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Abstract 

As both the ITRS and the Medea+ DA Roadmaps have 
highlighted, early performance estimation is an 
essential step in any SoC design methodology [1-2]. 
This paper presents a C++ library for timing 
estimation at system level. The library is based on a 
general and systematic methodology that takes as 
input the original SystemC source code without any 
modification and provides the estimation parameters 
by simply including the library within a usual 
simulation. As a consequence, the same models of 
computation used during system design are preserved 
and all simulation conditions are maintained. The 
method exploits the advantages of dynamic analysis, 
that is, easy management of unpredictable data-
dependent conditions and computational efficiency 
compared with other alternatives (ISS or RT 
simulation, without the need for SW generation and 
compilation and HW synthesis). Results obtained on 
several examples show the accuracy of the method. In 
addition to the fundamental parameters needed for 
system-level design exploration, the proposed 
methodology allows the designer to include capture 
points at any place in the code. The user can process 
the corresponding captured events for unrestricted 
timing constraint verification. 

1. Introduction1 
Performance analysis is becoming a very important 
and challenging task in embedded system design, 
where performance parameters (time, size, 
consumption, cost, etc.) can be as important as 
functional requirements [1-3]. Early and accurate 
performance estimation would avoid costly design 
process iterations. 

Among the different performance figures, timing 
properties (execution times, delays, periods, etc.) are 
especially important in performance verification of 
multiprocessing, real-time embedded systems [4]. 
Deciding the most appropriate scheduling policy for 
each processor is critical to ensure the correct real-
                                                 
1 This work has been partially funded by the MEDEA A511 ToolIP  
and the Spanish MCYT-TIC-2002-00660 projects. 

time behavior of the whole system [5]. Average 
interexecution time estimation is needed in rate 
analysis for embedded systems [6]. 

Performance verification has been proven particularly 
complex in heterogeneous, multiprocessing embedded 
systems under multi-rate dependencies and variable 
rate intervals [7-8]. All these techniques rely on 
accurate timing estimation figures. 

Timing estimation is required for timed co-simulation 
[9-10]. Timed simulation is particularly important for 
design verification and evaluation at the system level 
once the architectural mapping has been decided. 

Time execution estimation has been a traditional 
problem in real-time embedded SW engineering [11]. 
Estimation techniques can be divided in two main 
groups: static and dynamic techniques. Static 
techniques [12-14] are based on the formal analysis of 
a specification without executing it. They mainly 
pursue worst-case estimation time (WCET), assuming 
a static scheduling in order to avoid an exponential 
increase of complexity. Moreover, when an Object- 
Oriented language such as SystemC is used, 
polymorphism at execution time may make the code 
practically unpredictable at compilation time. On the 
other hand, dynamic techniques [15-17] provide 
feasible methods that keep into acount dynamic 
scheduling and give more accurate estimations tuned 
to the application. 

SW execution time can be estimated from the 
assembler code [9], the compiler internal 
representation [10], a Virtual Processor Instruction Set 
[15] or the source code [13-14][16-17]. In all these 
cases, execution time estimation of the code and timed 
simulation are performed in separate steps. 

A traditional problem in SW execution time 
estimation is the effect of cache memories. Static 
timing analysis for instruction caches has provided 
very good results [18]. These techniques can be 
extended easily to dynamic estimation based on 
instruction flow analysis. Nevertheless, some error 
percentage is unavoidable which may require 
providing confidence intervals [17]. 
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Specification at system level has been identified as 
one of the most important ways to increase design 
productivity. Several system-level design languages 
(SLDL) have been proposed. Among them, those 
based on C/C++, i.e. SpecC [19] and SystemC [20] are 
gaining wider acceptance. Design flows based on 
these SLDLs need new estimation techniques in order 
to allow a fast and accurate design space exploration 
(DSE). At system level, system description becomes 
more decoupled from implementation details 
(basically functionality), although some 
implementation information has to be taken into 
account in order to obtain enough accuracy. For 
example, system-level DSE must consider the RTOS 
as part of the platform [21]. During system-level 
estimation of execution times of concurrent, 
heterogeneous embedded systems it is necessary to 
preserve the same model(s) of computation (MoC) of 
the system specification and the way each MoC is 
going to be implemented [22]. 

