
Aspects of Formal and Graphical Design of a Bus System

Tiberiu Seceleanu
University of Turku, Dpt. of Information Technology

Turku, Finland
tiberiu.seceleanu@utu.fi

Tomi Westerlund
Turku Centre for Computer Science

Turku, Finland
tomi.westerlund@utu.fi

Abstract

This study shows the derivation of a local segmented bus
arbiter from an original single segment bus arbiter. The
operations are performed in the formal framework of ac-
tion systems and illustrated in a graphical manner using
the corresponding action systems – UML profile notations.
The derivation is useful both to demonstrate the capabil-
ity of preserving correctness when considering an impor-
tant hardware design decision and also to identify means
through which this kind of decisions can be performed in a
graphical environment.

1 Introduction

The complexity of modern day digital systems, stimu-
lated by the latest advances in technology, leads often to
problems concerning the correctness of the development
flow. On one hand, modular design is one of the solutions
towards partially reducing the task of the designer of com-
plex systems, while on the other hand, the employment of
formal methods in system design tries to solve the aspects
related to correctness. However, the pressure imposed by
time-to-market aspects usually does not leave enough time
for thorough analysis of designs, before they are shipped.
Additionally, the often heavy mathematical apparatus be-
hind formal method frameworks still forbids the expected
wide usage of such approaches in system design.

In this situation, the Unified Modeling Language (UML)
[11] emerged lately as one possible candidate design en-
vironment which provides a fast learning curve combined
with certain capabilities for formal analysis. UML provides
a set of “intuitive” graphical and textual description tech-
niques that are supposed to be easily understandable for
both system developers and expert users working in the ap-
plication domain. Most attractive for us is the graphical no-
tation and the possibility to adapt it to an already developed
design style. The latter feature comes in extremely handy,
because UML is, in fact, grossly imprecise [10].

Action Systems [1] is a state-based formalism, relying on
an extended version of Dijkstra’s language ofguarded com-
mands[4]. This study is a continuation of previous work
presented in [9], which defines a UML profile for Action
Systems. We use as a case study the segmented bus arbiter,
also described previously in [5]. In the following sections,
we show how an existent (single segment) bus arbiter de-
scription can be correctly transformed into a local segment
bus arbiter. For this, we apply both the UML profile and
action systems techniques.

2 The Segmented Bus Platform

The growing diversity of system-on-a-chip (SOC) de-
vices brings up an immense number of possible interfaces.
In many situations, both the system design and performance
are limited by the complexity of the interconnection be-
tween the different modules and blocks that are integrated
into those chips. Furthermore, different data transfer speeds
are required as well as parallel transmission. A usual bus,
where only one module can transmit at a time, is slow, due
to large capacitive load caused by the interfaces of the mod-
ules that are attached to it and the long physical length.

A solution to the above mentioned problems is a seg-
mented bus design combined with a globally asynchronous
locally synchronous (GALS) [3] system architecture. In this
approach, each distinct module of a SOC system is synchro-
nized to a local clock, whereas interactions between those
modules are arranged asynchronously. A segmented bus is
a bus which is partitioned into two or more segments. Each
segment acts as a normal bus between modules that are con-
nected to it and operate in parallel with other segments.
Segments can be connected / disconnected dynamically to
each other in order to establish connection between modules
located in different segments. Therefore, this structure is
more flexible than the usual one (AMBA-like, for instance),
where bridges may be interpreted as segments. All dynam-
ically connected segments act as one single bus. Due to the
segmentation of this resource, parallel transactions can take
place, thus increasing the performance. Details about the

1

1530-1591/04 $20.00 (c) 2004 IEEE

segmented bus principles and implementation can be found
in [5].
Segmented Bus Architecture.The segmented bus struc-
ture is simply illustrated in Figure 1. Everysegment is
composed of a group of masters, a group of slaves, a seg-
ment arbiter (SA), the physical lines (address, data, request,
acknowledge and read / write lines) and aninter-segment
bridge controller. The segments with their components act
as a stand-alone busses operating in parallel, masters mostly
asking services from the group of slaves placed within the
confines of one segment. Occasionally, one master may re-
quire services from a slave connected to another bus seg-
ment. In this situation, the local arbitration unit forwards
the request to a central arbitration module, in order to es-
tablish an inter-segment connection.

