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Abstract 

A recent practice in the development of 
programmable SoC is the integration of configurable 
processors, since they offer an interesting compromise 
between purely software and hardware solutions. This 
paper proposes an adjustment to the current codesign 
approach to integrate this opportunity at the partitioning 
level. Since configurable processors seem to be an 
interesting option for NPU designs, we integrated into a 
system level exploration platform the support of an Xtensa 
processor for more investigation. As case studies, this 
paper illustrates the methodology for two realistic 
network-processing applications, for which interesting 
performances are obtained. 

 

1 Introduction 

Up until the late 1990’s, most packet processing 
devices were realized by software. Nearly all of the 
network tasks such as packet forwarding, filtering, queue 
management and routing table maintaining were 
performed by a central processing unit. The advantage of 
such architecture was the ease to adapt products to new 
protocols and rapid market changes. But recently, the 
bandwidth explosion and the continuing growing demand 
in services have overcome the potential of this 
conventional solution. On the other hand, it has now been 
established that programmable system-on-a-chip (SoC) 
can meet these new challenges. A NPU, that can be 
defined as a software programmable SoC with 
architectural features and/or special circuitry for packet 
processing at wire speed, appeared as the solution. 

The range of commercial NPUs comprises all the 
spectrum of architectures, from fully software 
programmable to almost completely hardwired [1]. The 
choice of an architecture may depend on the intended data 
rate, the targeted application, time-to-market constraints, 
etc. Tools that efficiency assist and guide architectural 
designers in the exploration of this broad solution space 
become a necessity to meet the short development time 
constraints. Many different tools, both academic and 
industrial, tackle the task of SoC design automation and 
try to ease the architectural exploration phase. Teepee is 

an architecture development framework created by the 
Mescal group. It can be used to describe an architecture 
using a formal language and to automatically generate 
different parts of the desired platform design [2]. Roses, 
by the TIMA group, is a design environment used to 
implement a component based methodology to develop 
SoCs. Roses main goal is to speed up the refinement of 
the platform by generating the required hardware 
wrappers and software APIs [3]. StepNP [4], a system-
level exploration platform for network processors, is 
another tool that can help answer this challenge by 
allowing quick system level exploration of different 
designs. Finally, commercial tools like CoWare N2C or 
Cadence VCC can be used to create a platform based 
design. For this work, three reasons have motivated the 
choice of StepNP: 1) the architecture under development 
is easily modified by adding or changing some of its 
components, 2) it provides the required infrastructure to 
perform simulation, debugging and performance analysis 
of the architecture 3) and it is open source. 

When developing an NP platform, the exploration 
phase coarsely consists in two steps. During the first step, 
two choices must be done: 1) the right processors offering 
the best-suited instruction set for the targeted application 
and 2) the interconnections (point-to-point bus or 
network-on-a-chip NoC) that will satisfy the required 
bandwidth. The second step, named partitioning, is 
usually required when specification requirements are not 
met. It consists of replacing time-consuming software 
parts by specialized accelerating hardwire engines. The 
tradeoffs are the software flexibility versus the hardware 
performance.  

But in the last few years, one more alternative has 
appeared to system designers. Between application 
specific processors (ASP) and purely hardwired solutions, 
the integration of embedded configurable processors has 
changed the previous partitioning process. By adding to 
them specialized instructions to match specific tasks, 
configurable processors can produce interesting gains 
similar to hardwired engines. Taking into consideration 
the fact that bandwidth and latency are key aspects in 
most of today NPUs, they become an interesting solution 
for such SoC, avoiding extra communications between 
processors and coprocessors. 
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Therefore, we incorporated into StepNP the 
necessary logic to support the Xtensa configurable 
processor provided by Tensilica [5]. This enables the 
exploration of a wider range of instruction-set 
architectures. We also propose a modification to the 
current codesign approach to reflect this new opportunity 
at the partitioning level. We apply the resulting 
methodology first for the design of an IPv4 compliant 
device, and then for the same application supporting 
encryption. With one processing element, we accelerated 
these applications significantly, up to 3.25 and 6.92 times 
faster respectively. 

