
High-Level System Modeling and Architecture Exploration with SystemC on a
Network SoC: S3C2510 Case Study

Hye-On Jang1, Minsoo Kang2, Myeong-jin Lee2, Kwanyeob Chae2, Kookpyo Lee2, Kyuhyun Shim2

1Samsung Advanced Institute of Technology
Gyeonggi-Do, Korea

hyeon.jang@samsung.com

Abstract

This paper presents a high-level design methodology

applied on a Network SoC using SystemC. The topic will
emphasize on high-level design approach for intensive
architecture exploration and verifying cycle accurate
SystemC models comparative to real Verilog RTL models.
Unlike many high-level designs, we started the project

with working Verilog RTL models in hands, which we later
compared our SystemC models to. Moreover, we were able
to use the on-chip test board performance simulation data
to verify our SystemC-based platform.
This paper illustrates that in high-level design, we could

have the same accuracy as RTL models but achieve over
one hundred times faster simulation speed than that of
RTL’s. The main topic of the paper will be on architecture
exploration in search of performance degradation in
source.

1. Introduction

As SoC has started to dominate the ASIC world, the

competitiveness of performance and price have increased
and triggered the market to move accordingly. Customers
request higher performance chip with lower price.
In order to meet such demands, many companies have

tried to adopt high-level design methodology to measure
and analyze the chip before fabrication or even before
RTL development. Not only to adopt or create a new high-
level design methodology, many companies also want to
have an assurance on the performance after the chip is
manufactured. To satisfy all the above and shorten the
Turn-Around-Time (TAT), we integrated SystemC[2] into
our design flow and applied Transaction Level Modeling
(TLM) method.
One of our Network SoC’s, S3C2510[1], was already in

2Samsung Electronics Co., Ltd.
Gyeonggi-Do, Korea

{minsoo.kang , artistic.lee, corean, kookpyo.lee,
kh.shim}@samsung.com

production. However, the performance of the network SoC
did not meet the initial expectation. When the frame was
transmitting at 98 Mbps, it was receiving it only at 52
Mbps. It was roughly losing half of its packets. Even
though, the current performance was acceptable in the
market for the time being, we had to diagnose the
performance bottleneck and provide a solution for the
improvement.
As many hardware engineers have agonized for many

years, it was impossible to explore the architecture once
the chip was fabricated. Even in Register Transfer Level
(RTL), it was almost impossible to port Real Time
Operating System (RTOS) and do many different cases of
architecture exploration in limited design time.
Darringer et al.[7] at IBM explained the method for

architecture exploration and model validation. Even
though they showed architecture exploration in many
different areas, they were not able to achieve the accuracy
or the simulation speed as we have.
In this paper, we will present a method of architecture

exploration in transaction level while keeping the RTL-
like accuracy and achieve over one hundred times faster
simulation speed than that of RTL’s. Moreover, it will
show method of RTOS porting and some unexpected
problems on a virtual system. Finally, it will explore CPU
profiling and bus utilization to identify the performance
bottleneck.

2. Preliminary

High-level design methodology requires many stages of

preparation and consensus between different groups in
each level of abstraction all the way down to Verilog RTL.
However, due to lack of known information and TLM
techniques, we decided to create a system, which was
already verified in RTL. S3C2510 system was in the
market and would be the base platform for the later

1530-1591/04 $20.00 (c) 2004 IEEE

models. We decided to create the same system with
SystemC. Moreover, we gave roughly ±10% of error
window to validate the SystemC-based platform.
Once the architecture was chosen, we needed to find the
system bottleneck, which was causing the performance
degradation. If the problem was found, then we were to
suggest optimized architecture or a solution to achieve the
maximum performance of 98 Mbps.
In order to solve the problem, we divided the tasks into

modeling, system integration, RTOS porting, system
simulation, and architecture exploration.
The requirements and specification document was

prepared to create SystemC models and modify our RTOS,
in this case uClinux[4]. The highest priority of modeling
was having the accuracy as close to RTL’s. Unlike other
high-level design, we needed to make the models as
accurate as RTL, because this system would become the
base platform for the future developments. Since the
SystemC models would be developed in cycle accuracy,
we allowed the each model’s error window to ±1% of
RTL’s.