The central arbiter (CA) stores the information regard-
ing the current situation of the segments: what segments
are participating in an inter-segment transaction, what new
requests are pending for an inter-segment access. Based on
this information, theCA decides if there is a change in the
ownership of certain segments and delivers the appropriate
control signals to the involved modules.

0
j j n-1

0 j n-1

Figure 1. Segmented bus structure.

Operations on a Segmented Bus.There are three modes in
which operation on a specific segment may proceed, from
the point of view of local arbitration. These modes depend
on the localization of the master requesting the bus and the
slave. Thus, we have (i) alocal master – local slave situa-
tion, (ii) a local master – external slave situation and (iii) a
external master – local or external slave.

In all the situations, the master that is granted the access
to the bus connects to the slave following a four-phase sig-
naling protocol. Therequest part is also visible to theSA
residing in the same segment as the master. Thus, theSA
supervises the access of the master to the bus by counting
the number of transfers, in cases (i) and (ii) above.

A more detailed block description of segment compo-
nents and signals is given in figure 2.

3 Action Systems

Back and Kurki-Suonio [1] introduced the action sys-
tems formalism, providing a framework for specifying and
refining concurrent programs. Anaction system(AS,
henceforward) is in general a collection ofactions or
guarded commands, which are executed one at a time. The

nom

s

s

s

nom

s

s

s

nom nom

Figure 2. The Segment Control Elements.

Action Systems is used for specification and correctness
preserving development of reactive systems.

An action A is defined (for example) by

A ::= x := x′.R (nondeterministic assignment)
A1 8 A2 (nondeterministic choice)
A1; A2 (sequential composition)
A1 � A2 (prioritized composition)

whereR is a predicate,x is a variable or a list of variables,
andA1 andA2 are actions. Semantically, an actionA is de-
fined by theweakest precondition for A to establish some
post-conditionQ, denotedwp(A,Q). In this paper, we re-
gard an actionA as being of the formg → S, whereg is
theguardof the action, given bygA =̂¬wp(A, false), and
S is the action body. An action is said to beenabled, if
its guard istrue, disabled otherwise. Actions are consid-
eredatomic, meaning that whenever one is selected for ex-
ecution, it will be completed without interference. Atomic
actions may be part ofnon-atomic action compositions, in
which case, the execution of the whole composition is inter-
rupted after the execution of one of its enabled components.
Additionally, thequantified compositionof actions is de-
fined by[∗i = 0 . . . n : Ai] =̂ A0 ∗ A1 ∗ . . . An, where∗ can
be any of the allowed operators.

An action system is a composition of (non-atomic) ac-
tions, describing a certain behavior. As long as the system
contains enabled actions, one of them may be selected for
execution, after which actions in other systems may be exe-
cuted.
Refinement.Action systems are meant to be designed in a
stepwise manner within therefinement calculusframework
[2]. The refinement calculuspreserves the correctness of
the actions during refinement procedure.

The (atomic) actionA is said to be(correctly) refined
by actionC, denotedA ≤ C, if ∀q.(wp(A, q) ⇒ wp(C, q))

holds. This is equivalent to the condition∀p, q.((p A q) ⇒
(p C q)), which means that theconcreteactionC preserves
every total correctness property of theabstractactionA.

In the next sections we will make use of some rules based
on refinement relations, which we introduce in the follow-
ing paragraphs.
Rule 1 – Data Refinement.Assume two actionsA andC
with variablesa, u andc, u, respectively. LetR(a, c) be a

2

boolean relation between the variablesa andc. The abstract
actionA is data-refinedby the concrete actionC using the
abstraction relationR(a, c), denotedA ≤R C, if

∀q.(R ∧ wp(A, q) ⇒ wp(C, ∃a.R ∧ q)) (1)

holds. The predicate∃a.R∧ q is a boolean condition on the
program variablesa andc.