In this paper, a library capable of automatically 
providing timing estimation figures from a system-
level description written in SystemC, is presented. No 
change of the code is needed, since the library is 
integrated in a full system-level, single-source design 
methodology [23]. Thus, the model of computation 
used in system specification and during system design 
is preserved. Performance analysis is performed taking 
into account the characteristics of the system platform 
used, thus, ensuring accuracy. As it is done at the 
system specification level, results are obtained fast 
and early in the design process. The information 
provided can be as complete as required. It can 
contain all the instantaneous estimated parameters for 
each process as well as the global figures. The 
designers can include capture points whenever they 
want in order to get additional, specific timing 
information. 

Performance estimation is carried out dynamically at 
the same time as post-mapping, timed simulation, thus 
avoiding any additional design step. Timed simulation 
results can be used for verification of the timing 
behavior of the system as a function of the 
architectural mapping decisions taken. From the state 
of the art outlined above, there is a lack of system-
level timed simulation tools for HW/SW systems. 

The structure of the paper is the following. In this 
section the motivation and related work have been 
presented. In section 2, a system-level estimation 
methodology based on the segmentation of the 
specification code is presented. The specification 
methodology is outlined and referenced. In section 3, 
the segment parameter estimation method is 
explained. In section 4, the global analysis 
methodology is presented. In section 5 experimental 
results are shown. Conclusions are derived in section 
6. 

2. Process segmentation 
This library follows the SystemC, system-level 
specification methodology presented in [22]. It is a 
general-purpose specification methodology able to 
support different MoCs. The main goal of the 
specification methodology is ensuring orthogonality 
between computation and communication. To achieve 
this, no event object is supported inside processes. 
Thus, the notify or wait primitives are not allowed 
except for the “timing” wait(sc_time) and processes 
lack a sensitivity list. Processes can only interact 
among themselves and with the environment through 
predefined channels. 

The estimation methodology works on process 
segments instead on basic blocks. Segments have 
proven to be a very appropriate piece of code for 
performance analysis [24]. 

Following the specification methodology, a process 
can be represented by a graph. Arcs correspond to 
plain code segments without any waiting statement or 
channel access. Based on the SystemC simulation 
semantics, each segment is a closed element: it is 
executed completely without any interaction with the 
rest of the processes or the simulation kernel. Nodes 
correspond to the entry and exit statements of the 
process, the timing wait statements and the channel 
accesses. This means that the rest of the system (or the 
environment) only interacts with the process at its 
nodes. Its initial and final statements identify each 
segment. A segment may contain several paths of 
execution, but the same initial and final nodes. If not, 
segments are considered to be different. This means 
that two segments may have the same starting or 
ending points but not both, although they may share 
pieces of code. This is shown in  

Figure 1: 
 void process() { 

  do {             //code of segment S0-1 
    …              //common code to S0-1 and S4-1
    ch1.read(); 
    …              //common code to S1-2 and S1-3
    if(condition){ //common code to S1-2 and S1-3
      …            //code of segment S1-2 
      ch2.write(); 
      … }          //code of segment S2-3 
    …              //common code to S1-3 and S2-3
    wait(delay1); 
    …              //code of segment S3-4 
    ch2.read(); 
  } while (true);  //code of segment S4-1 
} 

N0

N1

N2

N3

N4

 
Figure 1. Process segmentation. 

In this figure, N0 is the starting node of the cyclic 
process, N1, N2 and N4 are nodes corresponding to 
channel accesses while N3 is a waiting statement 
node. ‘Si-j’ represents the segment between the 
starting node ‘Ni’ and the ending node ‘Nj’. The 
corresponding process graph would be that of Figure 
2. The process graph represents the internal structure 



of a process and not the process structure of the 
system. 
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Figure 2. Process graph. 

The library can dynamically recognize the processes 
but cannot directly recognize which segment is being 
executed. This is not necessary for obtaining both 
process and resource global estimations and event 
captures. Nevertheless, when required, the user can 
obtain an exact segment level report. To identify the 
segment, some marks are introduced into the code by 
a simple parser program. In the same way, a specific 
label is assigned to each channel access and during 
execution, segments are associated to the process to 
which they belong and the channel to which they 
access. 

In order to improve accuracy, the performance 
characteristics of the system platform have to be taken 
into account. During architectural mapping, each 
process is assigned to a platform resource. The 
architectural mapping decisions are annotated in the 
system specification simply by using pre-processor 
directives. Three kinds of resources are distinguished: 
Parallel resources (i.e. HW resources), sequential 
resources (i.e. SW resources) and components of the 
environment. The latter include any Virtual 
Component (re)used. For each kind of resource, 
different segment estimation methods are used. For 
VCs and test-bench components no performance 
analysis is done. 

