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ABSTRACT
Scan-based cores impose considerable test power challenges due to ex-
cessive switching activity during shift cycles. The consequent test power
constraints force SOC designers to sacrifice parallelism among core tests,
as exceeding power thresholds may damage the chip being tested. Re-
duction of test power for SOC cores can thus increase the number of
cores that can be tested in parallel, improving significantly SOC test ap-
plication time. In this paper, we propose a scan chain modification tech-
nique that inserts logic gates on the scan path. The consequent beneficial
test data transformations are utilized to reduce the scan chain transitions
during shift cycles and hence test power. We introduce a matrix band
algebra that models the impact of logic gate insertion between scan cells
on the test stimulus and response transformations realized. As we have
successfully modeled the response transformations as well, the method-
ology we propose is capable of truly minimizing the overall test power.
The test vectors and responses are analyzed in an intertwined manner,
identifying the best possible scan chain modification, which is realized
at minimal area cost. Experimental results justify the efficacy of the pro-
posed methodology as well.

1. INTRODUCTION
Attaining parallelism among core tests translates into SOC test appli-

cation time reductions; yet increased power dissipation elevates the risk
of damaging the chip under test. The test power problem is especially
acute in a scan-based environment as the shift operations for the deliv-
ery of test stimuli and the collection of responses create toggling in scan
cells. The consequent switching activity in the core internal logic mag-
nifies test power dissipation.

Test power dissipation during shift cycles can be reduced by decreas-
ing the number of transitions that occur inside the scan cells. The shifting
of complementary values in consecutive cycles results in the toggling of
each scan cell through which complementary adjacent stimulus bits are
to pass. An analogous argument can be drawn in a similar manner for the
consecutive bits of responses observed through the scan-out pin. High
correlation between consecutive inserted stimulus bits and consecutive
observed response bits reflects into reduced scan chain transitions, con-
sequently.

In traditional scan-based test, the stimulus inserted to the scan chain
is identical to the test vector delivered into the scan cells; similarly, the
response transmitted to the tester is identical to the response captured in
the scan cells. In the proposed methodology, we break this equivalence
by modifying the scan chain; we propose the insertion of logic gates be-
tween the scan cells, transforming over numerous shift cycles the stimu-
lus inserted to the actual test vector and the response captured to the re-
sponse transmitted, with the number of shift cycles equaling the number
of scan cells. As the introduction of the logic gates is confined to within
the scan path, it creates no interference with the functional operation of
the chip timing-wise, fully preserving SOC performance. The proposed
scan chain modification and the consequent test data transformation can
thus be utilized to reduce the number of scan chain transitions, subsiding

the test power dissipation significantly.
The transformations utilized are restricted to bijective ones, such as

XOR gates and inverters, as the delivery of any test vector and the obser-
vation of any captured fault effect should be guaranteed. In this paper,
we introduce a matrix band algebra to model the impact of any possi-
ble XOR/inverter insertion on test data transformation. Such a modeling
enables the realization of any possible bijective test data transformation
through the insertion of logic gates in appropriate locations. As the com-
plete transformation space can thus be explored globally, optimal power
reductions can be attained by the proposed methodology.

As each scan chain modification imposes distinct transformations on
stimuli and responses, the proposed algorithm should search for the scan
chain modification that minimizes the overall test power. Modeling re-
sponse transformations though is more complicated compared to mod-
eling stimulus transformations, which have been thoroughly analyzed
by previously suggested techniques; these schemes have overlooked the
highly challenging modeling issues associated with response transforma-
tions, and hence failing to handle scan-out power issues. The increased
complexity of response transformation modeling stems from the fact that
transformed response bits depend not only on the captured response bits
but also on the inserted stimulus bits as well; transformed stimulus bits,
on the other hand, depend only on the test vector bits to be delivered.
Identifying the connection with the XOR/inverter insertion is more chal-
lenging in the case of response transformations, consequently. In this
paper, we present a complete analysis, investigating not only the stimu-
lus transformations but also the response transformations, resolving the
associated modeling challenges successfully. Based on the outcome of
our analysis, we develop an algorithm which handles the stimuli and the
responses in an intertwined manner, identifying the best possible scan
chain modification and hence minimizing the overall test power.