This rule formalizes a very common practice in HW de-
signs. For instance, it is usual to change data types dur-
ing design steps that change the view of the system from
abstract to more concrete levels. Hence,integers could be
represented asbit-vectors, or simple data structures can be
transformed into more complex ones, as we illustrate in
forthcoming sections.
Rule 2 – Prioritized composition. The prioritized com-
position defined in [7] offers us the possibility to concisely
impose precedence of some actions / action systems over
others. It is clearly a natural solution for situations encoun-
tered in a bus based design, where at least in the arbitration
process granting the next owner of the bus follows certain
priority schemes.

Briefly, the prioritized composition of two actions is ex-
pressed in terms of the non-deterministic choice as:A �
B =̂ A 8 ¬gA → B. The result of interest to us is the
fact that always, a nonprioritized compositionA‖B can be
turned into a prioritized one, for instanceA � B, by merely
strengthening the guard of the less important action. Hence,
always:

A 8 B ≤ A � B (2)

Rule 3 – Distributivity of sequence over the choice.Con-
sidering the statements present in our design as conjunctive,
monotonic predicate transformers [2], we benefit in our rea-
soning of the following rule, describing the distributivity of
the sequence over the choice operator:

(A 8 B); C = (A; C) 8 (B; C) (3)

There are several other rules that we will consider in the
forthcoming sections, such as the introduction of a local
variable, the introduction or the removal of an empty state-
ment, for which we do not offer detailed exemplifications.
They may be found elsewhere [2, 8].

4 UML Profile for Action Systems

The UML profile for Action Systems is a graphical nota-
tion intended to ease the designer’s burden by offering a vi-
sual representation of the system under development. With
this graphical representation the designer can compose the
system and manage large complex systems easier. The op-
erators connecting the actions and the action systems are
clearly visible in the graphical representation and thus the

overall functionality becomes apparent. The profile cus-
tomizes and extends specific UML type for every action
system operator and defines a notation for them.
A Graphical Notation. Table 1 shows part of the graphical
notation specified in the profile.

Table 1. Notation of actions
Name Notation AS Meaning

Atomic Action A

Atomic Sequence A; B

Non-Atomic Sequence A; B

Non-Deterministic Choice A 8 B

Prioritised Composition A � B

The notation presented in table 1 is consistent with
the action characteristics described in section 3: the full
dots and arrow-heads correspond to atomic compositions,
while the other line terminations correspond to non-atomic
constructs. Notice that the graphical representations for
the choice and prioritized composition correspond to non-
atomic situations.

Within a system, the next action to be selected for exe-
cution is given by the operator semantics.
Graphical refinement. One of the intentions behind select-
ing UML as a partner language when developing action sys-
tems design was the existence of a graphical environment.
However, images by themselves can not ensure the correct-
ness of necessary transformations from high levels of ab-
straction to implementation and therefore, a textual notation
of the system should be available at any time. Changes that
are made in the graphical notation must be checked under
refinement calculus rules, so that the target system will be
a correct implementation of the original one. On the other
hand, during the system design flow, there is a relatively re-
duced set of transformations that help the designer reason
about operations to be performed in order to select among
different levels of representation. Hence, in the following,
we intend to map some cases of refinement rules into equiv-
alent graphical transformation rules.
Rule G1. Choice to prioritized composition. This rule
illustrates the change of a nondeterministic choice compo-
sition into a prioritized composition, as shown in figure 3.

Figure 3. Prioritizing actions.

Rule G2. Distribution of sequence over choice.The rela-
tion 3 is visualized as shown in figure 4.

3

Figure 4. Atomic sequence distribution.

Rule G3. Non-atomic sequence and choice.We give as an
example here a rule that is easily suggested by the graphical
notation, and which can be proven within the action system
framework. Hence, we can extend the above illustratedRule
3 to non-atomic actions, in the way presented in figure 5.

