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Abstract

This paper describes a framework for the refinement of
control and signal processing functions. The design starts
with an executable specification, and allowed deviations
thereof. Refinement steps introduce models of analog or dig-
ital implementations, and augment the ’ideal’ behavior with
different sources of uncertainty. The framework verifies and
analyzes the influence of these uncertainties on system prop-
erties using affine arithmetic.

1. Introduction

Today embedded and ambient intelligence systems use
complex mixed-signal circuits to realize control and sig-
nal processing functions. Such functions are specified us-
ing continuous-time block diagrams. Simulators like Mat-
lab/Simulink, or even model checking techniques (e.g.[7])
permit verification of continuous-time specifications. How-
ever, a number of design steps modify the system’s behav-
ior on the way to a mixed-signal realization, e.g.:

• determination of quantization and sample frequencies,

• digital filter or controller synthesis,

• analog signal processing with noise and tolerances,

• small nonlinearities and limitation of realizations.

Whether these design steps have an impact on the system’s
behavior is validated by a number of simulation runs [5]. A
more complete verification would be possible with equiva-
lence checking. Unfortunately, equivalence checking is not
yet applicable to complex and heterogeneous systems.

Between formal verification and simulation is a wide
field for semi-formal and symbolic techniques. For the anal-
ysis of signal processing and mixed-signal systems, prop-
erty refinement, and analysis with affine arithmetics are
new, promising approaches.

Property refinement[2, 6, 10, 11] is a design method-
ology. Behavior is specified by a non-deterministic relation

B⊆ (I →O) which maps inputsI to outputsO. Property re-
finement transforms a specification to another representa-
tion with behaviorBR ⊆ B. Therefore safety properties are
preserved. However, tools for modeling typical ‘errors’ of
mixed-signal circuits are missing up to now [11].

Symbolic analysis with affine arithmetic[3, 8, 9] is used
for static analysis of floating point errors of DSP algorithms
[3], or for circuit sizing [9]. In [8] we demonstrated the more
general applicability for transient simulation of signal pro-
cessing systems. An essential problem in these approaches
is the lack of a methodology for specification and verifica-
tion.

A combination of (semi-symbolic) simulation tech-
niques with property refinement could be desirable for de-
signers if it provides both a seamless methodology that
ensures correctness from system level down to circuit de-
sign, and a powerful, meaningful and easy-to-use frame-
work for semi-symbolic simulation. In the following we
describe a methodology and a framework for the speci-
fication, refinement and verification of signal processing
systems based on such a combination.

The idea is as follows: The design starts with a specifi-
cation of the ’ideal’ behavior, and a specification of allowed
deviations thereof (tolerances). Design steps add sources of
uncertainty, e.g. due to chosen quantizations, to the exe-
cutable specification. The presented framework permits

• to verify that the resulting behavior of a design is
within the specified tolerances.

• to analyze the influence of different sources of uncer-
tainty (e.g. noise) to the output’s uncertainty.

Within the framework both tolerances of specifications, and
uncertainties of circuits are modeled using affine expres-
sions.

Section 2 introduces a methodology for specification of
signal processing systems, and for modeling of possible re-
alizations with affine arithmetic. Section 3 describes the
implemented framework for analysis and verification. Sec-
tion 4 illustrates the applicability by a case study.
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2. Specification and Modeling with Affine
Arithmetic

For the specification of the intended behavior, and for
modeling analog or digital implementations thereof we use
non-deterministic functionsB⊆ (I →O). Non determinism
allows us

1. to specify behavior with the freedom to choose imple-
mentations with slightly different behavior, and

2. to model parasitic effects of analog components or nu-
merical errors of digital implementations.

We model non-deterministic functions by affine arithmetic.

2.1. Affine Arithmetic

Affine arithmetics [1] is a semi-symbolic technique that
allows us to compute with uncertain values. In each affine
expression the influence of independent sources of uncer-
tainty i to a size with the ‘ideal’, central valuex0 is rep-
resented by a sum of termsxiεi . Noise symbolsεi are un-
known values from the interval[−1,1], and partial devia-
tionsxi scale the sources of uncertainty:

x̂ = x0 +
n

∑
i=1

xiεi , εi ∈ [−1,1]

Basic mathematical operations are defined by:

x̂± ŷ = (x0±y0)+
n

∑
i=1

(xi ±yi)εi

and

cx̂ = cx0 +
n

∑
i=0

cxiεi

Results for the above linear operations give formally pre-
cise limits, and have no over-approximation (that means, we
do not expand the error interval more than necessary). Non-
linear operations can be defined which are formally precise,
but which usually introduce over-approximation. Whether
this over-approximation is a limitation depends on the ap-
plication.

