
Modeling and Validating Globally Asynchronous Design in

Synchronous Frameworks

MohammadReza Mousavi1, Paul Le Guernic2, Jean-Pierre Talpin2,

Sandeep Kumar Shukla3, Twan Basten1

1 Eindhoven University of Technology, Eindhoven, The Netherlands

2INRIA/IRISA, Rennes, France 3Virginia Tech., Blacksburg, USA

Abstract

We lay a foundation for modeling and validation of asynchronous

designs in a multi-clock synchronous programming model. This

allows us to study properties of globally asynchronous systems

using synchronous simulation and model-checking toolkits. Our

approach can be summarized as automatic transformation of a

design consisting of two asynchronously composed synchronous

components into a fully synchronous multi-clock model preserv-

ing behavioral equivalence. The ultimate goal of this research

is to provide the ability to model and build GALS systems in a

fully synchronous design framework and deploy it on an asyn-

chronous network preserving all properties of the system proven

in the synchronous framework.

1. Introduction

Synchronous languages have been extensively used in the
(co-)design of software and hardware systems [4]. Applying
synchronous languages to real-world designs revealed their
strong and weak points over time. Abstract and easy to
learn and use syntax, formal and succinct semantics (which
paved the way for efficient simulation and verification tools)
are among the strong points of such languages. However,
the synchronous assumption turns out to be a limiting fac-
tor. On one side of the spectrum, in distributed real-time
systems, providing a single, fully synchronized clock over
distributed nodes may be very expensive or actually infea-
sible. On the other side of the spectrum, in nano-scale
system design, the propagation delay of the clock over the
chip size becomes a major obstacle in providing a single
synchronized clock. Thus, all these domains call for a mix
of synchronous and asynchronous design patterns.

Globally Asynchronous, Locally Synchronous (GALS) de-
signs have emerged in the recent years in response to the
above mentioned challenges and have received major atten-
tion from the system level design community. In GALS
design, the system is composed of synchronous components
that have their local synchronous clock structures and com-
municate using asynchronous schemes. There have been
several attempts to formalize GALS design (see for exam-
ple, [14, 3]).
Problem Statement. In this paper, we address the prob-
lem of modeling and validating asynchronous composition
of synchronous components in the multi-clock synchronous
programming framework Signal. The main goal of such an

approach is to leverage the simulation and model checking
toolkit existing for such frameworks [1]. Our solution can
be seen as a formal methodology for composing existing
IP blocks, designed with synchronous assumptions, in an
asynchronous fashion to satisfy the demands of tomorrow’s
GALS designs.

Our approach can be summarized as developing a design
consisting of asynchronously composed components within
a synchronous framework. Since true asynchrony does not
exist in synchronous design frameworks, we seek for a desyn-
chronizing protocol to match the asynchronous model. Find-
ing such a protocol brings about the possibility of formally
investigating the behavior of synchronous components in
asynchronous environment.

In Section 2, we present some related work. Section 3
contains definitions of the Signal language. Subsequently,
we define an ideal desynchronizing protocol using unbounded
FIFO channels and prove it correct in Section 4. Since an
unbounded FIFO channel cannot be implemented in Sig-

nal , this protocol is only an ideal model but it can be
used as a reference model for other non-perfect desynchro-
nization protocols. Then, we provide the conditions under
which this design can be refined to a network of bounded
and thus implementable FIFO channels. In Section 5, we
propose an implementation by defining the FIFO channels
present in a design to estimate the appropriate FIFO chan-
nel size in practice. Finally, Section 6 summarizes the re-
sults and presents the concluding remarks.

2. Related Work

In [2], distributing Signal programs is studied under
synchronous conditions. Since all components are assumed
to work with a single master clock, there, the size of the
buffer is naturally restricted to one. In [16], the problem of
decomposing Signal programs into components is studied
and a handshaking mechanism is proposed for the asyn-
chronous communication among components. Our work
extends the results of [2, 16] to asynchronous settings where
handshaking is removed or reduced to some extent.