3. Modeling

Our network SoC was mainly used in communication

processors. It contained many modules, but we eliminated
modules that were not directly related to Network Address
Translation (NAT) performance. Figure1 shows the blocks
that are only affecting the performance of NAT directly.

Figure1. NAT performance related blocks of S3C2510

We modeled two-channel Ethernet DMA, SDRAM
controller, Arbiter, Interrupt controller, GDMA and timer
in SystemC. The ARM processor and the AMBA bus
were provided by Synopsys’ DesignWare SystemC
library[3]. CoCentric System Studio[3] from Synopsys
was used to develop the models and the system as well.
Later on, we also used CoCentric System Studio for
simulation and architecture exploration.
Each model was developed and verified by engineers

who also developed RTL model. Since we had RTL
models as a reference, we were able to keep the accuracy
of the SystemC models within 1% of the RTL’s. To make
seven models in total, EDMA, SDRAM controller, Arbiter,
Interrupt Controller, Timer, Vector Generator, and GDMA,
it took us three weeks to develop and verify. Once the
models were completed, we had simple binary codes to
test the functionalities of each block. Later, when the
system was fully integrated, we compared the each
model’s signal waveform to RTL’s waveform result. Since
the models were all cycle accurate, we expected to have
the same waveform as RTL’s. Once the models were
verified, we ran the bridge test. It was a hardware test to
see if the system was routed properly. In other words, it
was a test to see if the system was operating the right
functions. When it was routed, we could measure the
routing speed of the system. Figure2 shows the actual test
board (SMDK2510) with S3C2510 chip on it.

Figure2. SMDK2510 board with S3C2510 chip

Figure3-1 shows the SMDK2510’s bridge test result and
Figure3-2 shows the SystemC-based platform’s bridge test
result.

Packet Size
(bytes)

Bridge test
 (Mbps)

1514 93.82
256 88.28
64 N/A

Figure3-1. SMDK2510’s Bridge test result

Packet Size
(bytes)

Bridge test
(Mbps)

Error Rate
(%)

1514 94.06 +0.25
256 88.57 +0.29
64 74.37 -

Figure3-2. SystemC-based system’s Bridge test result

The bridge test did not use RTOS, but loaded a binary
code to test functionality of Ethernet-DMA. In other
words, if the whole system was working properly with
Ethernet-DMA, we would see whether the system got
routed or not, transmitting the frames and receiving them
at the same rate.
According to Figure3-2, we could rely on the SystemC
models and the SystemC-based platform’s accuracy. There
were three frame sizes for testing, but 1514 byte frame
would be used mainly from now on. Since the error rate of
the bridge test was within 1% of RTL’s, we were able to
trust the hardware models and started to port the RTOS.

4. RTOS porting

The difference between our SystemC-based platform and

the RTL platform was the ARM model. RTL platform
used ARM940T whereas SystemC-based platform used
ARM946E-S. ARM946E-S was able to change the I/D
cache size up to 1M bytes, could use Tightly Coupled
Memory (TCM) and operated in incremental eight
(INCR8) burst. To make ARM946E-S model as close to
ARM940T, the I/D cache size of ARM946E-S was set to
4K/4K and the TCM was turned off.
Our system was based on 8-word operation. In order for

incremental four (INCR4) to operate in 8-word, it had to
run twice. That was because INCR4 only operated in 4-
word. The read cycle was set to 5 cycles in SDRAM
Controller. Thus, when INCR4 operated once, Read cycle
+ INCR4 = 5 + 4 = 9 cycles, it would run only 9 cycles. To
make the 8-word operation, it had to run twice. Thus, it
would be 9 cycles * 2 = 18 cycles. However, INCR8
operated in 8-word. When we applied the same equation,
read cycle + INCR8 = 5 + 8 = 13 cycles, it only took 13
cycles to operate the 8-word operation. Thus INCR8 had
about 27.8% of advantages than INCR4 in 8-word
operation. This was a very rough calculation. If we had
considered the write cycles and other operations it would
show different figures. Figure4 shows the calculation of
the incremental operation.

