/dwverificat
ionlibrary.html - amba

[16] A. Müller, G. Post, and M. Vaupel, RAVEN – A Real-time
Analysis and Verification Environment. In Proc. of the Int.
Conference on Signal Processing Application and
Technology (ICSPAT), pages 297-301, Toronto, Canada,
Sept. 1998.

[17] Abstract Syntax Notation One (ASN.1) standard, ITU Rec.
X.680-X.693, http://www.itu.int/ITU-T/asn1

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