In [14], the issue of communication-based design is ad-
dressed. It introduces the idea of Behavior Adapters in
order to interface two (possibly mismatching) input and
output signals. FIFO queues are then proposed as primi-
tive communication channels. It is claimed there that un-
bounded FIFO channels are ideal communication mecha-
nisms for asynchronous designs (expressed as Abstract Co-

1530-1591/04 $20.00 (c) 2004 IEEE

Design Finite State Machines or ACFSMs for short). Then
ACFSMs are refined into ECFSMs (for Extended CFSMs)
which contain a network of bounded FIFO channels and a
blocking mechanism or a lossy channel to overcome the rate
mismatch problem.

Our contribution to the work of [14] can be summarized
in the following two issues: First, we formalize the concepts
of asynchronous design in the Signal model. This formal-
ization provides us the possibility to prove the claim of ideal
asynchrony with unbounded buffers and the conditions for
refining it to bounded buffers. Secondly, we propose a prac-
tical design to estimate the size of buffers in the refined
design so that we can decrease the amount of blocking for
normal system behavior.

The work of Berry and Sentovich in [5] studies the issue
of asynchronous interaction between synchronous Esterel
programs. There, the authors solve the problem of over-
writing messages due to asynchrony by blocking the sender
when the single-place buffer is full. Although in this way
the buffer size is restricted to 1, the parallelism and pipelin-
ing is decreased.

In [7], distribution of synchronous sequential programs
(in the style of Esterel programs) is discussed. In this ap-
proach, the asynchronous interaction between the compo-
nents is encapsulated in send and receive commands and
the main effort is invested in exploring the appropriate
places for send and receives in order to minimize commu-
nication and maximize parallelism. However, the issue of
buffer sizes is left implicit and remains to be addressed by
investigating the semantics of (asynchronous) send and re-
ceive commands which in one way or the other involves this
issue.

Implementing asynchronous systems using synchronous
languages is also studied in [8]. After defining a generic
semantic model for synchronous and asynchronous com-
putation, the attention is focused on implementing com-
munication mechanisms such as mutual exclusion mecha-
nisms and rendez-vous. Although these mechanisms can be
very handy in asynchronous system design, the paper does
not suggest any process starting from synchronous compo-
nent designs and arriving in components instrumented with
these structures. This is one of the goals of the present pa-
per (with respect to FIFO channels).

The work of [9] models asynchrony (interleaving seman-
tics) in the I/O Automata model using a synchronous com-
munication mechanism. However, due to differences be-
tween the models of computation (such as the input en-
abling assumption in I/O Automata), the notion of buffer is
internalized inside the semantics of [9] and is not addressed
explicitly.

3. System Design in Signal

The abstract syntax of core Signal is given in Figure
1. In this syntax, a Signal program is decomposed into
several components. Components are assumed to work syn-
chronously and in parallel. Decomposition of a Signal pro-
gram can be the result of reusing a number of COTS (Com-
mercial Off The Shelf) components or decomposition tech-
niques based on graph partitioning (see for example [12,

16]). A single component consists of a number of signal
definitions (we omit component names when it causes no
confusion). The set of all signal names is denoted by X
with typical members x, y, z, There are a few prim-
itive operators in Signal allowing for definition of basic
processes. The expression x = pre val y defines that the
signal named x holds the previous value of signal y, and
it is initially set to val (thus, x and y are synchronous).
The equation x = y when z defines x to have the value of y
when z is present and true; otherwise x is undefined. The
equation x = y default z defines x by y when it is present
and otherwise by z.

Program ::= PName = Component |
Component ||s Program

Component ::= CName : Expressions
Expressions ::= Expression | Expression,Expressions
Expression ::= x = pre val y |

x = y when z |
x = y default z |
x = f(y, z, . . .)

