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Abstract 
 
This paper presents a high-level design methodology 

applied on a Network SoC using SystemC. The topic will 
emphasize on high-level design approach for intensive 
architecture exploration and verifying cycle accurate 
SystemC models comparative to real Verilog RTL models.  
Unlike many high-level designs, we started the project 

with working Verilog RTL models in hands, which we later 
compared our SystemC models to. Moreover, we were able 
to use the on-chip test board performance simulation data 
to verify our SystemC-based platform. 
This paper illustrates that in high-level design, we could 

have the same accuracy as RTL models but achieve over 
one hundred times faster simulation speed than that of 
RTL’s. The main topic of the paper will be on architecture 
exploration in search of performance degradation in 
source. 
 
 
1. Introduction 
 
As SoC has started to dominate the ASIC world, the 

competitiveness of performance and price have increased 
and triggered the market to move accordingly. Customers 
request higher performance chip with lower price.  
In order to meet such demands, many companies have 

tried to adopt high-level design methodology to measure 
and analyze the chip before fabrication or even before 
RTL development. Not only to adopt or create a new high-
level design methodology, many companies also want to 
have an assurance on the performance after the chip is 
manufactured. To satisfy all the above and shorten the 
Turn-Around-Time (TAT), we integrated SystemC[2] into 
our design flow and applied Transaction Level Modeling 
(TLM) method. 
One of our Network SoC’s, S3C2510[1], was already in 
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production. However, the performance of the network SoC 
did not meet the initial expectation. When the frame was 
transmitting at 98 Mbps, it was receiving it only at 52 
Mbps. It was roughly losing half of its packets. Even 
though, the current performance was acceptable in the 
market for the time being, we had to diagnose the 
performance bottleneck and provide a solution for the 
improvement. 
As many hardware engineers have agonized for many 

years, it was impossible to explore the architecture once 
the chip was fabricated. Even in Register Transfer Level 
(RTL), it was almost impossible to port Real Time 
Operating System (RTOS) and do many different cases of 
architecture exploration in limited design time.  
Darringer et al.[7] at IBM explained the method for 

architecture exploration and model validation. Even 
though they showed architecture exploration in many 
different areas, they were not able to achieve the accuracy 
or the simulation speed as we have. 
In this paper, we will present a method of architecture 

exploration in transaction level while keeping the RTL-
like accuracy and achieve over one hundred times faster 
simulation speed than that of RTL’s. Moreover, it will 
show method of RTOS porting and some unexpected 
problems on a virtual system. Finally, it will explore CPU 
profiling and bus utilization to identify the performance 
bottleneck. 
 
2. Preliminary 
 
High-level design methodology requires many stages of 

preparation and consensus between different groups in 
each level of abstraction all the way down to Verilog RTL. 
However, due to lack of known information and TLM 
techniques, we decided to create a system, which was 
already verified in RTL. S3C2510 system was in the 
market and would be the base platform for the later 
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models. We decided to create the same system with 
SystemC. Moreover, we gave roughly ±10% of error 
window to validate the SystemC-based platform. 
Once the architecture was chosen, we needed to find the 
system bottleneck, which was causing the performance 
degradation. If the problem was found, then we were to 
suggest optimized architecture or a solution to achieve the 
maximum performance of 98 Mbps. 
In order to solve the problem, we divided the tasks into 

modeling, system integration, RTOS porting, system 
simulation, and architecture exploration.  
The requirements and specification document was 

prepared to create SystemC models and modify our RTOS, 
in this case uClinux[4]. The highest priority of modeling 
was having the accuracy as close to RTL’s. Unlike other 
high-level design, we needed to make the models as 
accurate as RTL, because this system would become the 
base platform for the future developments. Since the 
SystemC models would be developed in cycle accuracy, 
we allowed the each model’s error window to ±1% of 
RTL’s. 
 
3. Modeling 
 
Our network SoC was mainly used in communication 

processors. It contained many modules, but we eliminated 
modules that were not directly related to Network Address 
Translation (NAT) performance. Figure1 shows the blocks 
that are only affecting the performance of NAT directly. 
 