The rest of this paper is organized as follows. 
Section 2 outlines the improved system level exploration 
platform used. Section 3 presents the current co-design 
development methodology and its proposed modification 
at the exploration phase. Section 4 illustrates a design 
exploration process for two different applications 
following the modified methodology. The results are 
presented in section 5, while section 6 concludes. 

2 Components of the Platform 

StepNP is a system-level exploration platform for 
NPUs. Starting with a general architecture composed of 
standard reduced-instruction-set-computing (RISC) 
processors and a simple interconnect, StepNP allows easy 
plug-and-play replacement with more specialized 
processors, coprocessors, and interconnect; making the 
exploration task faster and easier. Its main components 
are a high-level multiprocessor-architecture simulation 
model; a routing application development kit; and a SoC 
control, debugging, and analysis toolset. These concepts 
and the modifications done to StepNP are explained in the 
next sections.  

2.1 The System Level Architecture 
A StepNP architecture consists of multiple IP 

components, including processors, memories, 
interconnections models from high-level split-transaction 
channel to more real NoC (e.g. crossbar, mesh, ring) and 
specialized coprocessors. All these components are 
SystemC 2.0 simulation models [6] with a standardized 
interface based on the Open Core Protocol [7]. By 
specifying the communication mechanisms, we enable 
plug and play of different SoC IP’s at various abstraction 
levels and facilitate their development and exchange 
within different working groups.  

 This work focus on the configurable processor 
integration, which will permit to measure the impacts of 
different specialized functional units added into the 
processor’s pipeline on the NPU performance. Different 
alternatives could be chosen to integrate this feature. For 
instance, the SimpleScalar tool set [8] can be used to 
simulate and analyze different microprocessors. It comes 

with an instruction interpreter for standard instruction sets 
and could be modified to simulate a more custom set. 
Lisatek tools [9] based on the LISA language can be used 
to describe a processor with a specialized instruction set. 
From this description, simulation tools and a skeleton of 
the RTL code can be automatically generated. The Xtensa 
processor can also be customized at the instruction set 
level with all the required tools automatically generated. 
Although the Xtensa solution comes with more 
architectural restrictions than the previous ones, the 
adopted solution provides a faster way to create custom 
processors and generates complete tool chains. 

The Xtensa configuration process begins by 
accessing the Tensilica processor generator Web page. 
The designers can then select the desired features like 
endianess, basic functional units, bus width, instruction 
and data cache types and sizes. Using a proprietary 
language, they can also incorporate application-specific 
functionality to the processor by adding new instructions 
named TIE (Tensilica Instruction Extension). After 
selecting the proper options, the generation process 
produces the processor’s configured RTL description and 
its configured software development tools, including a 
complete instruction set simulator (ISS). We wrapped in a 
SystemC module this ISS to support the StepNP 
standardized interface. By respecting the proposed 
interface and SystemC methodology, designers can also 
easily and quickly develop and incorporate dedicated 
coprocessors to accelerate specific tasks and evaluate 
their effects like complexity, speed and communication 
overhead on their design. Although it is possible to 
simulate an entire system using the Tensilica framework, 
creating a SystemC model for the Xtensa holds some 
advantages. For instance, StepNP contains tools to profile 
and trace the simulation of the entire system, not only the 
processor. Furthermore, based on IP reuse approach, it 
can simulate heterogeneous systems. 

2.2 The routing Application Development 
Framework 

At system level exploration, many design styles 
have to be evaluated in a short period of time. The routing 
application development framework needs therefore to be 
easy to use, flexible and modular. Because it will be 
executed on different types of architecture, the developed 
application needs also to be high-level straightforward 
portable code. Click is, by itself, a framework for rapid 
development of routing applications, which satisfies 
almost all these requirements. Built in C++, it is a 
modular software router originally developed by MIT 
[10]. It was ported on the Xtensa processor and modified 
to take advantage of the customized instruction set and 
the coprocessors on the platform. 

