
System-Level Performance Analysis in SystemC¹

H. Posadas*, F. Herrera*, P. Sánchez*, E. Villar* & F. Blasco**
*TEISA Dept., E.T.S.I. Industriales y Telecom. University of Cantabria

Avda. Los Castros s/n, 39005 Santander, Spain
{posadash, fherrera, sanchez, villar}@teisa.unican.es

**DS2 Robert Darwin 2, Parque Tecnológico, Paterna, Spain
francisco.blasco@ds2.es

Abstract

As both the ITRS and the Medea+ DA Roadmaps have
highlighted, early performance estimation is an
essential step in any SoC design methodology [1-2].
This paper presents a C++ library for timing
estimation at system level. The library is based on a
general and systematic methodology that takes as
input the original SystemC source code without any
modification and provides the estimation parameters
by simply including the library within a usual
simulation. As a consequence, the same models of
computation used during system design are preserved
and all simulation conditions are maintained. The
method exploits the advantages of dynamic analysis,
that is, easy management of unpredictable data-
dependent conditions and computational efficiency
compared with other alternatives (ISS or RT
simulation, without the need for SW generation and
compilation and HW synthesis). Results obtained on
several examples show the accuracy of the method. In
addition to the fundamental parameters needed for
system-level design exploration, the proposed
methodology allows the designer to include capture
points at any place in the code. The user can process
the corresponding captured events for unrestricted
timing constraint verification.

1. Introduction1
Performance analysis is becoming a very important
and challenging task in embedded system design,
where performance parameters (time, size,
consumption, cost, etc.) can be as important as
functional requirements [1-3]. Early and accurate
performance estimation would avoid costly design
process iterations.

Among the different performance figures, timing
properties (execution times, delays, periods, etc.) are
especially important in performance verification of
multiprocessing, real-time embedded systems [4].
Deciding the most appropriate scheduling policy for
each processor is critical to ensure the correct real-

1 This work has been partially funded by the MEDEA A511 ToolIP
and the Spanish MCYT-TIC-2002-00660 projects.

time behavior of the whole system [5]. Average
interexecution time estimation is needed in rate
analysis for embedded systems [6].

Performance verification has been proven particularly
complex in heterogeneous, multiprocessing embedded
systems under multi-rate dependencies and variable
rate intervals [7-8]. All these techniques rely on
accurate timing estimation figures.

Timing estimation is required for timed co-simulation
[9-10]. Timed simulation is particularly important for
design verification and evaluation at the system level
once the architectural mapping has been decided.

Time execution estimation has been a traditional
problem in real-time embedded SW engineering [11].
Estimation techniques can be divided in two main
groups: static and dynamic techniques. Static
techniques [12-14] are based on the formal analysis of
a specification without executing it. They mainly
pursue worst-case estimation time (WCET), assuming
a static scheduling in order to avoid an exponential
increase of complexity. Moreover, when an Object-
Oriented language such as SystemC is used,
polymorphism at execution time may make the code
practically unpredictable at compilation time. On the
other hand, dynamic techniques [15-17] provide
feasible methods that keep into acount dynamic
scheduling and give more accurate estimations tuned
to the application.

SW execution time can be estimated from the
assembler code [9], the compiler internal
representation [10], a Virtual Processor Instruction Set
[15] or the source code [13-14][16-17]. In all these
cases, execution time estimation of the code and timed
simulation are performed in separate steps.

A traditional problem in SW execution time
estimation is the effect of cache memories. Static
timing analysis for instruction caches has provided
very good results [18]. These techniques can be
extended easily to dynamic estimation based on
instruction flow analysis. Nevertheless, some error
percentage is unavoidable which may require
providing confidence intervals [17].

1530-1591/04 $20.00 (c) 2004 IEEE

Specification at system level has been identified as
one of the most important ways to increase design
productivity. Several system-level design languages
(SLDL) have been proposed. Among them, those
based on C/C++, i.e. SpecC [19] and SystemC [20] are
gaining wider acceptance. Design flows based on
these SLDLs need new estimation techniques in order
to allow a fast and accurate design space exploration
(DSE). At system level, system description becomes
more decoupled from implementation details
(basically functionality), although some
implementation information has to be taken into
account in order to obtain enough accuracy. For
example, system-level DSE must consider the RTOS
as part of the platform [21]. During system-level
estimation of execution times of concurrent,
heterogeneous embedded systems it is necessary to
preserve the same model(s) of computation (MoC) of
the system specification and the way each MoC is
going to be implemented [22].