2. PREVIOUS WORK
Numerous methodologies that aim at test power reduction in a scan-

based environment have been proposed recently. The utilization of exter-
nally controlled gates [1, 2] has been shown to reduce test power drasti-
cally, albeit at the expense of functional performance degradation due to
additional gate delays introduced on functional paths. Appropriate pri-
mary input assignments during the shift cycles [3, 4] help reduce transi-
tion propagation from the scan chain to the circuit under test; however,
the effectiveness of such techniques is limited, as typically circuits are
controlled mostly by scan chains rather than primary inputs. Scan chain
partitioning techniques [5, 6] have also been proposed for test power re-
duction; the scan chain is decomposed into several partitions so as to
have only one of the partitions active at a time, reducing scan chain rip-
pling. Test vector ordering and scan-latch ordering techniques [7], mod-
ification of test cube compaction [8] and test generation [9] procedures
constitute a set of alternative techniques for reducing scan power dissi-
pation. These techniques extract test power reductions yet at the expense
of prolonged test application time [8, 9], performance degradation [1, 2],
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Figure 1: Impact of inverter insertion

or possible layout constraint violations [7].
A number of scan chain modification techniques for test power reduc-

tion [10, 11, 12] have been proposed. These techniques essentially rely
on scan chain modifications with block-contained impact on the test data
transitions. Constraining the impact of scan chain modifications within
blocks delivers algorithmic benefits but necessitates the imposition of
certain restrictions on XOR gate insertions, resulting in modifications
that are locally optimal but may stray considerably from the global op-
timum. The technique in [11] modifies the scan chain by utilizing only
inverter insertions, while in [12] X(N)OR gate insertions with block-
contained impact are employed. Even though the techniques outlined
in [10, 11, 12] exhibit algorithmic simplicity, the restriction to a subset
of XOR gate insertion configurations significantly hampers optimality in
power reductions, failing to reap appreciable additional power reductions
possible.

Scan chain modifications with the block-contained impact constraint
eliminated have been proposed in [13, 14]. In these techniques, the im-
pact of any possible XOR/inverter has been successfully modeled, en-
abling the exploitation of any possible bijective transformation. These
schemes have investigated only stimulus transformations; although they
have attained optimal scan-in power reductions, they have overlooked
the responses, leaving the scan-out power issues unhandled and hence
failing to minimize overall test power.

3. MOTIVATION
The identification of the optimal scan chain modification hinges on the

modeling of the impact of XOR/inverter insertion on test data transfor-
mation. Specifically, the following questions need to be answered. How
can the optimal mapping that transforms the given test vectors and re-
sponses be identified? How can this transformation be realized through
the appropriate scan chain modification? To answer these questions, one
needs to examine the impact of logic gate insertion between scan cells.

Inverters have local impact on the stimulus transitions, as the inser-
tion of an inverter between two scan cells complements all the test vec-
tor bits that are to pass through it while keeping intact the bits prior to
the insertion point. The clustered complementation of the bits preserves
the transitions between them except for the single transition between the
two stimulus bits that are to be delivered into the scan cells connected
through the inverter. An analogous argument can be made for the impact
of inverters on the response transitions; the only transition that gets com-
plemented is the one between the two response bits that are captured in
the scan cells connected through the inverter. The overall effect is limited
to a complementation of the transition frequency at that point only.

A quick look at XOR gate insertion on a scan path reveals the chal-
lenges associated with the modeling of the impact of XOR gate insertion
though. The example in Figure 2 illustrates the impact of the insertion of
XOR gates on the scan path; the actual test vectors which happen to be
the stimuli to be inserted to the unmodified scan chain are given in Fig-
ure 2.A, while Figures 2.B and 2.C illustrate the modified scan chains
along with the stimuli to be inserted. It can be seen that the insertion of
an XOR gate as in Figure 2.B eliminates all the transitions between the
fourth and the fifth bit positions. The transitions between the first two
stimuli bits can be eliminated by the insertion of yet another XOR gate
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Figure 2: Scan chain modification

between the first two scan cells as shown in Figure 2.C; however, this
modification eradicates partially the benefit of the previous modification
as some transitions are re-introduced between the fourth and the fifth bit
positions. An algorithm that identifies the optimal scan chain modifica-
tion necessitates an understanding and modeling not only of the precise
impact of the insertion of XOR gates but also of their interference.