Figure 1. Abstract Syntax of Signal

Apart from primitive operators, we assume existence of
a number of arithmetic operators represented by f (and
in particular, equality, denoted by ==) that performs a
computation on synchronously available arguments. In our
examples of Signal programs, we use ∧x as a shorthand
for true when (x == x) meaning ”the clock of x”. We use
nested definition of signals as a shorthand for a number of
signal definitions.

Example 1 (One-Place Buffer) To specify a single place
buffer, first we give a specification of a single cell memory,
as follows:

data = msgIn default (pre 0 data)
msgOut = data when ∧msgOut

The above program allows for independent read and
write accesses (denoted by msgIn and msgOut) and the
memory cell keeps the last written value and is initialized
to 0. The independence between the rate of input and out-
put signals shows the essence of polychrony in Signal de-
sign. This provides us the possibility for desynchronizing
designs. To change this initial specification to a single place
buffer where causality between reads and writes are forced
and the first in first out principle is observed, we have to
make the following changes to the program:

data = (msgIn when (not full)) default
(pre 0 data)

msgOut = data when (∧msgIn default full)
in =∧msgIn default false
out =∧msgOut default false
full = ((pre in false) ∧ not(pre out false)) default

(pre full false)
∧data = (∧msgIn default ∧msgOut) default ∧full
∧full =∧in = ∧out

Schematic view of the one-place buffer, specified above,
together with a sample behavior of this program is depicted
in Figure 2. This program only writes the value of input
into the buffer if the buffer is not full, and only allows to
take the data from the output, if the buffer contains some

[[x = pre val y]] = {b|{x,y}|tags(b(x)) = tags(b(y)), b(x)(t(b(y)1)) = val, ∀i ∈ IN, b(x)(t(b(y)i+1)) = b(y)(t(b(y)i))}

[[x = y when z]] = {b|{x,y,z}|tags(b(x)) = tags(b(y)) ∩ {t|t ∈ tags(b(z)) ∧ b(z)(t) = true}, ∀t ∈ tags(b(x)), b(x)(t) = b(y)(t)}

[[x = y default z]] = {b|{x,y,z}|tags(b(x)) = tags(b(y)) ∪ tags(b(z)),
∀t ∈ tags(b(x)), (b(x)(t) = b(y)(t) ∧ t ∈ tags(b)(y)) ∨ (b(x)(t) = b(z)(t) ∧ t /∈ tags(b(y) ∧ t ∈ tags(b)(z)))}

Table 1. Semantics of elementary Signal equations

data. The buffer is initially set to be empty and becomes
full when a data item is written to it provided that it is not
taken out at the same moment.

1Fifo
msgIn

full

msgOut

msgIn 1 2 3
in false true true false false true

full false false true true false false
data 0 1 1 1 1 3
out false false false true false true

msgOut 1 3

Figure 2. Sample behavior of a 1-place buffer

In this paper, we use the tagged model [11] of the Sig-

nal language (see [10] for a detailed explanation of Sig-

nal and its semantics). The agged model of [10] defines
behavior of a Signal process (program) in terms of inde-
pendent signals that may have different time scales. Thus,
in this polychronous model, time is not necessarily linear.
Denotation of a Signal process is defined as follows.

Definition 1 (Denotation of a Process) Time is taken
from a set T (called tags) with a partial order �. This no-
tion of time allows for specification of distributed processes
with local clocks (possibly with different rates) and syn-
chronization points. Events are values of a signal at points
of time (taken from a given set V , here we use integers and
booleans as possible values for events). The set of events
ε = T × V is a relation between tags and values (V). We
denote the time of event e by t(e). A signal s ∈ S : T → V
is a partial function defining the value of a signal over a
discrete chain of tags , denoted by tags(s) (thus, events in
a signal are internally ordered and their tags are assumed
to be well-founded). For a signal s, we denote its i’th event
(i ∈ IN) by si and the sub-chain of length n + 1 starting
from i’th event by si...i+n. The set of events of signal s up
to the point t is denoted by [s]t and the length of the chain
of signal s is denoted by |s| ∈ IN ∪ {∞}. In this paper, we
are concerned with processes containing infinite (reactive)
behavior.