In this paper, a library capable of automatically
providing timing estimation figures from a system-
level description written in SystemC, is presented. No
change of the code is needed, since the library is
integrated in a full system-level, single-source design
methodology [23]. Thus, the model of computation
used in system specification and during system design
is preserved. Performance analysis is performed taking
into account the characteristics of the system platform
used, thus, ensuring accuracy. As it is done at the
system specification level, results are obtained fast
and early in the design process. The information
provided can be as complete as required. It can
contain all the instantaneous estimated parameters for
each process as well as the global figures. The
designers can include capture points whenever they
want in order to get additional, specific timing
information.

Performance estimation is carried out dynamically at
the same time as post-mapping, timed simulation, thus
avoiding any additional design step. Timed simulation
results can be used for verification of the timing
behavior of the system as a function of the
architectural mapping decisions taken. From the state
of the art outlined above, there is a lack of system-
level timed simulation tools for HW/SW systems.

The structure of the paper is the following. In this
section the motivation and related work have been
presented. In section 2, a system-level estimation
methodology based on the segmentation of the
specification code is presented. The specification
methodology is outlined and referenced. In section 3,
the segment parameter estimation method is
explained. In section 4, the global analysis
methodology is presented. In section 5 experimental
results are shown. Conclusions are derived in section
6.

2. Process segmentation
This library follows the SystemC, system-level
specification methodology presented in [22]. It is a
general-purpose specification methodology able to
support different MoCs. The main goal of the
specification methodology is ensuring orthogonality
between computation and communication. To achieve
this, no event object is supported inside processes.
Thus, the notify or wait primitives are not allowed
except for the “timing” wait(sc_time) and processes
lack a sensitivity list. Processes can only interact
among themselves and with the environment through
predefined channels.

The estimation methodology works on process
segments instead on basic blocks. Segments have
proven to be a very appropriate piece of code for
performance analysis [24].

Following the specification methodology, a process
can be represented by a graph. Arcs correspond to
plain code segments without any waiting statement or
channel access. Based on the SystemC simulation
semantics, each segment is a closed element: it is
executed completely without any interaction with the
rest of the processes or the simulation kernel. Nodes
correspond to the entry and exit statements of the
process, the timing wait statements and the channel
accesses. This means that the rest of the system (or the
environment) only interacts with the process at its
nodes. Its initial and final statements identify each
segment. A segment may contain several paths of
execution, but the same initial and final nodes. If not,
segments are considered to be different. This means
that two segments may have the same starting or
ending points but not both, although they may share
pieces of code. This is shown in

Figure 1:
 void process() {

 do { //code of segment S0-1
 … //common code to S0-1 and S4-1
 ch1.read();
 … //common code to S1-2 and S1-3
 if(condition){ //common code to S1-2 and S1-3
 … //code of segment S1-2
 ch2.write();
 … } //code of segment S2-3
 … //common code to S1-3 and S2-3
 wait(delay1);
 … //code of segment S3-4
 ch2.read();
 } while (true); //code of segment S4-1
}

N0

N1

N2

N3

N4

Figure 1. Process segmentation.

In this figure, N0 is the starting node of the cyclic
process, N1, N2 and N4 are nodes corresponding to
channel accesses while N3 is a waiting statement
node. ‘Si-j’ represents the segment between the
starting node ‘Ni’ and the ending node ‘Nj’. The
corresponding process graph would be that of Figure
2. The process graph represents the internal structure

of a process and not the process structure of the
system.

S0-1
S1-2

S1-3

S2-3

S3-4

S4-1

N0 N1

N2

N3

N4
Figure 2. Process graph.

The library can dynamically recognize the processes
but cannot directly recognize which segment is being
executed. This is not necessary for obtaining both
process and resource global estimations and event
captures. Nevertheless, when required, the user can
obtain an exact segment level report. To identify the
segment, some marks are introduced into the code by
a simple parser program. In the same way, a specific
label is assigned to each channel access and during
execution, segments are associated to the process to
which they belong and the channel to which they
access.

