
Dynamic Memory Management Design Methodology for Reduced Memory
Footprint in Multimedia and Wireless Network Applications

David Atienza?, Stylianos Mamagkakis†, Francky Catthoor‡, Jose M. Mendias?, Dimitris Soudris†
?DACYA/UCM, Juan del Rosal 8, 28040 Madrid, Spain.{datienza, mendias}@dacya.ucm.es

† VLSI Center-Demokritus Univ., Thrace, 67100 Xanthi, Greece.{smamagka, dsoudris}@ee.duth.gr
‡IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium. Email:{name.surname}@imec.be∗

Abstract
New portable consumer embedded devices must execute

multimedia and wireless network applications that demand
extensive memory footprint. Moreover, they must heavily
rely on Dynamic Memory (DM) due to the unpredictability
of the input data (e.g. 3D streams features) and system be-
haviour (e.g. number of applications running concurrently
defined by the user). Within this context, consistent design
methodologies that can tackle efficiently the complex DM
behaviour of these multimedia and network applications are
in great need. In this paper, we present a new methodology
that allows to design custom DM management mechanisms
with a reduced memory footprint for such kind of dynamic
applications. The experimental results in real case studies
show that our methodology improves memory footprint 60%
on average over current state-of-the-art DM managers.

1 Introduction
The multimedia and wireless network applications to be

ported to new embedded systems have lately experienced
a fast growth in their variety and functionality. These new
applications (e.g. MPEG21 or new network protocols) de-
pend, with few exceptions, on Dynamic Memory (DM from
now on) for their operations due to the unpredictable input
data (e.g. 3D streams features). Designing embedded sys-
tems for the (static) worst case memory footprint of these
new applications would lead to a too high overhead in mem-
ory footprint. Even if average values of possible memory
footprint estimations are used, these static solutions will re-
sult in higher memory footprint figures (i.e. 22% more) than
DM solutions [8]. Moreover, these intermediate static solu-
tions will not work in extreme cases of input data, whereas
DM solutions can do it. Thus, DM management must be
used in embedded realisations of these designs.

Many general DM management policies and implemen-
tations of them are nowadays available to provide rela-
tively good performance and low fragmentation for general-
purpose systems [19]. However, for embedded systems,

∗This work is partially supported by the Spanish Government Research
Grant TIC2002/0750 and the European founded program AMDREL IST-
2001-34379.

such DM managers must be implemented inside their con-
strained Operating System (OS) and thus have to really con-
sider the limited resources available to minimize memory
footprint among other factors. Thus, recent embedded OSs
(e.g. [12]) use specifically designed (or custom) DM man-
agers according to the underlying memory hierarchy and the
kind of applications that will run on them.

Custom DM managers are frequenly designed to im-
prove performance [3, 19], but they can also be used to
heavily optimize memory footprint compared to general-
purpose managers. For example, in new 3D vision al-
gorithms [15], a well designed custom DM manager can
improve memory footprint up to 44.2% over conventional
general-purpose DM managers [8].

When custom DM managers are used, their designs are
manually optimized by the developer, typically consider-
ing only a limited number of design and implementation
alternatives due to the lack of formal methodologies to ex-
plore the DM management search space. Thus, designers
must define, construct and evaluate new custom implemen-
tations of DM managers and strategies manually, which has
been proven to be programming intensive (and very time-
consuming). Even if the embedded OS offers considerable
support for standardized languages (e.g C or C++), the de-
veloper is still faced with defining the structure of the DM
manager on a case per case basis.

In this paper, we present a new methodology that allows
to design custom DM management mechanisms with the
reduced memory footprint required for new dynamic em-
bedded applications, i.e. multimedia and wireless network
applications. First, this methodology defines the relevant
design space of DM management decisions for a minimal
memory footprint in multimedia and wireless network ap-
plications. Then, we propose a suitable order to traverse it
according to the relative influence of each decision in mem-
ory footprint and to design custom DM managers according
to the specific DM behaviour of the application under study.

The remainder of the paper is organized as follows. In

1

1530-1591/04 $20.00 (c) 2004 IEEE

Section 2, we describe some related work. In Section 3, we
present our DM management search space of decisions for a
reduced memory footprint in dynamic applications. In Sec-
tion 4 we define the order to traverse it to reduce the mem-
ory footprint of the application under analysis. In Section 5,
we introduce our case studies and present the experimental
results. Finally, in Section 6 we draw our conclusions.