Click can also serve as a testbench. Using a 
specialized communication mechanism named SIDL [4], 



a simple interface definition language used to pass data 
between two processes, Click can serve as a packets 
generator to feed the platform; and takes them out to 
verify if the right behavior is achieved. 

2.3 The SoC Toolset 
The toolset includes all the specific development 

tools for the individual processors used in StepNP 
(compiler, profiler, linker, etc.); and a top-level tool 
allowing a global visualization of the model execution 
from a number of perspectives. 

3 Methodology 

Figure 1 shows the main steps of the current co-
design development methodology, with a few 
modifications applied to it (illustrated by dashed lines). 
This base design is analogous to other co-design 
methodologies as presented in [3] which focus mainly on 
the refinement process; contrarily to our approach that 
puts more emphasis on the architectural exploration.  
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Figure 1. Co-design Proposed Methodology 
 
Our approach starts by considering a complete 

software implementation on which we apply a software 
optimization to insure that no poor coded functions are 
wasting time. After a software analysis, the next step is to 
choose the best suited processor(s) for the targeted 
application. In the configurable processors world, it 
consists in selecting the right architectural features. Next, 
we propose a modification at the classical partitioning 
phase. At this level, instead of being completely hardware 
or software, the functionality to implement can be 
realized by one or many specialized processor 

instructions. A custom instruction has the advantage to be 
fairly easy created, added to the processor core, and 
integrated into the software that will run on it. Although it 
can give a significant performance speed-up, one has to 
be careful to not create too complex instructions that 
could slow the processor’s pipeline to unacceptable speed. 
Furthermore, the instruction is only described with an 
instruction extension language [5]. With this description, 
all the necessary logic to implement the new functional 
units is automatically generated and added into the 
processor pipeline. This approach is therefore quicker and 
less prone to errors than custom hardware creation. As our 
results will show, custom instructions can be quite 
beneficial in certain cases, for example when a lot of bit 
manipulation has to be performed. On the other hand, a 
custom instruction yields no advantage for certain tasks 
like the copy of the packets between the input and output 
interfaces and the memory. In that case, a coprocessor 
managing the memory is a more appropriate choice. 

In summary, our hardware/software partitioning is 
performed in four steps. First, the application should be 
run exclusively as software, since it is quicker and easier 
to develop this way, especially with a development 
framework like Click. After an initial profiling and the 
identification of bottlenecks not easily optimized in 
software, a second step selects the right architectural 
features, while a third step investigates the introduction of 
new functional units through the definition of custom 
instructions. The last step implements specialized 
hardware to replace the parts ill suited to be implemented 
directly into the processor. 

In addition, sorted by progressive refinements, the 
following features complete our co-design flow: 
- Individual profiling can be done for each processor, 

while StepNP provides tools for global performance 
analysis in SystemC. 

- The initial and subsequent simulations and validations 
of the SoC design are done on the StepNP platform. The 
exploration process usually starts with a transactional 
channel that can be refined to a more complex 
communication mechanism afterwards. 

- The Xtensa generator web page is used to provide an 
estimate of the speed, surface and power for a given 
implementation technology. 

- It is possible to synthesize a compiled TIE instruction in 
order to estimate its critical path and see if it will 
negatively impact the pipeline speed. 

- Hardware modules in SystemC can be refined towards a 
synthesizable model or described in other HDL 
languages. 

4 Case Study 

This section intends to clarify and enforce the 
proposed methodology by illustrating its use in a step-by-



step process. The efficiency of the improved StepNP is 
also demonstrated. Two speculative but realistic network 
applications are initially developed with Click for this 
purpose. Different architectural alternatives are then 
presented with their associated results. 