A behavior b ∈ B : X → S is a partial function defin-
ing signal values for different signal names from the set X.
The domain of a behavior b is denoted by vars(b) and rep-
resents signal names taking part in this behavior. A process
P ⊆ B is a set of behaviors over a common set of signal
names defining different possible behaviors of a program (a
component). Two processes P and Q are equal (P = Q)
if they contain the same set of behaviors. Projection of a
behavior b on a set of variables var ⊆ X (denoted by b|var)

is defined by restricting the domain of the behavior to var.
Projection of a process P on var (denoted by denoted by
P|var) is defined by projection of all its member behaviors.
Its dual, denoted by b\var (similarly, P\var), is a short-hand
for b|vars(b)\var.

Semantics of basic equations in Signal is defined in Table
1, in terms of the denotation of the basic processes.

Definition 2 (Stretching and Stretch-Equivalence) A
behavior c is a stretching of behavior b denoted by b ≤ c
if and only if vars(b) = vars(c) and there exists a bijection
f : T → T such that

1. ∀t, u ∈ T, t � u ⇔ f(t) � f(u)

2. ∀t ∈ T, t � f(t)

3. ∀x ∈ vars(b), tags(c(x)) = f(tags(b(x)))

4. ∀x ∈ vars(b),∀t ∈ T, b(x)(t) = c(x)(f(t))

Intuitively, stretching changes the time scale of behav-
iors while preserving the causal orderings and event syn-
chronizations. Two behaviors b and c are stretch equiva-
lent, denoted by b ≶ c, if and only if there exists a behavior
d such that d ≤ b and d ≤ c. The definition of stretch-
ing and stretch equivalence is extended to processes using
element-wise comparison of member behaviors. Stretch clo-
sure of a process P is denoted by P ∗ and is defined as
{b|∃c ∈ P, b ≶ c}. A process P is stretch-closed if and only
if P ∗ = P .

Definition 3 (Synchronous Parallel Composition) Se-
mantics of synchronous parallel composition (denoted by
||

s
) is defined as follows:

P ||s Q = {d|X∪Y |∃(b, c) ∈ P × Q, d|X = b ∧ d|Y = c}

where X = vars(P) and Y = vars(Q).

Lemma 1 All Signal programs are stretch-closed.

Proofs of lemmas and theorems are omitted for brevity. See
[13] for proofs.

Definition 4 (Relaxation and Flow Equivalence) Be-
havior c is a relaxation of b, denoted by b v c if and only
if vars(b) = vars(c) and for all x ∈ vars(b), b|{x} ≤ c|{x}.
Intuitively, relaxation stretches different signals with possi-
bly different rates (which may not preserve causal ordering
and event synchronizations). Two behaviors b and c are flow
equivalent, denoted by b ≈ c, if and only if ∃d, b v d∧c v d.
Relaxation of processes is defined similarly by an element-
wise comparison of behaviors.

Definition 5 (Renaming Signals) Behavior b[y/x] (sim-
ilarly, process P [y/x]) is the result of renaming signal name
x by the fresh signal name y (y /∈ vars(P)) in b (similarly,
in all behaviors in P).

xp

p q

xq

xp → xq

Figure 3. Desynchronization: Schematic View

4. Desynchronization

The aim of this section is to give an implementation (a
concrete way of modeling) of asynchronous parallel com-
position in Signal using synchronous (polychronous) con-
structs. We start with defining the notion of asynchronous
parallel composition and restrict it to a causally ordered
distributed setting. Then, we show that replacing explicit
data dependencies of two components with an unbounded
FIFO buffer is a correct implementation of asynchronous
causal parallel composition. Then, we set out to replace
the unbounded FIFO with FIFO channels of a bounded
size. To do this, we investigate the conditions under which
this leads to a correct implementation.