In order to improve accuracy, the performance
characteristics of the system platform have to be taken
into account. During architectural mapping, each
process is assigned to a platform resource. The
architectural mapping decisions are annotated in the
system specification simply by using pre-processor
directives. Three kinds of resources are distinguished:
Parallel resources (i.e. HW resources), sequential
resources (i.e. SW resources) and components of the
environment. The latter include any Virtual
Component (re)used. For each kind of resource,
different segment estimation methods are used. For
VCs and test-bench components no performance
analysis is done.

3. Segment Estimation Methods
The performance estimation method is based on the
redefinition capabilities of C++. Each C++ object is
characterized for each of the resources of the target
platform by its execution time. This affects any kind
of platform resource such as microprocessors, DSPs, a
standard cell library, a programmable fabric, etc. The
method for obtaining these parameters is independent
of the performance analysis library, which is prepared
to introduce them easily.

All the C++ objects, which contribute to the execution
time of the resource to which this piece of code has
been assigned, are redefined in order to calculate their
time contribution when they are executed.

C operators are overloaded. The library automatically
replaces ordinary variable types by a new class. So,

for example, the “int” type used in C language is
replaced by a “generic_int” type with a “#define”
statement. The other operators are overloaded in the
same way. Figure 3 shows an example of the method
applied. Suppose segment Si-j with the following
code:

Library parameters
 C object # cycles
 = t= = 2
 + t+ = 1
 < t< = 3
 [] t[] = 5
 if tif = 2.4
 function call tfc = 18

Segment code Delay calculation
ch1.read();
if(i<0)
 i=c+d;
datai=array[i];
datao=func(datai);
…
ch2.read();

time
time += tif + t< (= 5.4)
time += t= + t+ (= 8.4)
time += t= + t[] (= 15.4)
time += t= + tfc (= 35.4)
time += … (= 75.8)

Figure 3. Delay calculation.

Each time a C++ object is executed the delay
calculation function operates. In the example, the code
inside function ‘func’ is not shown but its contribution
is 40’4 cycles. Final delay is 75’8 cycles.

In this way, the proposed methodology is completely
transparent for the user who has only to instantiate the
performance library. Even the performance parameters
for each object on each platform resource should not
be his/her responsibility and should be provided by the
platform vendor.

In the case of sequential (SW) resources, two
statements cannot be executed in parallel.
Independently of the SystemC simulation semantics,
the processor will execute statements one after the
other. Therefore, total time is obtained by adding the
partial times required to execute each operation in the
code of the segment being estimated.

In the case of parallel (HW) resources, timing
estimation cannot be obtained without considering the
design constraints imposed during synthesis. As a
consequence, the library has to provide the two
extreme points, which delimit all possible solutions of
interest in terms of the product of time and area as
shown in Figure 4.

Critical Path

Area

TimeBest case

Single
ALU

execution time
Worst case

Figure 4. Implementation solutions.

The best execution time results in the fastest
implementation of the functionality. To estimate this

value, the critical path of the sequence of operations in
the segment is considered. For each operation, a
multiple of the clock period is taken into account. This
solution does not preclude a specific implementation
for the operation (i.e. sequential, combinational in
multi-cycle, etc.). To estimate the worst execution
time, it is assumed that only one ALU is used and all
the operations are executed sequentially. In this case,
the execution time of the segment is obtained by the
addition of the execution times for all the operations.
However, the library time annotation method can only
manage one value, not a range. The library calculates
a weighted mean by using a constant value that
determines the weight of each value. The following
equation is used:

T = Tmin + (Tmax – Tmin)*k, 0 ≤ k ≤ 1

Constant ‘k’ is determined by the user for each
resource depending on the type of analysis he/she
wants to perform or the relative priority that will be
given to cost (k = 1) or performance (k = 0) during
HW synthesis.

Once the estimated values for each segment have been
obtained, they are used to carry out the performance
analysis of the whole system.

4. Global Analysis

In order to perform the simulation of the whole system
while taking into account the estimated execution
times for each segment, these segments are executed
and the corresponding process slept for the segment
estimated time. This method emulates the platform
behavior.