Let us examine how a stimulus is transformed into a test vector over
a number of shift cycles; in the example in Figure 3, a stimulus of
“111011” is transformed into “100101” over 6 shift cycles. This trans-
formation operation can also be formulated in binary matrix multipli-
cation algebra; an upper triangular binary square transformation matrix
with each dimension equaling the number of scan cells can be right-
multiplied by a stimulus matrix, to produce the test vector matrix.1 Each
non-zero entry in the transformation matrix denotes the test vector bits
to be XORed in forming the transformed stimulus bits. We denote this
matrix asI2D, as this transformation represents the mapping from the
Insertedstimulus to theDelivered test vector. In the same figure, the
I2D matrix embeds three discontinuities. It is interesting to note that the
ones on the first upper off-diagonal band right before the second and the
fifth columns account for the XOR gates inserted before the second and
the fifth scan cells, respectively; the discontinuity on the second upper
off-diagonal band however cannot be accounted for as straightforwardly.

The transformation mapping the test vectors to the inserted stimuli
and the one mapping the captured responses to the observed responses
should somehow be related to the XOR/inverter insertions. The former
mapping, which we denote asD2I, is simply the inverse ofI2D, which
we have mentioned in the previous paragraph;D2I is an upper triangular
square matrix that can be left-multiplied by a test vector matrix to pro-
duce the inserted stimulus matrix. TheCapturedto Observedresponse
transformation, which we denote asC2O, however, necessitates further
analysis, as the observed response bits depend not only on the captured
response bits but also on the test vector bits that reside inside the scan
cells during shift operations. TheC2O matrix is not a square matrix,
consequently; the number of rows inC2O equals one less than twice the
number of scan cells, while the number of columns equals the number of
scan cells.C2O contains one row for each of the stimulus bits except for
the leftmost bit, and one row for each response bit. In the upcoming sec-
tions, we will show how a relationship can be established betweenC2O
andI2D, thoroughly explaining the impact of XOR/inverter insertions
on the test data transformations realized.

The inverter insertion impact is simpler to model compared to XOR
gates, as the inverter insertion impact consists simply of transition fre-

1A simple transposition argument can be used to show that a lower trian-
gular matrix can be left-multiplied by the stimulus matrix, equivalently.
The test stimulus and vector will be denoted in column form in that case.
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Figure 3: Stimulus transformation operation

quency complementation. Inverters enable handling of XNOR insertions
also, by utilizing XOR transformations that map to high transition fre-
quencies, which are then complemented through inverter insertion. The
identification of the optimal logic gate insertions necessitates a two phase
algorithm. The XOR insertions aim at skewing the transition frequency
as close to 0.0 or 1.0 as possible, with the latter case being resolved
through an inverter insertion;maximal transition frequency skewis the
aim of XOR transformations, consequently.

4. MATRIX BAND ALGEBRA
Modeling the impact of XOR gate insertion hinges on an in-depth

matrix-based analysis. In this section, we introduce an algebraic for-
mulation based onmatrix bands, engendering such a modeling. The
algebraic formulation we present focuses on triangular matrices, as con-
strained by the unidirectionality of the scan shift operations.

We represent a contiguous subset of thed
th off-diagonal band for an

n � n matrix composed of a consecutive set of 1’s from theinit
th col-

umn to the rightmost edge of the matrix as theBd
init band. Bd

d+1, for
example, denotes thedth upper off-diagonal band with a string of 1’s
starting from the intersection of thed + 1th column and the first row.
Similarly, B0

1 denotes the full diagonal band, whileBn�1
n denotes the

band composed of the single top right corner entry. AB
d
init designation

with d � n or init > n signifies a null band.
One may be tempted to surmise, albeit incorrectly, that the representa-

tional power of this band denotation falls short of being able to represent
any upper-triangular matrix, as the band definition constrains the string
of 1’s to run contiguously until the rightmost matrix column. By taking
the XOR of a number of bands, however, any intermixed string of 0’s
and 1’s can be represented; aband list, denoted asBL, can therefore be
introduced to represent any upper-triangular matrix:

BL
d
(l1;l2;::;ln) =

M

i

B
d
li

(1)

The band list shown above denotes that strings of 1’s start on the posi-
tions designated by the odd numbered elements of the list while strings
of 0’s start on the even numbered ones. Any upper triangular matrix can
hence be represented as the collection of various band lists; theI2D ma-
trix in Figure 3, for instance, can be represented asI�BL1

(2;5)�BL
2
(5).