3. Segment Estimation Methods 
The performance estimation method is based on the 
redefinition capabilities of C++. Each C++ object is 
characterized for each of the resources of the target 
platform by its execution time. This affects any kind 
of platform resource such as microprocessors, DSPs, a 
standard cell library, a programmable fabric, etc. The 
method for obtaining these parameters is independent 
of the performance analysis library, which is prepared 
to introduce them easily. 

All the C++ objects, which contribute to the execution 
time of the resource to which this piece of code has 
been assigned, are redefined in order to calculate their 
time contribution when they are executed. 

C operators are overloaded. The library automatically 
replaces ordinary variable types by a new class. So, 

for example, the “int” type used in C language is 
replaced by a “generic_int” type with a “#define” 
statement. The other operators are overloaded in the 
same way. Figure 3 shows an example of the method 
applied. Suppose segment Si-j with the following 
code: 

Library parameters
 C object # cycles 
 = t= = 2 
 + t+ = 1 
 < t< = 3 
 [] t[] = 5 
 if tif = 2.4 
 function call tfc = 18 
 
Segment code Delay calculation 
ch1.read(); 
if(i<0) 
  i=c+d; 
datai=array[i]; 
datao=func(datai); 
… 
ch2.read(); 

time 
time += tif + t< (= 5.4) 
time += t= + t+ (= 8.4) 
time += t= + t[] (= 15.4) 
time += t= + tfc (= 35.4) 
time += …  (= 75.8) 

 
Figure 3. Delay calculation. 

Each time a C++ object is executed the delay 
calculation function operates. In the example, the code 
inside function ‘func’ is not shown but its contribution 
is 40’4 cycles. Final delay is 75’8 cycles. 

In this way, the proposed methodology is completely 
transparent for the user who has only to instantiate the 
performance library. Even the performance parameters 
for each object on each platform resource should not 
be his/her responsibility and should be provided by the 
platform vendor. 

In the case of sequential (SW) resources, two 
statements cannot be executed in parallel. 
Independently of the SystemC simulation semantics, 
the processor will execute statements one after the 
other. Therefore, total time is obtained by adding the 
partial times required to execute each operation in the 
code of the segment being estimated. 

In the case of parallel (HW) resources, timing 
estimation cannot be obtained without considering the 
design constraints imposed during synthesis. As a 
consequence, the library has to provide the two 
extreme points, which delimit all possible solutions of 
interest in terms of the product of time and area as 
shown in Figure 4. 

Critical Path

Area

TimeBest case

Single
ALU

execution time 
Worst case 

 
Figure 4. Implementation solutions. 

The best execution time results in the fastest 
implementation of the functionality. To estimate this 



value, the critical path of the sequence of operations in 
the segment is considered. For each operation, a 
multiple of the clock period is taken into account. This 
solution does not preclude a specific implementation 
for the operation (i.e. sequential, combinational in 
multi-cycle, etc.). To estimate the worst execution 
time, it is assumed that only one ALU is used and all 
the operations are executed sequentially. In this case, 
the execution time of the segment is obtained by the 
addition of the execution times for all the operations. 
However, the library time annotation method can only 
manage one value, not a range. The library calculates 
a weighted mean by using a constant value that 
determines the weight of each value. The following 
equation is used: 

T = Tmin + (Tmax – Tmin )*k,    0 ≤ k ≤ 1 

Constant ‘k’ is determined by the user for each 
resource depending on the type of analysis he/she 
wants to perform or the relative priority that will be 
given to cost (k = 1) or performance (k = 0) during 
HW synthesis. 

Once the estimated values for each segment have been 
obtained, they are used to carry out the performance 
analysis of the whole system. 

4. Global Analysis 

In order to perform the simulation of the whole system 
while taking into account the estimated execution 
times for each segment, these segments are executed 
and the corresponding process slept for the segment 
estimated time. This method emulates the platform 
behavior. 