4.1 Desynchronizing with Unbounded FIFOs

The main idea behind desynchronization is implement-
ing asynchronous parallel composition in Signal designs
using FIFO channels. Figure 3 depicts a schematic view of
desynchronization. In this process, we introduce a FIFO
channel for each data dependency instead of using a shared
variable for this data dependency and thus we relax the syn-
chrony between the two components. To prove correctness
of this approach, we start with proving the fact that if this
replacement is done by an unbounded FIFO channels, it is
indeed a correct implementation of an asynchronous-causal
parallel composition:

Definition 6 (Asynchronous Parallel Composition)
Asynchronous parallel composition of two processes P and
Q is defined as follows [10]:

P ||a Q={d|X∪Y |∃(b, c) ∈ P × Q,
d\Y ≶ b\Y ∧ d\X ≶ c\X∧
b|X∩Y v d|X∩Y ∧ c|X∩Y v d|X∩Y }

where X = vars(P) and Y = vars(Q). This definition de-
fines that when two processes are put in asynchronous par-
allel composition, their internal actions may be stretched
(due to different relative time scales of their local platforms)
and their common variables (their communication media)
may be stretched with different rate (denoted by relaxation
notation, due to different characteristics of communication
channels).

Corollary 1 For two stretch closed processes P and Q such

that vars(P) ∩ vars(Q) = ∅, it holds that P ||s Q = P ||a Q.

Definition 7 (Asynchronous Causal Parallel Com-
position) If two processes P and Q share a variable x
(x ∈ vars(P) ∩ vars(Q)), then there is an explicit data-
dependency between P and Q. A causal ordering between
P and Q (or vice-versa) on data-dependency x is denoted
by P ≤x Q (Q ≤x P , respectively). This means that P is
the producer of x and Q is its consumer (x appears only
in the right-hand-side of the assignments in P and in the
left-hand-side in Q). Note that in a general Signal pro-
gram, for a data dependency x, it is not necessarily true
that P ≤x Q or Q ≤x P . However, the above restriction is
not a strong constraint for most executable applications.

We define asynchronous causal parallel composition of
two processes (denoted by ||≤,a

) as follows:

P ||≤,a Q = {d|X∪Y |∃(b, c) ∈ P × Q,

d\Y ≶ b\Y ∧ d\X ≶ c\X

∧b|X∩Y v d|X∩Y ∧ c|X∩Y v d|X∩Y

∧∀x ∈ X ∩ Y, P ≤x Q ⇒ b|{x} ≤ c|{x}

∧∀y ∈ X ∩ Y, Q ≤y P ⇒ c|{y} ≤ b|{y}}

The above definition, as asynchronous parallel composi-
tion, allows for asynchronous communication and stretch-
ing internal behavior of processes. Furthermore, it asserts
that if P depends on Q for x, it cannot read x before it is
written by Q, and vice versa.

Corollary 2 For two processes P and Q such that vars(P)∩
vars(Q) = ∅, it holds that P ||a Q = P ||≤,a Q.

Definition 8 (Asynchronous FIFO Channel) An (un-
bounded) asynchronous FIFO channel AFifox→y with input
port x and output port y is the smallest stretch-closed pro-
cess P satisfying vars(P) = {x, y} and P|{x} ≤ P|{y}[x/y].

Theorem 1 Suppose that P and Q are stretch-closed pro-
cesses and x is a shared signal produced by P and consumed
by Q (P ≤x Q), then

(P ||≤,a Q)\{x} =

((P [xP /x] ||≤,a Q[xQ/x]) ||s AFifoxP →xQ
)\{xP ,xQ}

Due to Theorem 1, if we continue the process of desyn-
chronization, we get a network of FIFO channels (named
R) such that: (P ||≤,a