Taking the XOR ofBd
li

with a collection of other bands results in
the complementation of all the off-diagonal band entries between the
l
th
i and the rightmost columns. Ifli exists in a band list, it creates a

discontinuity (0! 1 or 1! 0) on the band between the(li � 1)th and
l
th
i columns. Consequently, each discontinuity on an off-diagonal band

corresponds to a distinct band; theI2D matrix in Figure 3 consists of 3
discontinuities, resulting in 3 distinct bands, namely,B

1
2 , B1

5 , andB2
5 ,

in its band representation.

5. MODELING THE IMPACT OF XOR GATES
In this section we present the relationship between XOR gate inser-

tion and the consequent test data transformation through the matrix band
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Figure 4: I2D, D2I and C2O transformations

algebra defined in the previous section. First we introduce the matrix-
based transformations and explain the relationships between these trans-
formations. We follow this up with an exposition of the relationship
between theI2D matrix bands and XOR gate insertion, as this matrix
displays the modified scan chain characteristics more explicitly.

5.1 Test Data Transformations
The impact of XOR gate insertion can be modeled as transformation

functions. TheD2I function maps the test vectors to the stimuli needed
at the input of the scan chain;I2D, on the other hand, maps the inserted
stimuli to the data delivered into the scan cells, i.e., the test vectors to
be applied. TheC2O function maps the captured responses to the re-
sponses observed by the tester; the observed response bits depend both
on the captured response bits and on the subsequent stimulus bits. Fig-
ure 4 illustrates these transformations for a scan chain modified through
XOR gate insertions; the subsequent stimulus bits are denoted bysi in
the response transformation in this figure. In this example, the leftmost
captured response bit,t1, is transformed intot1 � s5, with s5 denot-
ing the rightmost bit of the subsequent stimulus. Figure 5 provides the
corresponding matrix representations forI2D, D2I andC2O in Figure
4.
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Figure 5: Matrix representation for I2D, D2I and C2O in Figure 4
The product of theI2D andD2I matrices equals the identity matrix,

denoted byI, as one can verify by performing the multiplication2 in
Figure 5.

I2D � D2I = I (2)

Finding the connection betweenI2D and the response transformation,
C2O, is slightly more complicated though. To understand this relation-
ship, we need to define the Scan Chain Characteristic, denoted asSCC,
which represents the transformation function for the complete left-to-
right traversal of the modified scan chain;SCC denotes the value that a
bit shifted all the way from the scan-in pin to the scan-out pin transforms
into. It is apparent that the rightmost column of theI2D matrix yields
SCC. For any bit position, the composition of the associatedI2D and
C2O transformations is the same and equals theSCC of the modified
scan chain. Intuitively, one can understand this statement by consider-
ing theith captured response bit which is to be shifted out by traversing
all the scan cells at positions greater thani; the consequent transforma-
tion function constitutes theC2O function corresponding to theith bit.

2As these matrix multiplications model XOR operations, the inner prod-
ucts are to be computed through XORing the product terms.
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Figure 6: The relationship between I2D and C2O

The traversal of the remainder of the scan chain, namely the scan cells
at positions smaller thani, corresponds to theI2D of the same bit; the
composition of the two transformation functions yields the traversal of
the complete scan chain, namelySCC. In the example in Figure 4, the
SCC of the modified scan chain constitutes the XOR of a bit with the
previous bit. The third captured response bit, for instance, transforms
into the XOR of itself and the first response bit. The first stimulus bit is
delivered into the first scan cell intact, while the third stimulus bit trans-
forms into the XOR of itself with the first and the second stimulus bits.
The result of the composition operation for the third bit is the XOR of
the third bit itself with the second bit which yields theSCC. The com-
position operation can be formulated by another matrix multiplication as
in Figure 6, establishing the relationship betweenC2O andI2D. The
reader can verify the correctness of this formulation by applying it on the
matrices in Figure 5.