Figure 5. Non-atomic sequence distribution.

5 Derivations

We intend to start our design starting from a single seg-
ment bus, where we have the descriptions of masters, the
slaves and the bus arbiter. The transformation towards a
segmented bus is transparent except for the arbiter, which
becomes asegment arbiter. The SA has to take into con-
sideration now a higher priority master, represented by the
CA. It will also have to consider idling for the period of
time when the segment is just a transmission line between a
winning master and its selected slave, both situated outside
the boundaries of the specificSAsegment.

In this section we concentrate on the granting activity
only. The notationsT andF stand for the boolean values of
true andfalse, respectively.
The segment arbiter.The operation of the arbiter on a sin-
gle bus system consists of two jobs. One is to grant the
requesting masters the access to the bus, whenever the pre-
vious owner finished the transfers. This is signaled by rais-
ing the linegr (gr := T). The second one is to supervise
the current owner so that the number of transfers does not go
over a specified limit. When this limit is reached, the master
is informed that it has lost the control. Hence, the variable
gr is reset (gr := F). With the help of the boolean variable
ack the arbiter also informs the masters that the decision on
the next owner of the bus is taken. If requesting masters did
not yet receive access to the bus, they are supposed to keep
on requesting.

While a granted master operates transfers on the bus, the
arbiter must not grant any other requesting master. Hence,
the supervision activity must have a higher priority than
granting. Thus, we have the graphical description offered

by Figure 6. This is also the starting point in transforming
the single bus arbiter into aSA.

Figure 6. Single bus arbiter.

The Grant Action. We start by considering that there is
a single master in the system. Replicating the action in a
proper manner will eventually describe the granting activity
for a larger number of masters. Hence, our derivation begins
with theGrant action (Fig. 7). Thus, whenever a master
requests the bus (req) and no other master is granted (gr =
F), then the arbiter may give access to resources (gr := T)
or not (skip – which means that leavesgr = F). After this,
theack line is set totrue. It is set back tofalse whenever
the master also reset thereq signal. Following this, a new
granting cycle may start.

Figure 7. The initial Grant action.

We apply Rule G2 to theGrant action and we obtain the
refined version,Grant1, as illustrated in Fig. 8

Grant1 =̂
(

req ∧ gr = F → (gr := T ; ack := T 8 skip; ack := T)
)

;¬req ∧ ack → ack := F

Figure 8. The action Grant1.

Next, consider the relation

R(gr, grant) =̂
(
gr = F ⇔ (grant = F ∨ grant = Hold))

∧ (gr = T ⇔ grant = T
)

The relationR specifies how we can replace the original
two-valued variablegr, with the new, three-valued, variable
grant. This is required because, when a local master re-
quests an external segment access, theSA cannot grant it
without asking theCA. Hence, it will first place the corre-
sponding grant line to a new value,Hold and will forward
the request to theCA. When theCA grants the access, it in-
forms the correspondingSA, which now forwards the grant
to the specific master. UsingR, we data refine the granting
action (Grant1 ≤R Grant1) as shown in Fig. 9.

We continue by introducing the variables which imple-
ment the communication with theCA, namelyreqC and

4

Figure 9. The action Grant1.

ackC . The first one is updated by theSA, while the second
is only read by theSA and written by theCA. We obtain the
actionGrant2 (Fig. 10).

Grant2 =̂
(

req ∧ (grant = F ∨ (grant = Hold ∧ ackC)) →

grant := T ; ack := T

8 req ∧ grant = F → grant := Hold; ack := T ; reqC := T
)

;¬req ∧ ack → ack := F

Figure 10. The action Grant2.

The arbiter differentiates a local segment request from
an external one by reading the slave address lines (SAddr)
provided by the requesting master. The own address
(lsegnr) is coded inside theSA. For simplicity, we denote
local =̂ SAddr = lsegnr. A new version of theGrant
action is then obtained – Fig. 11.