2 Related Work
Currently the basis of an efficient DM management in a

general context is already well established and much litera-
ture is available about software general-purpose DM man-
agement implementations and policies [19]. Also, research
on custom DM managers that use application-specific be-
haviour to improve performance and locality of references
to minimize fragmentation is also available [18, 19].

In new embedded systems where the range of applica-
tions to be executed is very wide (e.g. new consumer de-
vices), variations of well-known state-of-the-art general-
purpose DM managers are used. For example, Linux-
based systems use as their basis the Lea DM manager [19]
and Windows-based systems use the Kingsley DM man-
ager [19]. Finally, recent real-time OSs for embedded sys-
tems (e.g. [12]) support dynamic allocation with custom
DM managers based on simple region allocators [6] with
a reasonable performance for the specific platform features.

Recent methods to refine the DM subsystem try to empir-
ically evaluate it with customizable DM managers. In [18],
a DM manager that allows to define multiple memory re-
gions with different disciplines is presented. However, this
approach cannot be extended with new functionality and is
limited to a small set of user-defined functions for memory
de/allocation. In [3], the abstraction level of customizable
DM managers has been extended to C++. It proposes an in-
frastructure of C++ layers that can be used to improve per-
formance of general-purpose managers. The main problem
in this case is its extensibility for other metrics (e.g. energy
dissipation), as embedded systems require.

Regarding memory optimizations and techniques to op-
timize memory footprint and other relevant factors in static
data for embedded systems (e.g. power consumption or per-
formance), much research has been done (see e.g. [13, 2]
for good tutorial overviews). All these techniques are com-
plementary to our work and perfectly applicable in the part
of the code that accesses static data within the considered
dynamic applications. Moreover, they are useful as back-
end for our approach, once the dynamic data are allocated
into memory pools that can be statically declared.

3 Relevant DM Management Search Space

Much literature is available about possible implemen-
tation choices for DM management mechanisms [19], but
none of the earlier work provides a complete search space

Figure 1. DM management search space of
orthogonal decisions

useful for a systematic exploration in multimedia and wire-
less network applications for embedded systems. Hence,
in this section we first define our design search space of
relevant DM management decisions for a reduced memory
footprint and then we summarize the interdependencies ob-
served within it, which partially allows us to order it.

3.1 Our DM Management Search Space for Re-
duced Memory Footprint

DM management basically consists of two separate
tasks, i.e. allocation and deallocation. Allocation is the
mechanism that searches for a block big enough to satisfy
the request of a given application and deallocation is the
mechanism that returns this block to the available memory
of the system in order to be reused later. In real applica-
tions, the blocks are requested and returned in any order,
thus creating ”holes” among used blocks. These holes are
known as memory fragmentation. On the one hand, inter-
nal fragmentation occurs when a bigger block than the one
needed is chosen to satisfy a request. On the other hand,
if the memory to satisfy a memory request is available, but
not contiguous (thus it cannot be used for that request), it
is called external fragmentation. Hence, on top of memory
de/allocation, the DM manager has to take care of fragmen-

2

Figure 2. Interdependencies between orthog-
onal trees in the search space

tation issues. This is done by splitting and merging free
blocks to keep memory fragmentation as small as possible.
Finally, to support these mechanisms, additional data struc-
tures are built to keep track of the free and used blocks.
Thus, to create an efficient DM manager, we have to sys-
tematically classify the design decisions that can be taken
to handle the possible combinations of the previous factors
(e.g. fragmentation, overhead of additional data structures).

We have classified all the important design options that
can compose the design space of DM management in dif-
ferent orthogonal decision trees. Orthogonal means that
any decision in any tree can be combined with any decision
in another tree, and the result should be a potentially valid
combination (which does not necessarily mean that it meets
all timing and cost constraints). Moreover, the decisions in
the different orthogonal trees can be ordered in such a way
that traversing the trees can be done without iterations, as
long as the appropriate constraints are propagated from one
decision level to all subsequent levels. Basically, when one
decision has been taken in every tree, one custom DM man-
ager is defined (in our notation, atomic DM manager) for a
specific DM behaviour pattern.