5.2 XOR Gate Insertion and Transformations
Mapping a transformation function to the appropriate scan chain mod-

ification necessitates an understanding of the impact of XOR gate inser-
tions in the scan chain. In this subsection, we analyze the relationship
between XOR gate insertion and the resultingI2D implemented by the
modified scan chain.

We first start with the impact of a single XOR gate insertion. The stim-
ulus bits that are delivered into the scan cells without passing through the
XOR gates remain intact. The stimulus bits that pass through the XOR
gate however are transformed, all identically, if a single XOR gate is be-
ing inserted. A single m-input XOR gate insertion between the(s�1)th

andsth scan cells results in a transformation denoted by:

I2D = I�

mM

i=1

B
di
s (3)

whereindi denotes the number of scan cells between the XOR gate and
theith input tap andI, the identity matrix.

In multiple XOR gate insertions, two distinct cases need to be consid-
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Figure 8: Computation of D2I and C2O entries

ered. In the first case, the XOR gates inserted overlap; the consequent
I2D can be obtained by taking the sum of the individual bands corre-
sponding to each XOR gate. In the second case, the XOR gates are non-
overlapping; due to the interference of the XOR gates, the consequent
I2D includes the product3 of the two bands in addition to the individual
bands. Figure 7 illustrates a scan chain modified through four XOR gate
insertions. In this example, the modifications corresponding toB

1
3 and

B
1
4 overlap; there is no other overlapping among the four XOR gates, re-

sulting in a number of product bands with no more than three terms each.
The band list representation and the resultingI2D matrix are provided
in figure 7 as well.

6. ALGORITHMIC FRAMEWORK
Having identified the impact of inverter and XOR gate insertion on test

data transformations, in this section we present algorithms for test power
minimization through the implementation of the transformation that op-
timally maps any given set of test vectors and responses. Specifically, the
proposed test power minimization algorithms consist of two subroutines;
the first one identifies the optimal test data transformation based on the
test set, while the second one identifies the scan chain modification with
minimal area that implements the optimal transformation.

In the following subsections,IS represents the matrix whose rows are
composed of the transformed stimuli and can be obtained by the right-
multiplication of TV , the test vector matrix, byD2I. It can be seen
that TV � D2I = IS and equivalentlyTV = IS � I2D. Similarly,
OR represents the matrix whose rows are composed of the transformed
responses and can be obtained by the right-multiplication ofTV R, an
augmented matrix consisting of the concatenation of test vector and re-
sponse bits, byC2O, so as to account for the fact that observed response
bits depend on test stimulus and captured response bits. As the trans-
formed response bits depend on all the bits of the subsequent test vector
except the leftmost bit,TV R does not contain the leftmost bit of the test
vectors. Furthermore, in the augmented matrix, each test response vector
is located in the same row with the subsequent test vector.

The transitions between two consecutiveIS (OR) columns can be
computed by XORing the two columns bitwise, forming the correspond-
ing transition column; each transition column entry denotes the boolean
expression that represents whether a transition exists between the asso-
ciated transformed test data bits.

6.1 Optimal Test Data Transformation
In this subsection, we present the proposed algorithm for identifying

the optimal test data transformation; the algorithm searches for theI2D
matrix that yields the transformed test data,IS andOR, with maximized

3Simple matrix algebra manipulations yieldBd1
i1
� Bd2

i2
= B

d1+d2
i2

for
the product of two bands.
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transition frequency skew. The maximization of the transition frequency
skew inIS andOR is performed in an intertwined manner, computing
anI2D matrix that minimizes overall test power.

To enable an efficient search for the optimalI2D matrix, theD2I
andC2R entries are represented in terms of theI2D entries; the com-
putation of these matrix entries is performed based on the relationships
presented in section 5.1. An example that illustrates this computation is
provided in Figure 8 for a scan chain consisting of 4 scan cells; the reader
can verify that the relationships provided in Equation 2 and Figure 6 are
satisfied by the matrices in Figure 8.