2.2. Specification and Tolerances

Non-deterministic functions can be difficult to under-
stand. In order to have a specification that can be interpreted
easily we explicitly distinguish the specification of ideal,
deterministic behavior, and the specification of allowed de-
viations (tolerances) thereof. The ideal behavior is specified
by a block diagram with continuous-time semantics (fig-
ure 1 left) and computes a deterministic outputo(t) ∈ O
from inputsi(t) ∈ I .
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Figure 1. Specification of ideal behavior and
tolerances.

Allowed deviations are specified by tolerance schemes
for characterizing inputssuch as impulse or step responses
in different operating conditions. For linear systems the
tolerance scheme of a non-deterministic impulse response
fully specifies the allowed behavior. For non-linear systems
a characterizing input is required at each operating point.
Such tolerance schemes are known and accepted by design-
ers, and we only formalize specification of tolerances using
affine expressions.

We model tolerances as a sum of delayed affine terms
which add an uncertainty to the deterministic outputo(t).
The non-deterministic output ˆo(t) ⊆ O is obtained by sam-
pling o(t) at discrete points in timeti , and adding tolerances
to these values:

ô(t) =
n

∑
i=0

(εioi +o(ti)+oo f f,i)rect(ti , ti+1)

The tolerances consist of an offsetoo f f,i and a noise term
εioi . The resulting expression is multiplied with a function
rect(t1, t2) which we assume to be a function which is 1 be-
tweent1 andt2, and 0 else. Figure 2 shows an example for a
step response.

t1 t2 t3
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Figure 2. Example for step response.

Note, that one can compute the non-deterministic im-
pulse response from a non-deterministic step response (e.g.



for control applications) by derivation, or from a tolerance
scheme in the frequency domain (e.g. telecom applications)
by Fourier transformation.

2.3. Modeling Implementation and Uncertainties

As an implementation we consider mixed-signal systems
which typically consist of analog signal processing compo-
nents, signal converters, and digital signal processing. De-
sign steps replace blocks with ideal behavior by

1. models of an implementation, e.g. a discrete-time fil-
ter, or an analog circuit.

2. a specification of ideal behavior with tolerances, as de-
scribed in section 2.2.

In both cases we use affine expressions to model deviations
from the ideal behavior. Figure 3 shows an example of such
a model. In this model the specification shown in figure 1 is
refined by replacing the blocksm1,m2,m3 with ideal behav-
ior by implementations which introduce uncertainties and
deviations from the ideal behavior.
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Figure 3. Example for a model of an imple-
mentation.

Uncertainties and deviations from ideal behavior are
modeled by adding affine terms (noise symbol and partial
deviation). We distinguish static uncertainties such as tol-
erances for components, and dynamic uncertainties such as
noise. Static uncertainties add a constant deviation to a sig-
nal which is the same for all points in time. Dynamic uncer-
tainties add a random value to a signal which can be differ-
ent for each point in time. In this case we use noise symbols
ε[n] with index to access a noise symbol at a given point in
timen. Single dynamic noise symbolsε[n] from which only

the j last values are needed can be mapped toj + 1 static
noise symbolsεx . . .εx+ j+1.

Furthermore, we introduce uncertainties that are Gauss
distributions. In order to distinguish different reasons of un-
certainty we use different noise symbols:ε for the common
interpretation as an interval, andγ for Gaussian distribution.
With such noise terms the sum is computed by:

x̂+ ŷ = (x0 +y0)+
n

∑
i=1

γi

√
x2

i +y2
i

In the following we discuss methods for modeling typ-
ical uncertainties of non-ideal implementations by adding
affine terms to a signal ˆy = y0 +∑m

i=0 εiyi .

Production tolerances:Analog implementations of-
ten have a static deviation±e from the ideal behavior. This
is modeled by adding a termεm+1e:

tol(ŷ,e) = ŷ+ εm+1e

Quantization: Quantization adds a noise symbolγm+1 with
a partial deviation of a half quantization unitQ/2, which
models the worst case deviation:

quant(ŷ,Q) = ŷ+ εm+1[n]Q/2

Truncation of numerical operations, such as multiplication
can be handled in the same way.