Figure1. NAT performance related blocks of S3C2510 
 
We modeled two-channel Ethernet DMA, SDRAM 
controller, Arbiter, Interrupt controller, GDMA and timer 
in SystemC.  The ARM processor and the AMBA bus 
were provided by Synopsys’ DesignWare SystemC 
library[3]. CoCentric System Studio[3] from Synopsys 
was used to develop the models and the system as well. 
Later on, we also used CoCentric System Studio for 
simulation and architecture exploration. 
Each model was developed and verified by engineers 

who also developed RTL model. Since we had RTL 
models as a reference, we were able to keep the accuracy 
of the SystemC models within 1% of the RTL’s. To make 
seven models in total, EDMA, SDRAM controller, Arbiter, 
Interrupt Controller, Timer, Vector Generator, and GDMA, 
it took us three weeks to develop and verify. Once the 
models were completed, we had simple binary codes to 
test the functionalities of each block. Later, when the 
system was fully integrated, we compared the each 
model’s signal waveform to RTL’s waveform result. Since 
the models were all cycle accurate, we expected to have 
the same waveform as RTL’s. Once the models were 
verified, we ran the bridge test. It was a hardware test to 
see if the system was routed properly. In other words, it 
was a test to see if the system was operating the right 
functions. When it was routed, we could measure the 
routing speed of the system. Figure2 shows the actual test 
board (SMDK2510) with S3C2510 chip on it. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2. SMDK2510 board with S3C2510 chip 
 

Figure3-1 shows the SMDK2510’s bridge test result and 
Figure3-2 shows the SystemC-based platform’s bridge test 
result. 
 

Packet Size 
(bytes) 

Bridge test 
 (Mbps) 

1514 93.82 
256 88.28 
64 N/A 

Figure3-1. SMDK2510’s Bridge test result 

 

Packet Size 
(bytes) 

Bridge test 
(Mbps) 

Error Rate 
(%) 

1514 94.06 +0.25 
256 88.57 +0.29 
64 74.37 - 

Figure3-2. SystemC-based system’s Bridge test result 
 



The bridge test did not use RTOS, but loaded a binary 
code to test functionality of Ethernet-DMA.  In other 
words, if the whole system was working properly with 
Ethernet-DMA, we would see whether the system got 
routed or not, transmitting the frames and receiving them 
at the same rate. 
According to Figure3-2, we could rely on the SystemC 
models and the SystemC-based platform’s accuracy. There 
were three frame sizes for testing, but 1514 byte frame 
would be used mainly from now on. Since the error rate of 
the bridge test was within 1% of RTL’s, we were able to 
trust the hardware models and started to port the RTOS.  
 
4. RTOS porting 
 
The difference between our SystemC-based platform and 

the RTL platform was the ARM model. RTL platform 
used ARM940T whereas SystemC-based platform used 
ARM946E-S. ARM946E-S was able to change the I/D 
cache size up to 1M bytes, could use Tightly Coupled 
Memory (TCM) and operated in incremental eight 
(INCR8) burst. To make ARM946E-S model as close to 
ARM940T, the I/D cache size of ARM946E-S was set to 
4K/4K and the TCM was turned off.  
Our system was based on 8-word operation. In order for 

incremental four (INCR4) to operate in 8-word, it had to 
run twice. That was because INCR4 only operated in 4-
word. The read cycle was set to 5 cycles in SDRAM 
Controller. Thus, when INCR4 operated once, Read cycle 
+ INCR4 = 5 + 4 = 9 cycles, it would run only 9 cycles. To 
make the 8-word operation, it had to run twice. Thus, it 
would be 9 cycles * 2 = 18 cycles. However, INCR8 
operated in 8-word. When we applied the same equation, 
read cycle + INCR8 = 5 + 8  = 13 cycles, it only took 13 
cycles to operate the 8-word operation. Thus INCR8 had 
about 27.8% of advantages than INCR4 in 8-word 
operation. This was a very rough calculation. If we had 
considered the write cycles and other operations it would 
show different figures. Figure4 shows the calculation of 
the incremental operation. 
 

Figure4. Calculation of INCR4 & INCR8 
 
Even though there was 27.8% cycle difference between 

INCR4 and INCR8, the target performance deviation of 
the SystemC-based platform was set to ±10% from that of 
the network SOC. It was set based on the following facts. 
First, the system arbiter was designed to give the 
maximum 50% chance to the CPU to access the bus. 
Second, INCR8 was used only between the CPU and the 

memory. Finally, more than 20% of the bus resources 
were idle even for the worst case of incoming traffic. 
Once we set the system’s performance goal and verified 

the processor model, we started to make the modifications 
to the uClinux. The modifications were to comment out 
unused blocks and to change the processor type to 
ARM946E-S from ARM940T. Functionalities were not 
changed.   
Once we started porting the RTOS, we did not know 

what to expect. We thought SystemC-based platform 
would not be too different than the test board for booting. 
The problem we faced was lack of communication and 
experience. The gap between hardware and software 
engineers was bigger than any of us expected. For 
example, software engineer needed to know the 
differences between RTL and SystemC models to make 
the modifications to the uClinux. However, to hardware 
engineers, SystemC models were exactly the same as 
RTL’s in functionality. It was minor but turned out there 
were some differences between SystemC and RTL 
platform in system configuration, which hardware 
engineers would never suspect to look into. The gap was 
the way of seeing the system between hardware and 
software engineers. They speak different languages and 
care for different parameters. Moreover, software 
engineers had never worked on an environment such as 
this, software simulation for booting. They were used to 
working on a test board and spend one second to boot the 
OS to the system. However, in high-level platform, it took 
more than one second to boot the OS. It actually took us 
about fifty minutes to boot the RTOS.  
 