In this way, the simulation is transferred from an 
untimed (delta cycle-based) execution to a strict-timed 
execution. Segments do not start following the order 
established by the delta cycle semantics of the 
SystemC system-level specification, but emulating 
their final behavior on the platform. Consequently, the 
models of computation used at the specification and 
the implementation level are preserved. By adding the 
performance estimation library, without modifying 
either the SystemC code or the SystemC simulation 
kernel, the simulation becomes strict-timed and all the 
events are assigned to a physical point in time 
(horizontal axis). This is shown in Figure 5 where 
signals s1, s2 and s3 are generated by three 
(concurrent) SystemC processes P1, P2 and P3 
respectively. Part a) corresponds to the untimed 
simulation in δ-cycles. Part b) shows the strict-timed 
simulation with the delays for each segment estimated 
by the library taking into account the resources to 
which each process has been allocated. 

Back-annotation of timing data is done automatically 
at the end of each segment. Channels and waiting 

statements have been extended to include the 
functions required to do this task. 

The method used to decide the time when a process is 
resumed depends on the type of resource to which the 
process has been assigned. In the case of parallel 
processes, it is the maximum value between the 
ending time of the previous segment and the time of 
the event that has awakened the process. This is the 
case of signal s1 in Figure 5. As can be seen, the 
execution time of segment sg4 runs in parallel to the 
execution time of segment sg5 as this segment 
corresponds to a process mapped to a different 
resource.  

sg3 

sg4 

sg1 

δ(s1) 

resource 0 (SW)

resource 1 (HW)

test1 test2 test3 t(s1, s2 , s3)
test4

P1 

b) Strict-timed simulation 

δ(s2) P2 

δ(s3) P3 

sg2 sg5 

a) Untimed (δ-cycle) simulation 

test5

Figure 5. Delay annotation. 

For sequential processes the decision is more 
complex. In SystemC each process has an independent 
thread running in parallel. However, over the 
platform, it is not possible to execute more than one 
process on a single microprocessor. The process needs 
to wait until the resource is empty. When a new 
segment is awakened, it reads the time of the event 
that has awakened it and the time when the resource is 
expected to be empty. If they are greater than the 
current simulation time, the process executes one wait 
to make all times equal. This process has to be 
repeated until the resource is empty because another 
process can take up the resource while it is waiting. 
Only when times are equal, the segment can run. This 
is shown in Figure 5 with signals s2 and s3. Although 
they are generated by different processes, as these 
processes have been assigned to the same sequential 
resource, the execution times of segments sg1 and sg2 
are scheduled sequentially despite having been 
executed in the same δ-cycle. 

The RTOS execution time is taken into account during 
process communication and synchronization. The 
RTOS will be executed each time a thread is stopped, 
that is, when a channel or a waiting statement is 
reached. Thus, the RTOS timing is estimated 
assigning an execution time to those channels and 
waiting statements executed by processes mapped to 
SW resources. 



As mentioned above, annotation functions have been 
introduced into channel code. This means that to 
include new channels, they have to be adapted by 
inserting in a pair of functions provided by the library. 

Library estimations are reported in two different ways. 
Total execution times for processes and resources are 
generated automatically. All instantaneous segment 
values of execution time parameters can be provided if 
required. 

In addition to the fundamental parameters described 
above, the user can obtain additional information 
he/she may need to take the most appropriate design 
decisions. The user can insert capture points anywhere 
inside the code and a list of events corresponding to 
the concrete times when the capture points were 
executed is generated. The format of these lists is 
prepared for post-processing using mathematical tools 
(i.e. Matlab). Capture points can be conditional to a 
certain assertion. It is also possible to associate values 
of internal signals of the system to these time values. 
This possibility is very useful to verify timing 
constraints and to analyze response times, 
throughputs, input and output rates, etc. 

5. Experimental Results 
To assess the accuracy of the library developed, 
several small (sequential) benchmarks were used. For 
SW processes we have compared library results with 
simulations obtained from an ISS. This ISS was an 
OpenRISC architectural simulator modified to supply 
cycle accurate estimations. Library weights were 
obtained analyzing assembler code from several 
functions specifically developed for this purpose and 
taking into account microprocessor architectural 
characteristics. 

The number of CPU cycles over the target platform 
estimated by the library and provided by the ISS is 
shown in the left part of Table 1. 

Target platform 
estimation time (µs) 

Host simulation time
(milliseconds) 

Benchmark Library 
Estimation ISS  Error 

(%) 

Library 
exec. 
time 

Overload 
w.r.t. 