Grant3 =̂
(

req ∧ ((local ∧ grant = F) ∨ (grant = Hold ∧ ackC))

→ grant := T ; ack := T

8 req ∧ ¬local ∧ grant = F

→ grant := Hold; ack := T ; reqC := T
)

;¬req ∧ ack → ack := F

Figure 11. The action Grant3.

A master that needs to transfer data to / from a slave
placed in an external segment will wait considerably more
than a master requesting a local resource. In order to bal-
ance this aspect, we decide to give higher priorities to such
requests. In the same step, we applyRule 3. The result is
represented by actionGrant4.

Here is the point where we take into consideration the
existence of several masters within the segment. They are
numbered from0 to nom. Each masterj communicates
with theSA by means of a request signal,req[j] and slave
address linesSAddr[j]. TheSA updates for each master a
grant signal,grant[j]. Moreover, every master has access
to the uniqueack line used by theSA to signal termination
of a granting session. Thus, we replicate the granting ac-
tivity following a data refinement step which relates the ini-
tial variablesreq andgrant to their “vectorized” versions,
req[0 . . . nom] andgrant[0 . . . nom]. We use the abstrac-
tion relation:

Grant4 =̂

((
req ∧ grant = Hold ∧ ackC → grant := T ; ack := T

8 req ∧ ¬local ∧ grant = F → grant := Hold; reqC := T ;

ack := T
)
;¬req ∧ ack → ack := F

)

�
(

req ∧ local ∧ grant = F → grant := T ; ack := T

;¬req ∧ ack → ack := F
)

Figure 12. The action Grant4.

R1 =̂ (req = T ⇔ ∃j ∈ {0, . . . , nom}.req[j] = T)

∧ (req = F ⇔ ∀j ∈ {0, . . . , nom}.req[j] = F)

and we haveGrant4 ≤R1 Grant5 – Fig. 13.

Grant5 =̂
(([

8 j := 0 . . . nom : req[j] ∧ grant[j] = Hold ∧ ackC →

grant[j] := T ; ack := T
]

8
[

8 j := 0 . . . nom : req[j] ∧ ¬local ∧ grant[j] = F →

grant[j] := Hold; ack := T ; reqC := T
])

; ¬req[j] ∧ ack → ack := F
)

�
([

8 j := 0 . . . nom : req[j] ∧ local ∧ grant[j] = F →

grant[j] := T ; ack := T

; ¬req[j] ∧ ack → ack := F
])

nom+1 nom+1

nom+1

Figure 13. The action Grant5.

Observe that there is one situation which is not yet ex-
actly reflected in the above description. It corresponds to
the request coming from theCA to theSA, asking access
rights for another segment master, either to pass through the
segment, or to access a local resource. The channel devoted
to this communication is similar with the ones considered
by Grant5: the CA is just another local master from the
point of view of theSA. However, we just want to sepa-
rately identify this specific master, as we intend to place it
higher in the priority list. We identify it as the “master[0]”.
We assign to this master the highest priority. Notice further
that, actually, theCA does not provide requested segment
addresses. Hence, we may assume that it always requests
local access, therefore, the correspondinggrant line can not
be placed onHold. At the same time, we decide to replace
the variablesreq[0] and grant[0] by reqO andackO, re-
spectively (Fig. 14).

Grant7 =̂
([

8 j := 1 . . . nom : req[j] ∧ grant[j] = Hold ∧ ackC

→ grant[j] := T ; ack := T

8 req[j] ∧ ¬local ∧ grant[j] = F

→ grant[j] := Hold; ack := T ; reqC := T

;¬req[j] ∧ ack → ack := F
])

�
(

reqO ∧ ackO = F → ackO := T ; ack := T

;¬reqO ∧ ack → ack := F
)

�
[

8 j := 1 . . . nom : req[j] ∧ local ∧ grant[j] = F

→ grant[j] := T ; ack := T

;¬req[j] ∧ ack → ack := F
]

nomnom

Figure 14. The action Grant7.