5. Simulation Speed 
 
The biggest benefit of using SystemC was in simulation 

speed. We took an advantage of that benefit. 
 
Simulation Level  Sim. Speed (Cycles/Sec.) 
Silicon 133M 
RTL 112 
SystemC w/ RTOS 18K 

Figure5. Simulation Speed 
 
We were able to achieve over hundred times faster 
simulation speed than Verilog RTL. Figure5 shows the 
simulation speed in different levels. We believed we could 
achieve even faster simulation speed depending on the 
modeling technique.  
The hardware system we used was Blade2000 from 

Sun[6]. It provided 900Mhz CPU with 3Gbytes of 
memory. 
 
6. Architecture Exploration 
 

 I N C R 4 I N C R 8
2 X 9 c y c l e s

1 8  c y c l e s 1 3  c y c l e s



Once the RTOS was booted, we measured NAT 
performance of the SystemC-based platform.  
Figure6 shows the NAT performance of the evaluation 

board of S3C2510 (SMDK2510) and SystemC-based 
platform. To have the exact measurement comparison at a 
common point of two systems, the measurement occurred 
at the point where there was no loss of packets. The 
evaluation board had no packet loss when Tx. transmitted 
the frame at 58.6 Mbps. The same method was applied to 
SystemC platform. When it transmitted the frame at 62.20 
Mbps, there was no loss of packets.  
With that in mind, the difference of NAT performance 

between two systems was about 6.14%. Considering the 
difference in processor model, we thought NAT 
performance was reasonable and the system was reliable 
enough to use it further. Figure6 shows the NAT 
performance of two systems, SMDK2510 and SystemC 
based platform. 
 

Frame 
(byte) 

Eval. Board 
(Mbps) 

SystemC Pf. 
(Mbps) 

Error 
Rate 

1514 58.60 62.20 6.14% 
256 10.50 11.08 5.52% 
64 2.68 2.95 10.07% 

Figure6. NAT throughput comparison 
 

To do the architecture exploration to find the cause of 
performance degradation in given environment, we would 
explore the following areas. Firstly, we would change the 
I/D cache size, and see how it would affect the NAT 
performance. Secondly, we would explore the bus to see 
the utilization and the contention. Lastly, we would run 
synchronous mode of bus and CPU. Since the bus clock 
speed was pretty much fixed, we would just increase the 
CPU clock speed by doubling it. Then we would explore 
how it would affect the whole system’s performance 
throughput. 
 
6.1. I/D cache size variation 
 
Since ARM946E-S supported I/D cache size from 4K 

bytes to 1M bytes, we decided to change the I/D cache 
size and see how it would affect the NAT performance. 
 

ARM946E-S 
BUS/CPU 133/133 

I/D Cache size 4K/4K 8K/8K 16K/16K 
Frame Size(Bytes) 1514 1514 1514 
NAT (Mbps) 58 98.6 98.6 
Tx (Mbps) 98.7 98.7 98.7 
Packet loss rate 41.2% 0.1% 0.1% 

Figure7. I/D cache size vs. NAT performance 
 
Shown in Figure7, when the I/D cache size was increased 
to 8K/8K and above, we got the maximum NAT 

performance. If it was indeed the I/D cache size, which 
caused the performance degradation, we wanted to see 
what was going on inside the cache. 
According to the cache profiling, shown in Figure8, we 

found some changes when the I/D cache size was 
increased to 8K/8K. Figure8 was the measurement of the 
I/D cache miss ratio at the same number of instruction was 
executed at 4K/4K and 8K/8K. At 4K/4K, the data cache 
read misses ratio was about 9.88% when the data cache 
write misses ratio was about 14.6%. When I/D cache was 
set to 8K/8K, the data cache read misses ratio was reduced 
to 3.4% and the write misses ratio to 3.93%.  
 
I/D Cache size 4K/4K 8K/8K 

Data cache read hits 353118 458581 

Data cache read misses 34903 15582 

Data cache write hits 212319 330843 

Data cache write misses 31080 12995 

Figure8. Cache miss ratio profiling  
 
To see the effect of data cache read misses ratio, we made 
a simple ratio calculation in Figure9. 
 