4.1 Specification Capture 
The first specification is an IPv4 router that forwards 

packets in nearly full compliance with the standards. Such 
application includes pattern matching, lookup, data 
manipulation, computation and queue management; 
which are usual NPU’s tasks. We limited the lookups to a 
small static IP routing table, since many commercial 
solutions already propose different algorithmic or 
hardwired approaches to perform searches and updates of 
huge tables [1, 11]. 

We included encryption to the previous IPv4 router 
specification to form the second application. Becoming an 
immediate necessity for nearly all information exchange 
systems, data encryption often requires high-speed 
encryption and decryption. A common algorithm is the 
Data Encryption Standard (DES) or a straightforward 
improvement known as Triple-DES. The enhanced 
version has been specified as an encryption algorithm for 
both the Secure Shell tools (SSH) and the Internet 
Protocol for Security (IPSEC). For these reasons, we 
chose to support the core of the DES encryption algorithm 
with cipher block chaining (CBC) mode. 

4.2 Profiling 
The profiling phase usually starts with a basic 

architecture composed of standard processors and a 
simple interconnect. We limit here the exploration process 
to one configurable processor for which we will try to 
attain the maximum achievable data rates for both 
applications. Nevertheless, it is possible to duplicate the 
processor and its coprocessor(s) to reach the required 
bandwidth by exploiting the inherent parallelism in packet 
processing. The characteristics of the initial Xtensa 
processor are: 32 bits bus width, 2 way 8KB instruction 
and data caches; and no special functional units. At this 
step, the code is compiled and profiled to identify the 
bigger time consuming tasks. 

The platform is fed with two kinds of packets. First 
with minimal packets of 64 bytes, usually used as a 
benchmark standard by the industry; then with a more 
realistic workload consisting of variable Ethernet packet 
lengths as recommended in the RFC2544. The total 
execution time of the IPv4 application is distributed as 
follow: 
1. Window Overflow and Window Underflow: Instead of 

wasting cycles to push and pop registers values at each 
procedure entry and exit, Xtensa processors use a 
‘sliding window’ mechanism. Nevertheless, when 

Window Overflow and Window Underflow occurred, 
some cycles are necessary to recover. 

2. Push: A Click router is an interconnected collection of 
modules called elements; each element performs a 
precise part of the overall application. Routing 
applications are built by gluing elements together. The 
virtual Push function is used to drive packets across 
these elements. 

3. Memory Management: This category includes all 
memory management functions like memcpy, malloc, 
memset, free, etc. 

4. Packets In and Out: Packets are accessible from the 
processor by a direct memory mapping. The Packets 
In and Out category includes all the functions in 
charge of these packet exchanges. 

5. CheckIPHeader: It validates the different IP header 
fields. 

6. IP Checksum: Consists on the IP checksum computing 
and update. 

7. Others: Includes among other things lookups, 
fragmentations, Ethernet header settings, etc. 

Table 1 gives for each of these categories the 
fraction of the time consumed. As the results show, there 
is a substantial price to pay on the performance for the use 
of a high level and flexible coded application. The 
overhead almost exclusively comes from a lot of 
embedded and virtual function calls. It is obvious with the 
Window Overflow, Window Underflow and Push 
functions, which spend as much as 39.7% of the total 
processing time of small packets and 25% for those of 
variable lengths. For packets of minimal length, the 
execution time is roughly distributed over all categories. 
For larger ones, Memory Management operations 
consume the main part, for which the memcpy function 
alone takes nearly half of the entire time. This can be 
explained by the fact that packets need to be copied from 
interfaces to the processor’s RAM before any actions; and 
copied back after completed the processing. The memcpy 
function is also used two more times to align packets in 
memory, when their original 14 bytes Ethernet header is 
removed after proper treatments and replaced by a new 
one just before sending it back. 