5

The segment arbiter. An analysis similar to the one pre-
sented above (for theGrant action) is performed for the
Supervise action. The full representation of theSA is il-
lustrated in figure 15, where we also named the subcompo-
nents of theGrant7 action. The action system description
is given in [6].

LAckF =̂ ¬req[j] ∧ ack → ack := F

LAckFO =̂ ¬reqO ∧ ack → ack := F

RoAckC =̂ req[j] ∧ grant[j] = Hold ∧ ackC → grant[j] := T ;

ack := T

RoGr =̂ req[j] ∧ ¬local ∧ grant[j] = F → grant[j] := Hold;

ack := T ; reqC := T

EGr =̂ reqO ∧ ackO = F → ackO := T ; ack := T

LGr =̂ req[j] ∧ local ∧ grant[j] = F → grant[j], ack := T

Figure 15. The segment arbiter.

6 Conclusions

In this study we have shown how the action systems for-
malism is applied to correctly derive a segment arbiter spec-
ification from a single segment arbiter. The work is part of
a larger project that analyzes the realization of a segmented
bus, starting from high levels of abstraction down to imple-
mentation.

On the way, we also applied the graphical notations of
the action systems profile for UML. We described how the
precise rules of refinement can be translated into the graphi-
cal environment provided by this profile. However, we may
not say that one can directly use the visual environment to
fulfill all the requirements of a given design project. The
action systems representation should always be aside and
consulted at every step. A small step towards the relaxation
of this situation is illustrated by the translation of several
refinement steps into their graphical equivalents. Never-
theless, for the possible necessary data refinement steps we
found yet no solution as to their UML representation.

In this direction, further work concentrates on analyzing
possibilities to adapt the techniques of the action systems
framework to the environment provided by the Object Con-
straint Language [11]. Provided the changes in system rep-
resentation are correctly performed, the graphical descrip-
tion transformations, as the ones presented in the previous

section (Fig. 7 to Fig. 14) can be easily automated by using
OCL specifications. Thus, one could think of building a de-
sign methodology that would take advantage of the features
offered by the AS–UML profile.
Acknowledgements.The work presented in this study was
partly funded by the ITEA –Prompt to Implementation
project.

References

[1] R. J. R. Back and R. Kurki-Suonio. Distributed Coop-
eration with Action Systems.In ACM Transactions on
Programming Languages and Systems, Vol. 10, No.
4.1988, pp. 513-554.

[2] R. J. R. Back and J. von Wright.Refinement Calculus:
A Systematic Introduction. Springer–Verlag, 1998.

[3] D. M. Chapiro. Globally-Asynchronous Locally-
Synchronous Systems. PhD thesis, Standford Univer-
sity, 1984.

[4] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall International, 1976.

[5] T. Seceleanu, J. Plosila, P. Liljeberg. On-Chip Seg-
mented Bus: A Self Timed Approach. Proceedings of
the 15th IEEE ASIC/SOC Conference, 2002, pages
216-221.

[6] T. Seceleanu, T.Westerlund. Segment Arbiter As Ac-
tion System. Proceedings of SCS International Sym-
posium, 2003, pp 249-252.

[7] E. Sekerinski, K. Sere.A Theory of Prioritizing Com-
position. The Computer Journal, VOL. 39, No 8, pp.
701-712. The British Computer Society. Oxford Uni-
versity Press.

[8] K. Sere. Stepwise Derivation of Parallel Algorithms.
Ph.D. Thesis, Abo Akademi, Turku, Finland, 1990.

[9] T.Westerlund, T. Seceleanu. UML Profile for Action
Systems. To appear as a TUCS technical report, 2003.

[10] J. Whittle. Formal Approaches to Systems Analysis
Using UML: An Overview. InAdvanced Topics in
Database Research, ed. Keng Siau, pps. 324-341.

[11] OMG Unified Modeling Language Specification, ver.
1.4, September, 2001.

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