In this way, the simulation is transferred from an
untimed (delta cycle-based) execution to a strict-timed
execution. Segments do not start following the order
established by the delta cycle semantics of the
SystemC system-level specification, but emulating
their final behavior on the platform. Consequently, the
models of computation used at the specification and
the implementation level are preserved. By adding the
performance estimation library, without modifying
either the SystemC code or the SystemC simulation
kernel, the simulation becomes strict-timed and all the
events are assigned to a physical point in time
(horizontal axis). This is shown in Figure 5 where
signals s1, s2 and s3 are generated by three
(concurrent) SystemC processes P1, P2 and P3
respectively. Part a) corresponds to the untimed
simulation in δ-cycles. Part b) shows the strict-timed
simulation with the delays for each segment estimated
by the library taking into account the resources to
which each process has been allocated.

Back-annotation of timing data is done automatically
at the end of each segment. Channels and waiting

statements have been extended to include the
functions required to do this task.

The method used to decide the time when a process is
resumed depends on the type of resource to which the
process has been assigned. In the case of parallel
processes, it is the maximum value between the
ending time of the previous segment and the time of
the event that has awakened the process. This is the
case of signal s1 in Figure 5. As can be seen, the
execution time of segment sg4 runs in parallel to the
execution time of segment sg5 as this segment
corresponds to a process mapped to a different
resource.

sg3

sg4

sg1

δ(s1)

resource 0 (SW)

resource 1 (HW)

test1 test2 test3 t(s1, s2 , s3)
test4

P1

b) Strict-timed simulation

δ(s2) P2

δ(s3) P3

sg2 sg5

a) Untimed (δ-cycle) simulation

test5

Figure 5. Delay annotation.

For sequential processes the decision is more
complex. In SystemC each process has an independent
thread running in parallel. However, over the
platform, it is not possible to execute more than one
process on a single microprocessor. The process needs
to wait until the resource is empty. When a new
segment is awakened, it reads the time of the event
that has awakened it and the time when the resource is
expected to be empty. If they are greater than the
current simulation time, the process executes one wait
to make all times equal. This process has to be
repeated until the resource is empty because another
process can take up the resource while it is waiting.
Only when times are equal, the segment can run. This
is shown in Figure 5 with signals s2 and s3. Although
they are generated by different processes, as these
processes have been assigned to the same sequential
resource, the execution times of segments sg1 and sg2
are scheduled sequentially despite having been
executed in the same δ-cycle.

The RTOS execution time is taken into account during
process communication and synchronization. The
RTOS will be executed each time a thread is stopped,
that is, when a channel or a waiting statement is
reached. Thus, the RTOS timing is estimated
assigning an execution time to those channels and
waiting statements executed by processes mapped to
SW resources.

As mentioned above, annotation functions have been
introduced into channel code. This means that to
include new channels, they have to be adapted by
inserting in a pair of functions provided by the library.

Library estimations are reported in two different ways.
Total execution times for processes and resources are
generated automatically. All instantaneous segment
values of execution time parameters can be provided if
required.

In addition to the fundamental parameters described
above, the user can obtain additional information
he/she may need to take the most appropriate design
decisions. The user can insert capture points anywhere
inside the code and a list of events corresponding to
the concrete times when the capture points were
executed is generated. The format of these lists is
prepared for post-processing using mathematical tools
(i.e. Matlab). Capture points can be conditional to a
certain assertion. It is also possible to associate values
of internal signals of the system to these time values.
This possibility is very useful to verify timing
constraints and to analyze response times,
throughputs, input and output rates, etc.

5. Experimental Results
To assess the accuracy of the library developed,
several small (sequential) benchmarks were used. For
SW processes we have compared library results with
simulations obtained from an ISS. This ISS was an
OpenRISC architectural simulator modified to supply
cycle accurate estimations. Library weights were
obtained analyzing assembler code from several
functions specifically developed for this purpose and
taking into account microprocessor architectural
characteristics.

The number of CPU cycles over the target platform
estimated by the library and provided by the ISS is
shown in the left part of Table 1.

Target platform
estimation time (µs)

Host simulation time
(milliseconds)

Benchmark Library
Estimation ISS Error

(%)

Library
exec.
time

Overload
w.r.t.