The proposed algorithm then proceeds by transforming the test vec-
tors and responses through matrix multiplication operations. The trans-
formed test data entries are computed in terms ofI2D entries. The
transition columns are subsequently obtained by taking the column-wise
XOR of the transformed test data columns. The example in Figure 9 il-
lustrates the computation of the first two transition columns associated
with the transformed test data,IS andOR, for the given set of test vec-
tors and responses.

As the optimization criterion consists of transition frequency skew
maximization, theI2D entries should be assigned so as to set the en-
tries of each transition column to all 0’s or all 1’s. Two systems of equa-
tions are formed, consequently, one for minimizing and one for maxi-
mizing the transition frequency in a transition column. The stimulus and
response transition columns are handled in an interleaved manner. To
account for the fact that distinct transition columns have distinct con-
tribution to the power cost, the transition columns with larger contribu-
tions are handled earlier; a stimulus transition at bit positioni toggles
i� 1 scan cells, while a response transition at the same location toggles
N � i � 1 scan cells, withN denoting the number of scan cells. The
rightmost stimulus transition column and the leftmost response transi-
tion column are therefore handled initially. Subsequent to the assignment
of the I2D entries in handling a transition column, the other transition
columns are updated.

In each step, the number of equations equals the number of test vec-
tors (responses). The variables in the system consist of theI2D entries
corresponding to the column being handled. The solution of a system
of equations can be identified through the Gaussian elimination tech-
nique [15] if a solution exists. If both systems of equations fail, theI2D
entries are assigned, by using a linear dependency based heuristic, so as

Circuit Power Reduction (%) Area Cost (%)
s713 66.3 14.2
s953 45.2 12.1

s1423 71.3 8.9
s5378 69.3 9.2
s9234 68.7 7.3

s13207 70.4 12.1
s15850 73.4 11.0
s35932 84.5 7.2
s38417 76.3 9.8
s38584 78.8 10.5

Avg. 70.4 10.2

Table 1: Power reductions attained by the proposed methodology

to satisfy the maximal number of equations; the equations that cannot
be satisfied contribute to the power cost. The system of equations which
has the largest number of equations satisfied is selected for assigning the
I2D column entries.

To account for the stringent area and layout constraints, the proposed
algorithm can be slightly modified. Additional constraints may be incor-
porated into the algorithm by restraining the number of discontinuities in
I2D bands incurred when handling the transition columns. As these dis-
continuities reflect into XOR taps, the incorporation of such a constraint
enables the exploitation of the power-area tradeoff.

6.2 Minimal Area Implementation
In this subsection, we provide an algorithm for implementing theI2D

matrix withminimal area overhead. In Section 5.2, we have shown that
overlapping and non-overlapping XOR gate insertions have distinct im-
pact, as an additional product term is introduced in the latter case. The
implementation of theI2D matrix at minimal area cost necessitates the
selection of the best possible configuration at every step. Yet predicting
whether the existence of a product band is beneficial in realizing higher
degree bands is a challenging issue; not only the individual impact of the
product band but furthermore its interference with other bands should be
accounted for as well. We therefore utilizedecision variableswhenever
a decision is to be made regarding whether an XOR tap is to be con-
figured as overlapping or nonoverlapping. As the consequent decision
variables become a part of theI2D bands implemented, the existence
of some XOR taps introduced in the subsequent steps depends on how
these decision variables are assigned. As many conditional XOR taps as
possible are eliminated by appropriately setting the decision variables,
realizing the minimal area implementation.

The algorithm processes a singleI2D band in each step. The bands
closer to the diagonal are handled earlier, as the product of a number of
lower-indexed bands results in a higher indexed one. After each step, the
I2D matrix implemented so far by the XOR insertions is updated so as
to account for the product bands as well. The band that the algorithm
is to implement in theith step therefore consists of the difference of the
i
th
I2D band and theith band of the matrix that has been implemented

so far by the XOR gate insertions, with the difference computed simply
as an XOR operation of the band lists. In every step, the XOR gates that
help implement the band being handled are inserted into the scan chain.
Whenever a decision is to be made regarding whether an XOR tap is to
be configured as overlapping or nonoverlapping, a decision variable is
bound to this XOR configuration. The bands implemented by the XOR
insertions therefore depend on the decision variables. Subsequent to han-
dling all the bands, the decision variables are assigned so as to minimize
the number of XOR taps.