Then, these trees have been grouped in categories ac-
cording to the different main parts that can be distinguished
in DM managements [19]. They are shown in Figure 1.
This new approach allows us to reduce the complexity of
the global design of DM managers in smaller subproblems
that can be decided locally. In our search space, any combi-
nation of a leaf from each of the decision trees represents a
valid DM manager. This fact leads to a huge amount of po-
tential implementations that can be used not only to recreate
any available general-purpose DM manager [19], but also
create our own new highly-specialized DM managers.

In the following we describe the five main categories of
Figure 1 and the important decision trees inside them for the
creation of DM managers with a reduced memory footprint:

A. Creating block structures, which handles the way
block data structures are created and later used by the DM
managers to satisfy the memory requests. More specifically,
theBlock structuretree specifies the different blocks of the

system and their internal control structures. In this tree, we
have included all possible combinations of Dynamic Data
Types (from now on called DDTs) required to represent and
construct any dynamic data representation [4] used in the
current DM managers. Secondly, theBlock sizestree refers
to the different sizes of basic blocks available for DM man-
agement, which may be fixed or not. Thirdly, theBlock tags
and theBlock recorded infotrees specify the extra fields
needed inside the block to store information used by the
DM manager. Finally, theFlexible block size managertree
decides if the splitting and coalescing mechanisms are ac-
tivated according to the the availability of the size of the
memory block requested.

B. Pool division based on, which deals with the number
of pools (or memory regions) present in the DM manager
and the reasons why they are created. TheSizetree means
that pools can exist either containing internally blocks of
several sizes or they can be divided so that one pool exists
per different block size. In addition, thePool structuretree
specifies the global control structure for the different pools
of the system. In this tree we include all possible combina-
tions of DDTs required to represent and construct any dy-
namic data representation [4].

C. Allocating blocks, which deals with the actual ac-
tions required in DM management to satisfy the memory
requests and couple them with a free memory block. Here
we have included all the important choices available in or-
der to choose a block from a list of free blocks [19].

D. Coalescing blocks, which concerns the actions exe-
cuted by the DM managers to ensure a low percentage of
external memory fragmentation, i.e. merging two smaller
blocks into a larger one. Firstly, theNumber of max block
sizetree defines the new block sizes that are allowed after
coalescing two different adjacent blocks. Then, theWhen
tree defines how often coalescing should be performed.

E. Splitting blocks, which refers to the actions executed
by the DM managers to ensure a low percentage of internal
memory fragmentation, i.e. splitting one larger block into
two smaller ones. Firstly, theNumber of min block sizetree
defines the new block sizes that are allowed after splitting
a block into smaller ones. And theWhentree defines how
often splitting should be performed (these trees are not pre-
sented in full detail in Figure 1, because the options are the
same as in the two trees in the Coalescing category).

3.2 Interdependencies between Orthogonal Trees
Although the decision categories and trees presented in

Subsection 3.1 are orthogonal, certain leaves in some trees
affect heavily the coherent decisions in other trees. Thus,
they possess interdependencies to take into account when a
DM manager is designed. The whole set of interdependen-
cies for our search space is shown in Figure 2. They can be
classified in two main groups. First, the interdependencies
caused by leaves that disable the use of other trees or cate-

3

Figure 3. Example of interdependency be-
tween two orthogonal trees

gories (full arrows in Figure 2). An example of this kind of
interdepencies is shown in Figure 3. It shows how theBlock
tagstree restricts theBlock recorded infotree. The choice
of thenone leaf in theBlock tagstree indeed prohibits the
use of theblock recorded infotree, because no space is re-
served to store any information. Second, it also shows the
interdependencies affecting other trees or categories due to
their linked purposes (dotted arrows in Figure 2).

3.3 Construction of Global DM Managers
Real new multimedia and wireless network applications

include different DM behaviour patterns, which are linked
to their logical phases. Consequently, our methodology
must be applied to each of these different phases separately
in order to create an atomic custom DM manager for each
of them. Then, the global DM manager of the application is
the inclusion of all these atomic DM managers in one.

4 Order for Reduced DM Footprint
4.1 Factors of influence for DM footprint

The main factors that affect DM footprint are two:
1.- The Organization overhead, which is produced by

the assisting fields and data structures that accompany each
block and pool respectively. It depends on the following:

a) The fields (e.g. headers, footers) inside the memory
blocks are used to store data of each specific block and are
usually a few bytes long. The use of these fields is con-
trolled by category A (Creating block structures).

b)The assisting data structures provide the infrastructure
to organize the pool and to characterize its behaviour. They
can be used to prevent fragmentation by forcing the blocks
to reserve memory according to their size without having
to split and coalesce unnecessarily. The use of these data
structures is controlled by category B (Pool division based
on criterion). The same effect on fragmentation prevention
is also present in category C, because depending on the fit
algorithm chosen, you can avoid internal fragmentation.