SystemC

Gain 
w.r.t.
ISS

FIR 28131 29288 4 325.2 51.6 142
Compress 167175 168744 0.9 1.61 27.28 236
Quick sort 5197 5202 0.1 6.77 67.7 237

Bubble 28947 28121 2.9 2.58 122.8 178
Fibonacci 730461 741590 1.5 38.98 10.9 278

Array 19142 18602 2.9 1.09 72.6 247
Table 1. SW estimation results for sequential 

benchmarks. 

The right-hand part shows the execution times when 
including the performance library, the overload factor 
with respect to the original SystemC specification and 
the gain factor (time reduction) with respect to ISS 
execution. 

For HW resources, the real execution times under 
resource-constrained and time-constrained scheduling 
have been obtained by using the Concentric behavioral 
synthesis tool from Synopsys. Two examples were 
selected, a FIR filter and the Euler algorithm. 

Benchmarks Real 
exec. time (ns) 

Estimated 
exec. time (ns)

 
Error (%)

FIR (WC) 342 360 5.3 
FIR (BC) 945 908 3.9 

Euler (WC) 90 88 2.2 
Euler (BC) 225 220 2.2 

Table 2. HW estimation results. 

In order to get results from a concurrent, sufficiently 
complex case study, an ETSI standard, the EN 301 
245 vocoder for GSM applications, has been used. 
The sequential code has been divided in the 5 
concurrent processes shown in Table 3: 

Target platform 
estimation time (ms) 

Host simulation time
(milliseconds) 

Benchmark Library 
Estimation ISS  Error 

(%) 

Library 
exec. 
time 

Overload 
w.r.t. 

SystemC

Gain 
over
ISS

LSP estim. 371.4 365.2 1.7 95.75 36.8 187
LPC int. 322.1 330.3 2.5 90.25 34.7 182

ACB sear. 463.9 443.9 4.5 91.04 35.7 224
ICB sear. 662.7 642.9 3.1 150.3 30.2 235

Post Proc. 2 2.1 5 0.62 10 379
Table 3. SW estimation results for Vocoder. 

The pre-processing function of the vocoder was 
mapped to HW. Results are shown in Table 4: 

Benchmarks Real 
exec. time (ns) 

Estimated 
exec. time (ns)

 
Error (%)

Post. Proc. (WC) 4.875 4.475 8.2 
Post. Proc. (BC) 1.975 1.900 3.8 

Table 4. HW estimation results for Vocoder. 

As can be seen, the error is maintained below 4.5% in 
SW and 8.2% in HW with a gain in simulation speed 
w.r.t. ISS more than 142 times. The simulation time is 
higher than the untimed simulation but it is kept lower 
than 73 times except in one small example. 

6. Conclusions 
In this paper a system-level performance analysis 
library for SystemC has been presented. The library 
can be introduced directly in the original code with 
minimal or no changes at all. It allows the designer to 
make an early estimation of the timing performance of 
the system. A novel, time estimation method 
exploiting the overloading capabilities of C++ has 
been used. 

The library has an intrinsic value as an analysis tool, 
providing useful data for the co-design process based 
on SystemC. Timing constraints on a certain platform 
can be estimated and verified. The library 
automatically provides the fundamental performance 
parameters of the design required to take the most 
appropriate design decisions. In addition to these 



parameters, the designer is able to extract from the 
SystemC code additional events to perform the 
specific timing analyses required, such as response 
times, throughputs, input and output times, etc. Thus 
the library can be used for timing constraint 
verification. As the SystemC simulation semantics is 
adapted by including the impact of the architectural 
mapping decisions, an additional value of the library 
comes from its application as a strict-timed (co-) 
simulation tool. 

This method maintains the global behavior of the 
description although the execution order of processes 
can change as a result of the architectural mapping 
decisions. If results are different from the original 
system-level specification, it means that the 
description is not deterministic (potentially wrong). 
This represents an additional way to detect errors that 
may remain hidden in an ordinary simulation. Thus, 
the library becomes a powerful verification tool. 

Based on the mean execution times and periods of the 
different processes, rate analysis and scheduling for 
soft, real-time embedded systems can be performed. 
The instantaneous execution times for the segments in 
the different processes can be used for performance 
verification and scheduling of hard, real-time systems. 
In both cases, the interaction between the different 
platform resources independently of their type is taken 
into account. The RTOS overload is evaluated. 

SystemC has proven to be a powerful language for 
untimed, system-level simulation of complex systems, 
dynamic estimation of execution times during 
simulation and timed, system-level simulation taking 
into account the decisions taken during architectural 
mapping. 