SystemC

Gain
w.r.t.
ISS

FIR 28131 29288 4 325.2 51.6 142
Compress 167175 168744 0.9 1.61 27.28 236
Quick sort 5197 5202 0.1 6.77 67.7 237

Bubble 28947 28121 2.9 2.58 122.8 178
Fibonacci 730461 741590 1.5 38.98 10.9 278

Array 19142 18602 2.9 1.09 72.6 247
Table 1. SW estimation results for sequential

benchmarks.

The right-hand part shows the execution times when
including the performance library, the overload factor
with respect to the original SystemC specification and
the gain factor (time reduction) with respect to ISS
execution.

For HW resources, the real execution times under
resource-constrained and time-constrained scheduling
have been obtained by using the Concentric behavioral
synthesis tool from Synopsys. Two examples were
selected, a FIR filter and the Euler algorithm.

Benchmarks Real
exec. time (ns)

Estimated
exec. time (ns)

Error (%)

FIR (WC) 342 360 5.3
FIR (BC) 945 908 3.9

Euler (WC) 90 88 2.2
Euler (BC) 225 220 2.2

Table 2. HW estimation results.

In order to get results from a concurrent, sufficiently
complex case study, an ETSI standard, the EN 301
245 vocoder for GSM applications, has been used.
The sequential code has been divided in the 5
concurrent processes shown in Table 3:

Target platform
estimation time (ms)

Host simulation time
(milliseconds)

Benchmark Library
Estimation ISS Error

(%)

Library
exec.
time

Overload
w.r.t.

SystemC

Gain
over
ISS

LSP estim. 371.4 365.2 1.7 95.75 36.8 187
LPC int. 322.1 330.3 2.5 90.25 34.7 182

ACB sear. 463.9 443.9 4.5 91.04 35.7 224
ICB sear. 662.7 642.9 3.1 150.3 30.2 235

Post Proc. 2 2.1 5 0.62 10 379
Table 3. SW estimation results for Vocoder.

The pre-processing function of the vocoder was
mapped to HW. Results are shown in Table 4:

Benchmarks Real
exec. time (ns)

Estimated
exec. time (ns)

Error (%)

Post. Proc. (WC) 4.875 4.475 8.2
Post. Proc. (BC) 1.975 1.900 3.8

Table 4. HW estimation results for Vocoder.

As can be seen, the error is maintained below 4.5% in
SW and 8.2% in HW with a gain in simulation speed
w.r.t. ISS more than 142 times. The simulation time is
higher than the untimed simulation but it is kept lower
than 73 times except in one small example.

6. Conclusions
In this paper a system-level performance analysis
library for SystemC has been presented. The library
can be introduced directly in the original code with
minimal or no changes at all. It allows the designer to
make an early estimation of the timing performance of
the system. A novel, time estimation method
exploiting the overloading capabilities of C++ has
been used.

The library has an intrinsic value as an analysis tool,
providing useful data for the co-design process based
on SystemC. Timing constraints on a certain platform
can be estimated and verified. The library
automatically provides the fundamental performance
parameters of the design required to take the most
appropriate design decisions. In addition to these

parameters, the designer is able to extract from the
SystemC code additional events to perform the
specific timing analyses required, such as response
times, throughputs, input and output times, etc. Thus
the library can be used for timing constraint
verification. As the SystemC simulation semantics is
adapted by including the impact of the architectural
mapping decisions, an additional value of the library
comes from its application as a strict-timed (co-)
simulation tool.

This method maintains the global behavior of the
description although the execution order of processes
can change as a result of the architectural mapping
decisions. If results are different from the original
system-level specification, it means that the
description is not deterministic (potentially wrong).
This represents an additional way to detect errors that
may remain hidden in an ordinary simulation. Thus,
the library becomes a powerful verification tool.

Based on the mean execution times and periods of the
different processes, rate analysis and scheduling for
soft, real-time embedded systems can be performed.
The instantaneous execution times for the segments in
the different processes can be used for performance
verification and scheduling of hard, real-time systems.
In both cases, the interaction between the different
platform resources independently of their type is taken
into account. The RTOS overload is evaluated.