 
Table 1. Profiling results of the IPv4 application 

Min. Length Var. Length
Window Over/Under Flow 22.8 14.6
Push 16.9 10.4
Memory Management 24.9 58.2
Paquets IN / OUT 4.8 3.1
CheckIPHeader 3.4 1.2
IP Checksum 3.6 2
Others 23.6 10.5

Functions Time Consumed (%)

 
 
Table 2 presents the profiling results of the 

application supporting DES-CBC encryption. We suppose 



that all packets need to be encrypted before leaving the 
router. A new category is then added to the previous ones:  
8. DES-CBC Encryption: Contains all functions relative 

to DES-CBC encryption. 
The encryption is obviously the main consuming 

task, reducing significantly the impact of all other 
categories on the performance. Because the DES-CBC 
algorithm is performed on the entire IP packet, its work is 
almost proportional to the packets size, taking from 
48.9% of the complete processing time of small packets 
up to 86.8% for a more realistic workload. 
 

Table 2. Profiling results of the IPv4 application with 
DES-CBC encryption 

Min. Length Var. Length
DES-CBC Encryption 48.9 86.8
Window Over/Under Flow 11.7 1.9
Push 8.3 1.4
Memory Management 14.3 7
Paquets IN / OUT 1.6 0.3
CheckIPHeader 0.8 0.1
IP Checksum 1.5 0.2
Others 12.9 2.3

Time Consumed (%)Functions

 

4.3 Exploration Phase (Partitioning) 
Guided by the profiling results and the specification 

constraints, the partitioning steps consist mainly in 
exploring the solution of the eventual SoC 
implementation area in order to find the best-suited 
components (processors, coprocessors, NoC, etc.) and 
their organization. 

Following our methodology (section 3), Click 
allows for the first step a quick code optimization by 
means of minimal compilation/linking and 
devirtualization of the Push function. For our 
applications, these techniques do not significantly change 
the previous results.  

In step 2, the architectural feature selection, it is 
possible to double the XTensa registers in order to 
decrease the WindowOverflow and WindowUnderflow 
functions calls. This reduces the task by almost a factor of 
two for both applications. For this particular case study, 
no additional features provide significant speed-ups. 

In step 3, the best candidate found for custom 
instructions is the encryption. Consisting on extensive bit 
permutations and use of unusual registers lengths, the 
DES algorithm can easily be speed up with TIE 
instructions. Few of them accelerate this task by an 
interesting factor of 8. To illustrate TIE utilization, we 
also replace the IP checksum computing and update 
algorithms by two TIE instructions. Table 3 presents the 
speed-ups provided by different optimizations on the 
profiling categories for both applications. Since the time 
to perform most of these tasks is the same regardless the 
packets size, only the results to process packets of 

variable lengths are given. These gains are cumulative 
since there is no reason not to use previous optimizations; 
and they also include the function calls overhead. 

A second candidate to keep improving the overall 
performance is the Memory Management processing, 
consisted essentially of memcpy functions calls. The first 
half of these function calls can easily be avoided simply 
by supporting unaligned accesses. The Xtensa processor 
has an Xtensa Local Memory Interface (XLMI) to 
connect peripherals, coprocessors or extra memories. We 
attached to this interface a fast 4K memory and modified 
the code of the application to move and process the 
packets in this memory range. We finally added the 
necessary logic to the XLMI interface (implemented in 
step 4) to support unaligned access, after that, packets can 
now be accessed unaligned. 

Unfortunately, the other half of the memcpy calls 
cannot be easily avoided. Since this function mainly 
realized consecutive memory accesses, hardware cannot 
significantly improve it. So a TIE instruction is not best 
suited. Nevertheless, the processor can benefit from the 
use of a coprocessor (also implemented in step 4) to 
alleviate the memory management tasks. Therefore, we 
built a simple Direct Memory Access (DMA) controller to 
exchange the packets between the XLMI memory and the 
interfaces. Instead of calling the memcpy function to copy 
the packets, the processor now instructs the DMA 
controller to perform this function. Few modifications to 
the code are necessary to insure that a packet is always 
ready to be processed in memory. An additional port 
needs also to be added to the memory to allow two 
simultaneous accesses. No special cares for the cache and 
memory coherency are taken since this memory area is 
not cached. Together, unaligned access support and DMA 
controller reduce significantly the memory management 
processing by an order of magnitude. 