References 
[1]  “International Technology Roadmap for 
semiconductors: 2001 Edition, http://public.itrs.net. 

[2]  “The MEDEA+ Design Automation Roadmap”, 2002, 
www.medea.org/webpublic/publ_relation_eda.htm. 

[3]  A. SanGiovanni-Vicentelli, G.Martín, “Platform-based 
design and software design methodology for embedded 
systems”, IEEE Design & Test of Computers, November-
December 2001. 

[4]  K. Richter, M. Jersak, R. Ernst, “A formal approach to 
MpSoC performance verification”, Computer, April 2003. 

[5]  F. Balarin, L. Lavagno, P. Murthy, A. SanGiovanni-
Vicentelli, “Scheduling for embedded real-time systems”, 
IEEE Design & Test of Computers, January-March 1998. 

[6]  A. Mathur, A. Dasdan, R. Gupta, “Rate analysis for 
embedded systems”, ACM Trans. on Design 
Automation of Electronic Systems, V.3, N.3, July 
1998. 

[7]  S. Chakraborty, S. Künzli, L. Thiele, “A general 
framework for analyzing system properties in platform-

based embedded system designs”, Proc. of DATE, IEEE, 
2003. 

[8]  M. Jersak, R. Ernst, “Enabling scheduling analysis of 
heterogeneous systems with multi-rate data dependencies 
and rate intervals”, Proc. of DAC, IEEE, 2003. 

[9]  S. Yoo, G. Nicolescu, L. Gauthier, A. Jerraya, 
“Automatic generation of fast timed simulation models for 
operating systems in SoC design”, Proc. of DATE, IEEE, 
2002. 

[10]  J.Y. Lee, I. Park, “Timed Compiled-Code Simulation 
of Embedded Software for Performance Analysis of SoC 
Design”, Proc. of DAC, IEEE, 2002. 

[11]  P. Puschner, C. Koza, “Calculating the maximum 
execution time of real-time programs”, The Journal of Real-
Time Systems, N. 1, 1989. 

[12]  S. Malik, M. Martonosi, Y.-T.S. Li, “Static Timing 
Analysis of Embedded Software”, Proc. of DAC, IEEE, 
1997. 

[13]  F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. 
Jurecska, L. Lavagno, C. Passerone, A. SanGiovanni-
Vicentelli, E. Sentovich, K. Suzuki and B. Tabbara, 
“Hardware-Software Codesign of Embedded Systems: The 
POLIS Approach”, Kluwer, 1997. 

[14]  A. Hergenhan, W. Rosenstiel, “Static Timing Analysis 
of Embedded Software on Advanced Processor 
Architectures”, Proc. of DATE, IEEE, 2000. 

[15]  P. Giusto, G. Martin, E. Harcourt, “Reliable Estimation 
of Execution Time of Embedded Software”, Proc. of DATE, 
IEEE, 2001. 

[16]  C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, 
“Source-level execution time estimation of C programs”, 
Proc. of the Int. Symposium on HW/SW CoDesign, CoDes, 
2001. 

[17]  P. Bjuréus, A. Jantsch, “Performance analysis with 
confidence intervals for embedded software processes”, 
Proc. of the Int. Symposium on System Synthesis, ISSS, 
2001. 

[18]  F. Mueller, “Timing analysis for instruction caches”, 
The International Journal of Time-Critical Computing 
Systems, N.18, Kluwer, 2000. 

[19]  D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, 
“SpecC: Specification Language and Design Methodology”, 
Kluwer, 2000. 

[20]  T. Grotker, S. Liao, G. Martín, S. Swan, “System 
Design with SystemC”, Kluwer, 2002. 

[21]  A. Gerstlauer, H. Yu, D.D. Gajski, “RTOS Modeling 
for System Level Design”, Proc. DATE, IEEE, 2003. 

[22]  F. Herrera, P. Sánchez, E. Villar, “Modeling of CSP, 
KPN and SR Systems with SystemC”, Proc. of FDL, ECSI, 
2003. 

[23]  F. Herrera, H. Posadas, P. Sánchez, E.Villar, 
“Systematic Embedded Software Generation from 
SystemC”. Proc. of DATE, IEEE, 2003. 

[24]  F. Wolf, “Behavioral Intervals in Embedded 
Software”, Kluwer, 2002. 


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