Figure9. Cache miss ratio calculation 
 
In ideal case, we could assume that there would be 100% 

hit, no cache misses. We set 100% hit as one cycle. In 
4K/4K run, since we had about 10% miss, we could 
assume 90% cache hits and 10% cache misses. As shown 
in Figure4, it took 13 cycles to operate 8-word. Thus, the 
equation came out to be (0.9*1)+(0.1*13) = 2.2 cycles for 
4K/4K. The same rule applied to 8K/8K. Then the result 
came out to be 1.36 cycles. As shown in Figure9, 4K/4K 
took twice as much cycles to operate than that of 8K/8K.  
It turned out by increasing the I/D cache size we were 

able to achieve the maximum NAT performance. However, 
we were not certain if this was the only cause of the 
performance degradation. Thus, we started to look into the 
bus to make sure. 
 
6.2. Bus Utilization 
 
To see the bus contention, we simply looked into how 

I d e a l  C a s e 1 0 0 %  h i t
1 1 .  c y c l e s

4 K / 4 K 9 0 % h i t ,  1 0 % m i s s
2 . 2  c y c l e s

8 K / 8 K 9 7 % h i t ,  3 % m i s s
1 . 3 6  c y c l e s

H i t :  1  c y c l e
M i s s :  1 3  c y c l e s

( 0 . 9 * 1 ) + ( 0 . 1 * 1 3 ) =

( 0 . 9 7 * 1 ) + ( 0 . 0 3 * 1 3 ) =



much CPU and other masters were taking the bus 
operation. 
When the I/D cache size of 4K/4K and 8K/8K were 

compared, the biggest differences were with CPU (write) 
and E-DMA1. As shown in Figure1, E-DMA0 transmitted 
data to memory and E-DMA1 received them from the 
memory. By looking at Figure10-2, we could see that the 
CPU (write) operation had increased. Doing so caused the 
E-DMA1 to receive more data than when it was at 4K/4K. 
When CPU (write) operation increased, it could write 
more data to the memory. In other words, it executed more 
data and was able to write back to the memory. Naturally, 
more data to the memory meant E-DMA1 could receive 
more as well. 
 

E-DMA1
6.36%

IDLE
44.10%

CPU (read)
42.87%

CPU (write)
0.37%

E-DMA0
6.29%

Figure10-1. Bus utilization at 4K/4K 
 

.

E-DMA1
11%

IDLE
43%

CPU (read)
34%

E-DMA0
6%

CPU (write)
6%

Figure10-2. Bus utilization at 8K/8K 
 
6.3. Bus Contention 
 
We wanted to see whether the bus was affecting the NAT 

performance regardless of I/D cache size. Thus, we set the 
I/D cache size at 8K/8K and transmitted frames at the rate 
of 85 Mbps where there was no packet loss while 
transmitting and receiving the data. In Figure11, ‘Normal’ 
represents S3C2510 as is, ‘plus 1 TL’ represents S3C2510 
with one more master, thus total of four masters. Lastly, 
‘plus 2 TL’ represents total of five masters on the 
S3C2510 bus. NAT perform for the three cases were all 
the same, 85 Mbps. Since NAT throughput was the same 
for all cases, the usage of ETH0 and ETH1 were pretty 
much the same. Even though by adding two traffic loaders 
to overload the bus operation, it did not affect the NAT 

throughput. Thus, we could safely assume that the bus 
operation did not have much impact on the NAT 
performance after all. 
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Figure11. Bus Contention by traffic loaders 

 
6.4. Synchronous mode test 
 
Since Bus was not the source of the performance 

degradation, we wanted to see whether CPU clock speed 
could affect the performance. We kept the Bus clock speed 
at 133Mhz and raised the CPU clock speed up to four 
times of its initial value. 
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Figure12-1. Synch. Mode at 4K/4K 
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Figure12-2. Synch. Mode at 8K/8K 
 
As shown in Figure12-1, if the cache was set to 4K/4K, 

CPU clock speed did not affect the NAT throughput much. 
However, when the cache was set to 8K/8K in Figure12-2, 
NAT throughput reached the maximum performance of 98 
Mbps no matter how fast the CPU clock speed was. Thus, 



we concluded that it was neither the bus nor the CPU 
clock speed, which caused the NAT performance 
degradation but I/D cache size only. 
 

7. Conclusions 
 
In this paper, we presented how we approached high-

level design with SystemC, targeting network SoC. Before 
we applied high-level design methodology, chip designers 
did not have a way to explore their blocks, not to mention 
the entire system. However, by applying system-level 
design methodology with SystemC, we were able to show 
it could be as accurate as RTL models depending on the 
modeling technique and could achieve more than hundred 
times faster simulation speed than that of RTL’s.  
Most importantly, engineers are now able to explore the 

systems to find problems and analyze them down to the 
source.  
 

8. Future Works 
 
Up until now, we only have focused on hardware oriented 

architecture exploration. However, intensive software, 
RTOS, exploration is required as well. 
In this paper, we only showed the trend of problems and 

solutions, but we are planning on analyzing why such 
phenomenon was happening with more precise 
measurements and explanations. 
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