Nonlinearities: Non-linear operations such as ˆy∗ x̂ can add
new noise symbols that model the error. However, this can
lead to an explosion of the number of symbolic terms, and
to an increasing estimated error, because error cancellation
can not be detected. We prefer a linear over estimation of
the noise as follows which does not increase the number of
terms:

ŷ∗ x̂ = (y0∗x0)+
m

∑
i=1

εi [n]p(yi +xi)

wherep is a lower border for the derivation ofx∗y in the in-
terval covered by ˆx and ŷ. Note, that this is formally exact
but that we, depending on the nonlinearity, expand the in-
terval more than necessary (over-approximation).

Noise: Noise is a dynamic uncertainty. A simple model of
noise is to use the standard deviation as partial deviationxi .
A simple model for white noise is a sequence of statistical
independent values with standard deviationσ:

noise(ŷ,σ) = ŷ+ γ1[n]σ

Colored noise is generated by filtering white noise in a
FIR filter as follows:

ŷ[n] = y0[n]+
m−1

∑
i=0

γ1[n− i]ciy1[n− i]

Note that each past value ofy1 has its own noise symbol
γ1[n− i].



Numerical error: For verifying analog components or sys-
tems, simulation is used. Analog simulators compute ap-
proximations of a solution of differential and algebraic
equations. The local truncation error (LTE) is added to the
ideal behavior in each time step. For block diagrams this can
be modeled by adding an affine term with a lower bound of
LTE in each time step to each delayless loop. The analy-
sis of numerical errors from simulation can be helpful to
get confidence into simulation results.

The above effects are just examples or simple templates
provided by our framework. Of course one can add new
models of errors or noise which are more appropriate for
a given application.

A restriction is the number of affine terms. In general,
models must ensure that the number of affine terms does not
increase significantly in a simulation run by: 1.) Restricting
access to dynamic noise terms to few past values, 2.) Re-
stricting the semi-symbolic simulation to a bounded time, if
the number of terms increases with time steps. Another po-
tential problem is over estimation. Most notably in recur-
sive computations such as control loops over estimation of
the errors can lead to either an exponential explosion of the
error estimations, or to an explosion of the number of er-
ror terms.

Both problems cannot be avoided in general by this
methodology. It is a task of the modeling process to for-
mulate appropriate models. However, the design example
in section 4 demonstrates that these problems are not pro-
hibitive, and can be avoided easily.

3. A Framework for Refinement and Semi-
Symbolic Simulation

In order to verify that an implementation with behavior
BR is a refinement of a specificationB we show that pos-
sible outputs are within the specified tolerancesOt . We re-
strict this verification to the characterizing input signalsIc
from the specification. For these input signals we compute
output signalsOc = BR(Ic) of the implementation by semi-
symbolic simulation with affine arithmetic. A design is a re-
finement of the specification, ifOc ⊆Ot which can be seen
directly in plots of the tolerancesOt and the outputsOc.

ImplementationFor semi-symbolic simulation and verifi-
cation we use a transient simulation run where data types
such as bit vectors or floating point numbers are replaced
by affine expressions. This can be implemented by

• A simulator that is available in source code, that sup-
ports templates, and that can simulate a given model.

• An abstract data type ‘affine expression’ which pro-
vides an efficient internal representation and which de-
fines operations used in a given model.

SystemC seems to be the best candidate for this purpose.
We combine a SystemC-AMS prototype [6, 12] as simula-
tor with the affine arithmetic library from [4] which pro-
vides a ’AAF’ (affine arithmetic form) class in C++. The
AAF class symbolically handles affine terms and provides
overloaded operations such as ’+’, for example. SystemC(-
AMS) is a C++ library, and therefore allows designers to
use templates and operator overloading. AMS extensions of
SystemC support simulation of continuous-time block dia-
grams. In SystemC ports and signal of a model are instanti-
ations of the classes

• sc in/out<class T> and/or

• sc signal<class T> resp.
sca signal<class T> .

In instantiations of these classes the template classT speci-
fies the type of the signal’s values. This type can a be a bit
vector (sc bit vector ), for example. In order to com-
bine affine arithmetic with SystemC, we include the affine
library which provides the classAAF, and instanciate sig-
nals and ports with this class as template parameter. For ex-
ample, designers can declare signals, and apply arithmetic
operations, or add uncertainties as follows:

sca_signal<AAF> a, b, c;
c = a + quant(b,6)+ noise(3);

Visualization The framework for semi-symbolic verifica-
tion also provides means to write affine terms into VCD
files, and to visualize such outputs. For visualization we
have extended GTKwave to support analog signals, and to
visualize affine expression signals.
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Figure 4. Visualization of affine signals.