7. EXPERIMENTAL RESULTS
The proposed test power reduction scheme has been applied to sev-

eral fully-scanned circuits in ISCAS89. The fully specified test sets that
are used to compute the test power reductions achieved by the proposed



Consecutive Scan Chain Optimal
Circuit Inverters [11] X(N)ORs [12] Partitioning [6] Scan-in [13] Proposed

s713 16.0 18.7 45.5 41.3 66.3
s953 9.7 11.6 40.3 16.3 45.2

s1423 8.5 10.4 51.9 44.2 71.3
s5378 8.4 10.2 38.0 43.8 69.3
s9234 11.2 12.5 42.6 36.1 68.7

s13207 9.6 10.3 39.1 45.2 70.4
s15850 13.5 16.2 53.9 47.3 73.4
s35932 10.1 11.3 47.9 49.2 84.5
s38417 10.6 12.4 49.4 46.3 76.3
s38584 11.2 13.2 50.2 48.8 78.8

Avg. 10.9 12.7 45.9 41.9 70.4

Table 2: Comparison of test power reduction percentages

methodology are generated by ATALANTA [16].
Table 1 demonstrates the test power4 reductions attained by our method-

ology along with the area costs. The second and the third columns depict
the test power reduction percentages for fully specified test vectors and
the associated area costs, respectively. On the average, more than 70%
reduction is attained by the proposed methodology. An interesting obser-
vation is that the test power reduction percentages increase as a function
of circuit size, as can be seen in the three largest circuits, all exceeding
75% reductions, boding well for real industry SOCs.

Table 2 presents the test power reduction comparisons in the case
of fully specified test vectors against various previously proposed tech-
niques [11, 12, 6, 13]. The scan chain modification methodologies in [11,
12] constrain the impact of scan chain modifications within blocks. The
experimental results confirm the benefit of eliminating the block-contained
impact constraint on XOR gate insertions; the ability to use any possi-
ble scan chain modification siginificantly enhances the test power reduc-
tions. The proposed methodology is also compared against a scan chain
partitioning methodology [6], which attains appreciable test power re-
ductions at the expense of increased test control complexity. This tech-
nique constitutes an orthogonal approach that can be applied in conjunc-
tion with the methodology we propose. Finally, the proposed methodol-
ogy is compared against the scan chain modification technique in [13],
which attains optimal scan-in power reductions; as scan-out power is not
handled in [13], the proposed methodology significantly outperforms [13]
in terms of overall test power reductions.

8. CONCLUSION
In this paper, we propose a test power reduction methodology for SOC

cores, enhancing parallelism among core tests and hence cutting down
SOC test time. The methodology we propose is based on the power-wise
efficient transformation of a given set of test vectors and responses into
a new set of inserted stimuli and observed responses. Such a transforma-
tion is realized by inserting bijective gates between the scan cells.

We have individually analyzed the impact of XOR/inverter gate in-
sertion on test stimulus and response transformations realized and the
consequent interrelationships between these transformations. We have
formulated these relationships through matrix-based equations, which in
turn give rise to the implementation of an algorithm that reduces both
scan-in and scan-out power simultaneously. The algorithm we propose
handles stimulus and response transformations in an intertwined manner,
minimizing overall test power.

The methodology we propose has the capability of realizing any bi-
jective test data transformation, as the novel matrix band based algebra
we have developed models the impact of XOR/inverter insertion on the
actual test data transformation realized. The implementation of the best
possible test data transformation through the insertion of logic gates at

4Test power reductions are computed based on the number of scan chain
transitions; it has been shown in [8] that the number of scan chain tran-
sitions and the actual test power dissipation are strongly correlated.

appropriate locations is thus enabled. The hardware implementation can
be performed cost-effectively as the algorithm we have developed is ca-
pable of identifying the minimal area cost solution.

To demonstrate the efficacy of the proposed approach, we have ap-
plied it on several ISCAS89 benchmark circuits. The experimental re-
sults indicate the benefits of the proposed scan chain modification. Espe-
cially for larger benchmark circuits, test power reductions up to 85% for
fully specified test vectors are attained, strongly favoring the proposed
methodology over the previously proposed techniques.
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