Q)\I = ((P ′ ||≤,a
Q′) ||

s
R)\I′ ,

where I = vars(P)∩ vars(Q), P ′ and Q′ are results of iter-
ative replacements of explicit data dependencies with fresh
variables and I ′ is the set of such fresh variables. Since all
explicit data dependencies between P and Q are resolved
(vars(P ′) ∩ vars(Q′) = ∅), with the help of Corollaries 1
and 2, we achieve complete desynchronization as follows:

(P ||≤,a Q)\I = ((P ′ ||≤,a Q′) ||s R)\I′

= (P ′ ||s Q′ ||s R)\I′

However, an unbounded FIFO channel is only a semantical
object and does not have a corresponding Signal compo-
nent, neither is it implementable in embedded system de-
signs. Thus, we would like to replace the unbounded chan-
nel with a bounded one. This is certainly not possible in all
designs, however, we investigate this possibility in the next
section.

4.2 Desynchronizing Using Bounded FIFOs

To restrict the desynchronizing protocol to a network of
bounded FIFOs, we first specify the semantics of a bounded
network. Then, we give a semantic characterization of pro-
cesses that can show the asynchronous behavior if they are
composed using bounded FIFOs.

Definition 9 (Bounded N-FIFO) A bounded n-FIFO,
denoted by nFifox→y is the largest process P with vars(P) =
{x, y}, satisfying the following condition:

P ⊆ AFifox→y ∧ ∀b ∈ P, ∀t ∈ T, |[b(x)]t| ≤ n + |[b(y)]t|

The above definition specifies that a bounded n-FIFO should,
first, satisfy the FIFO characteristics and, second, at each
point of time the number of writes can deviate from the
number of reads so far by at most n. Next, we give the
characterization of processes that share only a single vari-
able and for which this explicit data dependency can be
replaced by a bounded FIFO buffer.

Lemma 2 If vars(P)∩vars(Q) = {x} then (P ||≤,a
Q)\{x}

= (P [xP /x] ||
s

Q[xQ/x] ||
s

nFifoxP →xQ
)\{xP ,xQ}, if and

only if:

1. P ≤x Q∧

2. ∀(a, b) ∈ P × Q, a|{x} ≤ b|{x} ⇒
∃(a′, b′) ∈ P × Q, a′

\{x}
= a\{x} ∧ b′

\{x}
= b\{x}∧

∀i ∈ IN, t(b′(x)i) � t(a′(x)i+n)

The above lemma defines necessary and sufficient condi-
tions for two components P and Q so that if they are con-
nected by an nFifo, they can perform the same behavior as
when they are put in an arbitrary asynchronous network.
That is, all read actions of component Q from x can be
delayed at most for n more write actions of P on the same
variable (thus, preventing buffer overflow).

Next, we generalize Lemma 2 to a network of FIFO chan-
nels in both directions:

Theorem 2 Consider the two processes P and Q, let I and
O be the subsets (partitions) of vars(P)∩vars(Q) such that
∀x ∈ I, Q ≤x P and ∀y ∈ O, P ≤y Q. If
∀(a, b) ∈ P × Q,
(∀x ∈ I, a|{x} ≤ b|{x} ∧ ∀y ∈ O, a|{y} ≤ b|{y}) ⇒
∃(a′, b′) ∈ P × Q, a\(I∪O) = a′

\(I∪O)
∧ b\(I∪O) = b′

\(I∪O)
∧

∀i ∈ IN, ∀x ∈ I, t(b′(x)i) � t(a′(x)i+nx
)∧

∀y ∈ O, t(a′(y)i) � t(b′(y)i+ny
)

then (P ||≤,a
Q)\(I∪O) = (P ′ ||

s
Q′ ||

s
R)\(I′∪O′), where P ′

and Q′ are the result of replacing all variables x ∈ I ∪ O
with fresh variables xP and xQ, respectively, I ′ and O′ are
the sets of such fresh variables and R is the network of
nxFifoxP →yQ

and nyFifoyQ→yP
channels.