Figure4. Calculation of INCR4 & INCR8

Even though there was 27.8% cycle difference between

INCR4 and INCR8, the target performance deviation of
the SystemC-based platform was set to ±10% from that of
the network SOC. It was set based on the following facts.
First, the system arbiter was designed to give the
maximum 50% chance to the CPU to access the bus.
Second, INCR8 was used only between the CPU and the

memory. Finally, more than 20% of the bus resources
were idle even for the worst case of incoming traffic.
Once we set the system’s performance goal and verified

the processor model, we started to make the modifications
to the uClinux. The modifications were to comment out
unused blocks and to change the processor type to
ARM946E-S from ARM940T. Functionalities were not
changed.
Once we started porting the RTOS, we did not know

what to expect. We thought SystemC-based platform
would not be too different than the test board for booting.
The problem we faced was lack of communication and
experience. The gap between hardware and software
engineers was bigger than any of us expected. For
example, software engineer needed to know the
differences between RTL and SystemC models to make
the modifications to the uClinux. However, to hardware
engineers, SystemC models were exactly the same as
RTL’s in functionality. It was minor but turned out there
were some differences between SystemC and RTL
platform in system configuration, which hardware
engineers would never suspect to look into. The gap was
the way of seeing the system between hardware and
software engineers. They speak different languages and
care for different parameters. Moreover, software
engineers had never worked on an environment such as
this, software simulation for booting. They were used to
working on a test board and spend one second to boot the
OS to the system. However, in high-level platform, it took
more than one second to boot the OS. It actually took us
about fifty minutes to boot the RTOS.

5. Simulation Speed

The biggest benefit of using SystemC was in simulation

speed. We took an advantage of that benefit.

Simulation Level Sim. Speed (Cycles/Sec.)
Silicon 133M
RTL 112
SystemC w/ RTOS 18K

Figure5. Simulation Speed

We were able to achieve over hundred times faster
simulation speed than Verilog RTL. Figure5 shows the
simulation speed in different levels. We believed we could
achieve even faster simulation speed depending on the
modeling technique.
The hardware system we used was Blade2000 from

Sun[6]. It provided 900Mhz CPU with 3Gbytes of
memory.

6. Architecture Exploration

 I N C R 4 I N C R 8
2 X 9 c y c l e s

1 8 c y c l e s 1 3 c y c l e s

Once the RTOS was booted, we measured NAT
performance of the SystemC-based platform.
Figure6 shows the NAT performance of the evaluation

board of S3C2510 (SMDK2510) and SystemC-based
platform. To have the exact measurement comparison at a
common point of two systems, the measurement occurred
at the point where there was no loss of packets. The
evaluation board had no packet loss when Tx. transmitted
the frame at 58.6 Mbps. The same method was applied to
SystemC platform. When it transmitted the frame at 62.20
Mbps, there was no loss of packets.
With that in mind, the difference of NAT performance

between two systems was about 6.14%. Considering the
difference in processor model, we thought NAT
performance was reasonable and the system was reliable
enough to use it further. Figure6 shows the NAT
performance of two systems, SMDK2510 and SystemC
based platform.

Frame
(byte)

Eval. Board
(Mbps)

SystemC Pf.
(Mbps)

Error
Rate

1514 58.60 62.20 6.14%
256 10.50 11.08 5.52%
64 2.68 2.95 10.07%

Figure6. NAT throughput comparison

To do the architecture exploration to find the cause of
performance degradation in given environment, we would
explore the following areas. Firstly, we would change the
I/D cache size, and see how it would affect the NAT
performance. Secondly, we would explore the bus to see
the utilization and the contention. Lastly, we would run
synchronous mode of bus and CPU. Since the bus clock
speed was pretty much fixed, we would just increase the
CPU clock speed by doubling it. Then we would explore
how it would affect the whole system’s performance
throughput.