 
Table 3. Gain provided by different optimizations on 

the profiling categories for a ) Ipv4 application 
b) Ipv4 application supporting DES-CBC encryption 

Software 32->62 reg. TIE DMA
Window Over/Under Flow 0.95 1.78 1.76 2.03
Push 1.11 1.10 1.04 1.40
Memory Management 1.00 0.99 0.99 12.84
Packets IN/OUT 1.13 1.13 1.18 1.17
CheckIPHeader 1.09 0.82 1.00 0.99
IP Checksum 1.12 0.98 1.77 2.18
Others 0.95 0.67 1.06 1.53

Gain SpeedFunctions

 
a) 

Software 32->62 reg. TIE DMA
DES-CBC Encryption 1.01 1.00 7.96 7.93
Window Over/Under Flow 0.97 1.91 1.94 2.93
Push 1.11 1.08 1.18 1.55
Memory Management 1.09 1.04 1.10 9.83
Packets IN/OUT 1.01 1.01 1.05 1.06
CheckIPHeader 1.01 1.01 0.99 1.00
IP Checksum 0.97 1.02 1.85 2.22
Others 0.78 1.06 1.13 2.99

Functions Gain Speed

b) 



4.4 Simulation/Validation and Synthesis 
After each architectural modification, we simulate 

the platform and verify the accuracy of the functionality. 
By the same occasion, it serves as profiling tests to find 
the next possible optimizations. 

Only the TIE instructions have been synthesized to 
insure than the processor frequency was not reduced. 
Since the DMA performance can be easily approximated, 
no synthesis model had to be done. 

5 Overall Results 

Figure 2 shows the overall speed-ups achieved after 
the different steps of our methodology. We obtain a gain 
of 1.92 for small packets forwarding and 3.25 for real 
packets with all optimizations applied. When encryption 
is added, the gains are boosted to 3.57 and 6.92. 

Assuming a processor running at 400 MHz (using a 
typical 0.13µm technology), the obtained data rates are 
109 Mbps and 1.16 Gbps for minimal and variable packet 
lengths processing respectively. They drop to 57.1 Mbps 
and 193 Mbps when the encryption is considered. Better 
results should be obtained by reducing the overhead of the 
high level coded application. 

 

 
Figure 2. Overall gains for a) IPv4 application b) IPv4 

application with encryption 
 
Finally, the time spent on those optimizations can be 

divided in two parts: TIE instructions creation and co-
processor model development. Considering a good 
understanding of the applications and a basic knowledge 
of the Tensilica tools, extracting potential instructions and 
creating TIE instructions have required 2-3 weeks. Note 
that, once the instructions have been created, integration 
into the processor is completely automated. On the other 
hand, developing a behavioral model of the custom co-

processor in SystemC has been relatively fast (1-2 week) 
but the resulting model is farther from a synthesizable 
model. 

6 Conclusion 

In this paper we presented a system level exploration 
methodology for platform-based designs based on 
configurable processors. The enhanced StepNP 
development tool was used to develop different 
architecture prototypes. By using a custom instruction set 
processor and accelerating engines when appropriate, we 
obtained significant speed-ups for two different network 
applications. The main advantage of the proposed 
methodology is the rapidity to develop different NP 
architectures, allowing an efficient exploration of a large 
design space. 

In order to improve the presented architectures, 
more realistic interconnects will be used. To better hide 
those new bus latencies, we plan to investigate on 
different hardware multi-threading architectures. 
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