2.- TheFragmentation memory wasteis caused by the
internal and external fragmentation (discussed in Subsec-
tion 3.1), which depend on the following:

a)The internal fragmentation is mostly remedied by cate-
gory E (Splitting blocks). This fragmentation affects mostly
small data structures. E.g. if only 100-byte blocks are
available inside the pools and you want to allocate 20-byte
blocks, it would be wise to split each 100-byte block to 5
blocks of 20 bytes to avoid internal fragmentation.

Figure 4. Example of the correct order be-
tween two orthogonal trees

b)The external fragmentation is mostly remedied by cat-
egory D (Coalescing blocks). As expected, it affects mostly
big data requests. E.g. if you want to allocate a 50-Kbyte
block, but only 500-byte blocks exist inside the pools, it
would be necessary to coalesce 100 blocks to provide the
necessary amount of memory requested.

Note the distinction between categories D and E, which
try to deal with fragmentation, as opposed to category B and
C that try to prevent it.

4.2 Order of the trees for reduced memory size
Trees A2 and A5 are placed first to decide the global

structure of the blocks. Then, experience suggests that most
of the times it is more important to define how to deal with
fragmentation (thus categories D and E go next) than try to
prevented it with a convenient pool organization and allo-
cation scheme [19], which are decided by categories B and
C. Finally, the rest of the trees in category A (i.e. A1, A3
and A4) are decided. As a result, after also considering the
inderdependencies, the final order is as follows: A2->A5-
>E2->D2->E1->D1->B4->B1->C1->A1->A3->A4.

If the order we have just proposed is not followed, un-
necessary constraints are propagated to next decision trees,
and thus the most suitable decisions cannot be taken in the
remaining orthogonal trees. Figure 4 shows an explample
of this. Suppose that the order was A3 and then D2/E2.
When deciding the correct leaf for A3, the obvious choice
to save memory space would be to choose theNone leaf.
This seems reasonable at first sight because the header fields
would require a fixed amount of additional memory for each
block that has to be allocated. However, now we are obliged
to choose theNeverleaf in D2/E2 because after propagating
the constraints of A3, one block cannot be properly split or
coealesced without storing information about the size of the
block. Hence, the final DM manager uses less memory per
block, but cannot deal with internal or external fragmenta-
tion by splitting or coalescing blocks.

However, if the application includes a variable amount
of sizes, the fragmentation problem consumes more mem-

4

Figure 5. Memory footprint behaviour of Lea
and our DM manager for the DRR application

ory than the extra header fields needed for coalescing and
splitting. Therefore it is necessary to decide the D2/E2 tree
and then propagate its constraints to tree A3. Hence, we se-
lect first the leafAlwaysin both cases, which are the leaves
that deal better with internal (tree E2) and external fragmen-
tation (D2). Then, after propagating these constraints to A3,
we can select the leaf which better supports these decisions
in D2 and E2, i.e. theHeaderleaf for A3.

5 Case Studies and Experimental Results
We have applied the proposed methodology to three case

studies that represent different modern multimedia and net-
work application domains: the first case study is a schedul-
ing algorithm from the network domain, the second one is
part of a new 3D image reconstruction system and the third
one is a 3D rendering system based on scalable meshes.

All the results shown are average values after a set of 10
simulations for each DM manager, where all the final values
were very similar (variations of less than 2%).

The first case study presented is the Deficit Round Robin
(DRR) application [16] taken from the NetBench bench-
marking suite [10]. It is a scheduling algorithm imple-
mented in many routers today that tries to accomplish a
fair scheduling by allowing the same amount of data to be
passed and sent from each internal queue. It requires the
use of DM because the real input can vary enormously de-
pending on the network traffic. In our experiments, 10 real
traces of internet network traffic up to 10 Mbit/sec [7] have
been used to run realistic simulations of DRR.