SystemC has proven to be a powerful language for
untimed, system-level simulation of complex systems,
dynamic estimation of execution times during
simulation and timed, system-level simulation taking
into account the decisions taken during architectural
mapping.

References
[1] “International Technology Roadmap for
semiconductors: 2001 Edition, http://public.itrs.net.

[2] “The MEDEA+ Design Automation Roadmap”, 2002,
www.medea.org/webpublic/publ_relation_eda.htm.

[3] A. SanGiovanni-Vicentelli, G.Martín, “Platform-based
design and software design methodology for embedded
systems”, IEEE Design & Test of Computers, November-
December 2001.

[4] K. Richter, M. Jersak, R. Ernst, “A formal approach to
MpSoC performance verification”, Computer, April 2003.

[5] F. Balarin, L. Lavagno, P. Murthy, A. SanGiovanni-
Vicentelli, “Scheduling for embedded real-time systems”,
IEEE Design & Test of Computers, January-March 1998.

[6] A. Mathur, A. Dasdan, R. Gupta, “Rate analysis for
embedded systems”, ACM Trans. on Design
Automation of Electronic Systems, V.3, N.3, July
1998.

[7] S. Chakraborty, S. Künzli, L. Thiele, “A general
framework for analyzing system properties in platform-

based embedded system designs”, Proc. of DATE, IEEE,
2003.

[8] M. Jersak, R. Ernst, “Enabling scheduling analysis of
heterogeneous systems with multi-rate data dependencies
and rate intervals”, Proc. of DAC, IEEE, 2003.

[9] S. Yoo, G. Nicolescu, L. Gauthier, A. Jerraya,
“Automatic generation of fast timed simulation models for
operating systems in SoC design”, Proc. of DATE, IEEE,
2002.

[10] J.Y. Lee, I. Park, “Timed Compiled-Code Simulation
of Embedded Software for Performance Analysis of SoC
Design”, Proc. of DAC, IEEE, 2002.

[11] P. Puschner, C. Koza, “Calculating the maximum
execution time of real-time programs”, The Journal of Real-
Time Systems, N. 1, 1989.

[12] S. Malik, M. Martonosi, Y.-T.S. Li, “Static Timing
Analysis of Embedded Software”, Proc. of DAC, IEEE,
1997.

[13] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A.
Jurecska, L. Lavagno, C. Passerone, A. SanGiovanni-
Vicentelli, E. Sentovich, K. Suzuki and B. Tabbara,
“Hardware-Software Codesign of Embedded Systems: The
POLIS Approach”, Kluwer, 1997.

[14] A. Hergenhan, W. Rosenstiel, “Static Timing Analysis
of Embedded Software on Advanced Processor
Architectures”, Proc. of DATE, IEEE, 2000.

[15] P. Giusto, G. Martin, E. Harcourt, “Reliable Estimation
of Execution Time of Embedded Software”, Proc. of DATE,
IEEE, 2001.

[16] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto,
“Source-level execution time estimation of C programs”,
Proc. of the Int. Symposium on HW/SW CoDesign, CoDes,
2001.

[17] P. Bjuréus, A. Jantsch, “Performance analysis with
confidence intervals for embedded software processes”,
Proc. of the Int. Symposium on System Synthesis, ISSS,
2001.

[18] F. Mueller, “Timing analysis for instruction caches”,
The International Journal of Time-Critical Computing
Systems, N.18, Kluwer, 2000.

[19] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,
“SpecC: Specification Language and Design Methodology”,
Kluwer, 2000.

[20] T. Grotker, S. Liao, G. Martín, S. Swan, “System
Design with SystemC”, Kluwer, 2002.

[21] A. Gerstlauer, H. Yu, D.D. Gajski, “RTOS Modeling
for System Level Design”, Proc. DATE, IEEE, 2003.

[22] F. Herrera, P. Sánchez, E. Villar, “Modeling of CSP,
KPN and SR Systems with SystemC”, Proc. of FDL, ECSI,
2003.

[23] F. Herrera, H. Posadas, P. Sánchez, E.Villar,
“Systematic Embedded Software Generation from
SystemC”. Proc. of DATE, IEEE, 2003.

[24] F. Wolf, “Behavioral Intervals in Embedded
Software”, Kluwer, 2002.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