Note that the proposed approach and in particular the
above theorem holds for channels with single-producer and
single-consumer components. In other words, it is assumed
that a shared variable can only be shared by two compo-
nents. This is not a very restrictive assumption since for
multiple-producer, multiple-consumer shared variables, one

xpp

xp → yq

alarm
inc

ok
reset

counter

register

vt > vt−1

Figure 4. Instrumented FIFO

can make use of standard copy (fork) and merge (join) com-
ponents to copy the shared channel for several components
and join several write attempts of different components into
one channel.

5. Approximating Buffer Sizes

In this section, we implement the desynchronization ideas
inside the Signal model. To do this, first, we have to define
the implementation of the network of FIFO processes. Al-
though the characterization we gave in the previous section
can be formally checked on the semantics of components, it
does not give a constructive way of determining the buffer
size. Thus, we propose a practical approach in this section,
with which we are able to estimate the buffer size (for a
given environment).

5.1 Implementing FIFO Channels

An nFifo channel can be implemented using a composi-
tion of n 1Fifo’s defined in Example 1, as follows:

nFifox0→xn
= 1Fifox0→x1

[full1, in1, out1/full, in, out]
||s . . .
||s 1Fifoxn−1→xn

[fulln, inn, outn/full, in, out]

ini = (ini−1 when not(fulli)) default ini

outi = (outi+1 when fulli) default outi (0 < i < n)
alarm = (full1 ∧ . . . ∧ fulln) when xP

ok = not (alarm)

Note that the alarm signals is synchronized with write
attempts. Thus, for an unsuccessful attempt to write to
the buffer the alarm signal is raised. Its negation describes
a successful write attempt.

5.2 Instrumenting FIFO Channels

Using the implementation of an nFifo channel of the pre-
vious subsection, we are able to design the circuitry around
the FIFO channels as shown in Figure 4. In this figure,
every time a write signal is received by the channel, if the
channel is full and the data cannot be inserted to the chan-
nel, an alarm signal is raised by the channel which in turn
results in an inc event of the corresponding buffer. An ok
signal from the FIFO results in resetting the counter. We
keep the maximum value of the counter in a register which
represents the number of times we consecutively missed a
write to the buffer (for sake of brevity, we do not give de-
tailed Signal implementations of the counter and register
components here). Designers can start with a set of behav-
iors and a rough guess of the needed buffer size and use the

instrumented FIFO network (replacing explicit data depen-
dencies) to find the right estimation of the buffer size. This
is done by simulating the behavior of the design for a given
environment, observing the values in the counters, incre-
menting the buffer size by these values, and iterating the
simulation till no alarm is raised. This process guarantees
that for a set of (normal) behaviors, no buffer overflow will
happen. However, since the designer does not necessarily
feed all possible behaviors into the design, we need a feed-
back loop to prevent loosing data in exceptional cases of
buffer overflow.

To do this, we can use the conjunction of all fulli signals
to mask the clock of the producer component. Masking the
clock of the producer may be too naive for some critical
designs. In such cases, different service levels should be
implemented in which the rate of production and consump-
tion of data items can be tuned. The necessity to change
the service level can then be indicated by observing the sta-
tus of communication between components using the FIFO
buffers between them. For a survey of such techniques in
practical GALS designs see [15].

Verification of the desynchronized design consists of check-
ing that no alarm signal is raised. In case of failing to
prove this, the error trace may help us finding the input
sequence resulting in alarm. This input can be added to
our simulation data. Then, we can re-iterate the process by
simulating with the new test-data, estimating the sufficient
buffer size and coming back to the verification phase. If for
a set of input signals no alarm is raised (registers of instru-
mented FIFOs all show zero) then the design is correct for
those inputs (that is according to Theorem 2) the proposed
FIFO network faithfully implements asynchronous commu-
nication.

6. Conclusion

In this paper, we established the theoretical model of
asynchronous composition in Signal and its implementa-
tion using FIFO buffers. In addition to that, we proposed
a practical design template to estimate the buffer size. The
proposed approach allows for efficient analysis and imple-
mentation of asynchronous designs. Furthermore, it brings
about the possibility of specifying GALS systems in the
synchronous framework and benefitting from the tooling
around it.