In order to define the logical phases of the application
and its atomic DM managers, we first profile its DM be-
haviour. Then, we create the global DM manager. First,
we make a decision in tree A2 (Block sizes) and our deci-
sion is to havemany block sizes to prevent internal frag-
mentation because the DRR application requests memory
blocks that vary greatly in size (to store incoming packets

of different sizes). Then, in tree A5 (Flexible block size
manager) we choose tosplit andcoalesce , so that ev-
ery time a memory block with a bigger or smaller size than
the current block is requested, the splitting and coalescing
mechanims are invoked. In trees E2 and D2 (When) we
choosealways , thus we try to defragment as soon as it
occurs. Then, in trees E1 and D1 (number of max and min
block size) we choosemany andnot fixed because we
want to get the maximum effect out of coalescing and split-
ting by not limiting the size of the produced blocks. Af-
ter this, in trees B1 (Pool division based on size) and B2
(Pool structure), the simplest pool implementation possible
is selected, i.e.single pool . Next, in tree C1 (Fit al-
gorithms), we choose theexact fit to avoid as much
as possible memory lost in internal fragmentation. Next, in
tree A1 (Block structure), we choose the most simple DDT
that allows coalescing and splitting, i.e.double linked
list . Then, in the trees A3 (Block tags) and A4 (Block
recorded info), we choose aheader field to accomodate
information about thesize andstatus of each block to
support the splitting and coalescing mechanisms. Finally,
after taking these decisions following the order described
in Section 4, we determine those decisions of the final cus-
tom DM manager that depend on its particular run-time be-
haviour in the application (e.g. final number of max block
sizes) via simulation. To this end, we have developed aC++
library that covers the decisions in our DM search space [5].

Then, we have compared our custom solution to state-of-
the-art general-purpose managers, i.e. Lea [19] and Kings-
ley [19] (see Section 2 for more details). As Table 1 shows,
our custom DM manager uses less memory than Lea or
Kingsley because it have not got fixed sized blocks and tries
to coalesce and split as much as possible, which is a bet-
ter option in dynamic applications with very variable sizes.
Moreover, when large coalesced chunks of memory are not
used, they are returned back to the system for other appli-
cations. However, Lea and Kingsley create huge free-lists
of unused blocks (in case they can be reused later), they co-
alesce and split seldomly (Lea) or never (Kingsley) and fi-
nally, they have fixed-sized blocks. This can be observed in
Figure 5, which shows the DM footprint graphs of our DM
manager (custom DM manager 1) and Lea during one
run of the application. Hence, our custom DM manager im-
proves the memory footprint by 36% compared to Lea and
93% compared to Kingsley.

Our second case study is one of the sub-algorithms of a
3D reconstruction algorithm [15] (see [17] for the full code
of the algorithm,1.75 million lines ofC++code), where the
relative displacement between frames is used to reconstruct
the3rd dimension. It requires DM due to the unpredictable
features of the input images at compile-time (e.g. number
of possible corners to match varies on each image). The
operations done on the images are memory intensive, e.g.

5

Dyn. Mem. DRR 3D image 3D scalable
managers scheduler reconst. rendering

Kingsley-Windows 2.09×106 2.26×106 3.96×106

Lea-Linux 2.34×105 - 1.86×106

Regions - 2.08×106 -
Obstacks - - 1.55×106

our DM manager 1.48×105 1.49×106 1.07×106

Table 1. Maximum memory footprint results
(Bytes) in real case studies

each image of640 × 480 uses over 1Mb. Moreover, since
the accesses to the images are randomized, classic image
access optimizations as row-dominated versus column-wise
accesses cannot be used to reduce memory footprint.

In this case study we have compared our custom DM
manager with a manually designed implementation of the
new kind of region managers [6] found in new embed-
ded OSs (e.g. [12]). Also, we have compared our DM
manager with Kingsley. The memory footprint results ob-
tained are depicted in Table 1. They show that our cus-
tom DM manager obtains significant improvements com-
pared to region managers (28.47%) and Kingsley (33.01%).
These improvements occur because our DM manager re-
duces the fragmentation of the system in two ways. First,
its behaviour varies according to the specific block sizes re-
quested in the application. Second, it uses immediate co-
alescing and splitting to reduce fragmentation. In region
managers, the block sizes of each region are fixed to one
block size and the requests of several block sizes creates in-
ternal fragmentation. In Kingsley, an initial memory region
is reserved and distributed among the different lists of block
sizes. However, only a limited amount of block sizes is used
and thus memory is misused.

Our third case study is a 3D video rendering applica-
tion [20]. It belongs to a new category of video algorithms
that adapt the quality of each object on the screen with scal-
able meshes [9] according to the position of the user watch-
ing at them at each moment of time (e.g. QoS systems [14]).