6.1. I/D cache size variation

Since ARM946E-S supported I/D cache size from 4K

bytes to 1M bytes, we decided to change the I/D cache
size and see how it would affect the NAT performance.

ARM946E-S
BUS/CPU 133/133

I/D Cache size 4K/4K 8K/8K 16K/16K
Frame Size(Bytes) 1514 1514 1514
NAT (Mbps) 58 98.6 98.6
Tx (Mbps) 98.7 98.7 98.7
Packet loss rate 41.2% 0.1% 0.1%

Figure7. I/D cache size vs. NAT performance

Shown in Figure7, when the I/D cache size was increased
to 8K/8K and above, we got the maximum NAT

performance. If it was indeed the I/D cache size, which
caused the performance degradation, we wanted to see
what was going on inside the cache.
According to the cache profiling, shown in Figure8, we

found some changes when the I/D cache size was
increased to 8K/8K. Figure8 was the measurement of the
I/D cache miss ratio at the same number of instruction was
executed at 4K/4K and 8K/8K. At 4K/4K, the data cache
read misses ratio was about 9.88% when the data cache
write misses ratio was about 14.6%. When I/D cache was
set to 8K/8K, the data cache read misses ratio was reduced
to 3.4% and the write misses ratio to 3.93%.

I/D Cache size 4K/4K 8K/8K

Data cache read hits 353118 458581

Data cache read misses 34903 15582

Data cache write hits 212319 330843

Data cache write misses 31080 12995

Figure8. Cache miss ratio profiling

To see the effect of data cache read misses ratio, we made
a simple ratio calculation in Figure9.

Figure9. Cache miss ratio calculation

In ideal case, we could assume that there would be 100%

hit, no cache misses. We set 100% hit as one cycle. In
4K/4K run, since we had about 10% miss, we could
assume 90% cache hits and 10% cache misses. As shown
in Figure4, it took 13 cycles to operate 8-word. Thus, the
equation came out to be (0.9*1)+(0.1*13) = 2.2 cycles for
4K/4K. The same rule applied to 8K/8K. Then the result
came out to be 1.36 cycles. As shown in Figure9, 4K/4K
took twice as much cycles to operate than that of 8K/8K.
It turned out by increasing the I/D cache size we were

able to achieve the maximum NAT performance. However,
we were not certain if this was the only cause of the
performance degradation. Thus, we started to look into the
bus to make sure.

6.2. Bus Utilization

To see the bus contention, we simply looked into how

I d e a l C a s e 1 0 0 % h i t
1 1 . c y c l e s

4 K / 4 K 9 0 % h i t , 1 0 % m i s s
2 . 2 c y c l e s

8 K / 8 K 9 7 % h i t , 3 % m i s s
1 . 3 6 c y c l e s

H i t : 1 c y c l e
M i s s : 1 3 c y c l e s

(0 . 9 * 1) + (0 . 1 * 1 3) =

(0 . 9 7 * 1) + (0 . 0 3 * 1 3) =

much CPU and other masters were taking the bus
operation.
When the I/D cache size of 4K/4K and 8K/8K were

compared, the biggest differences were with CPU (write)
and E-DMA1. As shown in Figure1, E-DMA0 transmitted
data to memory and E-DMA1 received them from the
memory. By looking at Figure10-2, we could see that the
CPU (write) operation had increased. Doing so caused the
E-DMA1 to receive more data than when it was at 4K/4K.
When CPU (write) operation increased, it could write
more data to the memory. In other words, it executed more
data and was able to write back to the memory. Naturally,
more data to the memory meant E-DMA1 could receive
more as well.