Studying compositionality and stability issues in the buffer
size proof and estimation remains as one of our future re-
search topics. We are also looking at constructive algo-
rithms based on the clock dependency graph to make the
buffer size estimation and proof automatic. Using a pro-
gram morphism approach (similar to the approach taken
in [6]) is another possibility for simulating the program be-
havior and estimating the buffer size.

7. REFERENCES
[1] The polychrony toolset.

http://www.irisa.fr/espresso/Polychrony.
[2] P. Aubry, P. Le Guernic, and S. Machard. Synchronous

distribution of SIGNAL programs. In Proceedings of
HICSS-29, pages 656–665. IEEE Computer Society, 1996.

[3] A. Benveniste, B. Caillaud, and P. Le Guernic. From
synchrony to asynchrony. In J. C. M. Baeten and

S. Mauw, editors, Proceedings of CONCUR’99, volume
1664 of LNCS, pages 162–177. Springer, 1999.

[4] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P.
Talpin, and S. Tripakis. A protocol for loosely
time-triggered architectures. In A. Sangiovanni-Vincentelli
and J. Sifakis, editors, Proceedings of EMSOFT’02,
volume 2491 of LNCS, pages 252–266. Springer, 2002.

[5] G. Berry and E. M. Sentovich. An implementation of
constructive synchronous programs in POLIS. Formal
Methods in System Design, 17(2):135–161, 2000.

[6] A. Gamatié, T. Gautier, and L. Besnard. Modeling of
avionics applications and performance evaluation
techniques using the synchronous language signal. To
Appear in Proceedings of SLAP’03, volume 88 of ENTCS.
Elsevier, 2003.

[7] A. Girault and C. Ménier. Automatic production of
globally asynchronous locally synchronous systems. In
A. Sangiovanni-Vincentelli and J. Sifakis, editors,
Proceedings of EMSOFT’02, volume 2491 of LNCS, pages
266–281. Springer, 2002.

[8] N. Halbwachs and S. Baghdadi. Synchronous modelling of
asynchronous systems. In A. Sangiovanni-Vincentelli and
J. Sifakis, editors, Proceedings of EMSOFT’02, volume
2491 of LNCS, pages 240–251. Springer, 2002.

[9] R. Kurshan, M. Merritt, A. Orda, S. Sachs. Modelling
Asynchrony with a Synchronous Model. Formal Methods
in System Design, 15(3): 175–199, 1999.

[10] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony
for system design. Journal for Circuits, Systems and
Computers, 12(3): 261-304, Apr. 2003.

[11] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 17(12): 1217-1229, Dec. 1998.

[12] O. Maffëıs and P. Le Guernic. Distributed implementation
of Signal: Scheduling & graph clustering. In
H. Langmaack, W. P. de Roever, and J. Vytopil, editors,
Proceedings of FTRTFT’94, volume 863 of LNCS, pages
547–566. Springer, 1994.

[13] M. Mousavi, P. Le Guernic, J.-P. Talpin, S.K. Shukla,
T. Basten. Modeling and Validation of Globally
Asynchronous Design in Synchronous Framework.
Technical Report RR-4935, INRIA, Rennes, France, 2003.

[14] A. Sangiovanni-Vincentelli, M. Sgroi, and L. Lavagno.
Formal models for communication-based design. In
C. Palamidessi, editor, Proceedings of CONCUR’00,
volume 1877 of LNCS, pages 29–47. Springer, 2000.

[15] M. Singh and M. Theobald. Generalized
Latency-Insensitive Systems for GALS Architectures. To
appear in: Proceedings of FMGALS’03, 2003

[16] K. Wolinski and M. Belhadj. High level synthesis of
globally asynchronous locally synchronous circuits. In
Proceedings NATW’94, 1994.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