In this case, we have compared our DM manager with
Lea, Kingsley and, due to its stack-like allocation behaviour
in some phases of its execution, we have also used Ob-
stacks [19], a well-known custom DM manager optimized
for such behaviour. As Table 1 shows, Lea obtains better
results in memory footprint (53%) than Kingsley. Then,
Obstacks improves the memory footprint of Lea (17.70%).
Finally, our custom manager improves the memory foot-
print of Obstacks (30%) because Obstacks cannot exploit
its stack-like optimizations in the final phases of the render-
ing process. Thus, it suffers from a high memory footprint
penalty in these phases whereas our DM manager does not.

Finally, to evaluate the design process with our method-
ology, we want to remark that the design and implementa-
tion of the final custom DM managers for each case study

took us two weeks. These DM managers achieve the least
memory footprint values with only a 10% overhead (on av-
erage) over the execution time of the fastest general-purpose
DM manager observed in these case studies, i.e. Kingsley.
Moreover, this decrease in performance is not relevant since
our custom DM managers preserve the real-time behaviour
required by the applications. Thus, the user will not notice
any difference. Nevertheless, trade-offs between the rele-
vant design factors (e.g. improving performance consum-
ing a little more memory footprint) are possible using our
methodology, if the requirements of the final design need it.

6 Conclusions
New consumer devices have improved their capabilities

and, nowadays, very complex and dynamic applications can
be mapped on them. However, to port these applications,
new design methodologies must be available to efficiently
use the memory available in the final embedded systems.
In this paper we have presented a new methodology that
defines and explores the DM management search space of
relevant decisions, in order to design custom DM man-
agers with a reduced memory footprint for such dynamic
applications. Our results in real applications show signifi-
cant improvements in memory footprint over state-of-the-
art general-purpose and manually optimized custom DM
managers, incurring only in a small overhead in execution
time over the fastest of them.

References
[1] G. Attardi, T. Flagella, et al. A customizable mem. management

framework for c++.SW Practice and Experience, 1998.
[2] L. Benini and G. De Micheli. System level power optimization tech-

niques and tools. InACM TODAES, 2000.
[3] E. D. Berger, B. G. Zorn, et al. Composing high-performance mem-

ory allocators. InProc. of PLDI, 2001.
[4] E. G. Daylight, S. Wuytack, et al. Analyzing energy friendly phases

of dyn. apps. in terms of sparse data. InProc. of ISLPED, 2002.
[5] D. Atienza, S. Mamagkakis, et el. Fast system-level prototyping of

power-aware DM managers for emb. syst. InProc. of COLP, 2003.
[6] D. Gay, et al. Mem. manag. with regions. InProc. of PLDI, 2001.
[7] LBN Lab. Internet traffic archive.http://ita.ee.lbl.gov/ .
[8] M. Leeman, et al. Methodology for refinement of dyn. mem. manag.

for embedded syst. in multimedia apps. InProc. SiPS, Korea, 2003.
[9] D. Luebke, et al.Level of Detail for 3D Graphics, 2002.

[10] G. Memik, et al. Netbench: A benchmarking suite for network
processors. CARES Technical Report, 2001.

[11] N. Murphy. Safe mem. usage with DM alloc.Embedded Syst., 2000.
[12] Rtems, open-source real-time OS for embedded systems, 2002.

http://www.rtems.org .
[13] P. R. Panda, F. Catthoor, et al. Data and memory optimizations for

embedded systems.ACM TODAES, April 2001.
[14] N. Pham Ngoc, et al. Qos framework for interactive 3D apps. In

Proc. of Conf. on Computer Graphics and Vision, 2002.
[15] M. Pollefeys, et al. Metric 3D surface reconst. from uncalibrated

image seqs. InLect. Notes in Computer Science, 1998.
[16] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit

round robin. InProc. of SIGCOMM, 1995.
[17] Target jr, 2002.http://www.targetjr.org .
[18] K.-P. Vo. Vmalloc: A general and efficient memory allocator. In

SW Practice and Experience, 1996.
[19] P. R. Wilson, et al. Dynamic storage allocation, a survey and critical

review. InInt. Workshop on Memory Management, UK, 1995.
[20] M. Woo, et al.OpenGL Programming Guide, 2nd Ed. USA, 1997.

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