E-DMA1
6.36%

IDLE
44.10%

CPU (read)
42.87%

CPU (write)
0.37%

E-DMA0
6.29%

Figure10-1. Bus utilization at 4K/4K

.

E-DMA1
11%

IDLE
43%

CPU (read)
34%

E-DMA0
6%

CPU (write)
6%

Figure10-2. Bus utilization at 8K/8K

6.3. Bus Contention

We wanted to see whether the bus was affecting the NAT

performance regardless of I/D cache size. Thus, we set the
I/D cache size at 8K/8K and transmitted frames at the rate
of 85 Mbps where there was no packet loss while
transmitting and receiving the data. In Figure11, ‘Normal’
represents S3C2510 as is, ‘plus 1 TL’ represents S3C2510
with one more master, thus total of four masters. Lastly,
‘plus 2 TL’ represents total of five masters on the
S3C2510 bus. NAT perform for the three cases were all
the same, 85 Mbps. Since NAT throughput was the same
for all cases, the usage of ETH0 and ETH1 were pretty
much the same. Even though by adding two traffic loaders
to overload the bus operation, it did not affect the NAT

throughput. Thus, we could safely assume that the bus
operation did not have much impact on the NAT
performance after all.

59.98

6.31
10.230
23.48

52.19

6.37
10.24

31.2

0

49.22

6.4
10.29
16.84

0

0%

20%

40%

60%

80%

100%

Normal plus 1 TL plus 2 TL

IDLE

TL2

TL1

ETH1

ETH0

CPU

Figure11. Bus Contention by traffic loaders

6.4. Synchronous mode test

Since Bus was not the source of the performance

degradation, we wanted to see whether CPU clock speed
could affect the performance. We kept the Bus clock speed
at 133Mhz and raised the CPU clock speed up to four
times of its initial value.

58 62 66 69

98

0

20

40

60

80

100

120

133/133 133/266 133/399 133/532 Target

Figure12-1. Synch. Mode at 4K/4K

98 98 98 98 98

0

20

40

60

80

100

120

133/133 133/266 133/399 133/532 Target

Figure12-2. Synch. Mode at 8K/8K

As shown in Figure12-1, if the cache was set to 4K/4K,

CPU clock speed did not affect the NAT throughput much.
However, when the cache was set to 8K/8K in Figure12-2,
NAT throughput reached the maximum performance of 98
Mbps no matter how fast the CPU clock speed was. Thus,

we concluded that it was neither the bus nor the CPU
clock speed, which caused the NAT performance
degradation but I/D cache size only.

7. Conclusions

In this paper, we presented how we approached high-

level design with SystemC, targeting network SoC. Before
we applied high-level design methodology, chip designers
did not have a way to explore their blocks, not to mention
the entire system. However, by applying system-level
design methodology with SystemC, we were able to show
it could be as accurate as RTL models depending on the
modeling technique and could achieve more than hundred
times faster simulation speed than that of RTL’s.
Most importantly, engineers are now able to explore the

systems to find problems and analyze them down to the
source.

8. Future Works

Up until now, we only have focused on hardware oriented

architecture exploration. However, intensive software,
RTOS, exploration is required as well.
In this paper, we only showed the trend of problems and

solutions, but we are planning on analyzing why such
phenomenon was happening with more precise
measurements and explanations.

9. References

[1] http://www.samsung.com/Products/Semiconductor/
SystemLSI/Networks/PersonalNTASSP/

CommunicationProcessor/S3C2510/S3C2510.htm, 2003.
[2] http://www.systemc.org, 2003.
[3] http://www.synopsys.com/products/cocentric_studio/
cocentric_studio.html, 2003.

[4] http://www.uclinux.org, 2003.
[5] http://www.arm.com
[6] http://www.sun.com/desktop/FinalSB2000ds.pdf
[7] J.A Darringer at el., “Early analysis tools for system-on-a-

chip design”, IBM J. RES. & DEV. , VOL.46 NO.6, pp691-
707, NOVEMBER 2002

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