Figure 4 explains the graphical representation of an
affine signal ˆy(t). Affine signals are represented as sums of
intervals above and below the signal’s central valuey0(t).



Values between two sample pointsti , ti+1 are assumed to be
between the maximum/minumum of both affine values1. As
shown in figure 4 simulation runs with affine signals provide
for each point in simulated time information about ranges
of possible output values. Furthermore, designers can see
which of the sources of uncertainty in the design causes how
many of the resulting uncertainty.

Figure 5. Visualization of the maximum range
of affine output with extended GTKwave.

Figure 5 shows a screenshot of an enhanced version of
GTKwave which is able to visualize analog affine signals as
shown in figure 4. Actually, only one analog signal is sup-
ported. Drawing both specification of the output of charac-
terizationandactual outputs in one plot and graphical visu-
alization of the different noise symbols is subject of current
work.

4. Design Example

To demonstrate the applicability of the method we an-
alyze a control system with feedback. Feedback loops are
the main cause of potential problems that we expect: Ex-
plosion of the number of affine terms, and/or too large over-
approximation. Systems with feedback were problematic
in first experiences with more simple analog interval arith-
metic [3, 8], where error cancellation was not possible. Fur-
thermore, the concept of error cancellation via feedback is
one of the most fundamental concepts of mixed-signal sys-
tems and can be found — in different flavors — for exam-
ple in Σ∆ converters, or in noise shaping. Therefore, a sim-
ple system with feedback is an illustrative and yet meaning-
ful example to validate the applicability.

1 This (unfortunately) does not cover the case of a local extremum be-
tweenti , ti+1.

In order to model a control system we describe the sys-
tem shown in Figure 1 as usual in SystemC with the follow-
ing differences:

• We use the typeAAF instead ofdouble to model sig-
nals.

• In order to verify the impact of design steps on the sys-
tem behavior we add a models of an assumed devia-
tions from the ideal behavior.

Figure 6 shows the system we implemented to validate
transient simulation with affine expressions.
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Figure 6. Design Example.

The model includes three different errors modeled by
affine expressions: 1.) A potential offset error of a compara-
tor which adds a constant error, 2.) potential errors due to
not captured effects in a model, and 3.) quantization noise.
These errors occur in different points in the design, and their
impact on the dynamic behavior is analyzed by a simulation
run.

Figure 7 shows the visualization of some simulation re-
sults with gnuplot. The impact of all these errors on the out-
put signal can be displayed separately:

• The offset error in the adder is not reduced by the con-
trol system.

• Even large static errors introduced in the control loop
(e.g. due to unprecise modeling) fall towards 0.

This is exactly what we expect from a PI controller. If the
errors on the output are too high designers can take appro-
priate measures to bring the output signals directly into the
range allowed by the specification.

5. Discussion and Future Work

Although affine arithmetic and its application in circuit
or system design is very new, and only few experiences ex-
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Figure 7. Visualization of simulation results.

ist, these experiences are very promising. Roughly speak-
ing, we made similar experiences compared with [3] for
static analysis of DSP algorithms: In practical case studies
the number of terms remains limited, and the value range
does not grow too much. In our experience the analysis
of dynamic properties by a transient simulation with affine
arithmetic provides very useful information with only very
few simulation runs.

Compared with noise analysis, transient simulation with
affine expressions is not restricted to linear systems. In gen-
eral the methodology is applicable even to complex mixed-
signal systems e.g. in ambient intelligence or control sys-
tems which combine large software systems with analog
and digital signal processing. However, careful modeling of
the errors is required in order to avoid an increasing num-
ber of terms with simulated time. Compared with Monte-
Carlo techniques simulation with affine expressions pro-
vides more information: The contribution of each single
noise/error source to the total deviation from the central
value. Although the case study presented shows that ‘error
cancellation’ does work, we are working on more impres-
sive and complex case studies such as the noise analysis of
a Σ∆ converter.

The presented results provide an easy-to-use framework
for the refinement of signal processing systems to mixed-
signal implementations, because by very few simulation
runs, and in a systematic way we can show that a given
implementation is a property refinement of a specification.
Note that simulation with affine arithmetic could also be an
interesting candidate for a combination with methods for
property checking of hybrid systems [7].

Although this work most notably deals with interactive
design and refinement the methodology and transient sim-
ulation with affine arithmetic can be very useful for de-
sign automation at system level. For design automation of
mixed-signal systems at high level of abstraction the anal-

ysis of precision and parasitic effects are actually very im-
portant problems which must be solved before developing
methods for design automation at system level.
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