
A System Level Exploration Platform and Methodology for Network
Applications Based on Configurable Processors

D. Quinn1, B. Lavigueur1,G. Bois1, M. Aboulhamid2

1École Polytechnique de Montréal, QC, Canada

{Quinn, Lavigueur, Bois} @grm.polymtl.ca
2Université de Montréal, QC, Canada

aboulham@iro.umontreal.ca

Abstract

A recent practice in the development of
programmable SoC is the integration of configurable
processors, since they offer an interesting compromise
between purely software and hardware solutions. This
paper proposes an adjustment to the current codesign
approach to integrate this opportunity at the partitioning
level. Since configurable processors seem to be an
interesting option for NPU designs, we integrated into a
system level exploration platform the support of an Xtensa
processor for more investigation. As case studies, this
paper illustrates the methodology for two realistic
network-processing applications, for which interesting
performances are obtained.

1 Introduction

Up until the late 1990’s, most packet processing
devices were realized by software. Nearly all of the
network tasks such as packet forwarding, filtering, queue
management and routing table maintaining were
performed by a central processing unit. The advantage of
such architecture was the ease to adapt products to new
protocols and rapid market changes. But recently, the
bandwidth explosion and the continuing growing demand
in services have overcome the potential of this
conventional solution. On the other hand, it has now been
established that programmable system-on-a-chip (SoC)
can meet these new challenges. A NPU, that can be
defined as a software programmable SoC with
architectural features and/or special circuitry for packet
processing at wire speed, appeared as the solution.

The range of commercial NPUs comprises all the
spectrum of architectures, from fully software
programmable to almost completely hardwired [1]. The
choice of an architecture may depend on the intended data
rate, the targeted application, time-to-market constraints,
etc. Tools that efficiency assist and guide architectural
designers in the exploration of this broad solution space
become a necessity to meet the short development time
constraints. Many different tools, both academic and
industrial, tackle the task of SoC design automation and
try to ease the architectural exploration phase. Teepee is

an architecture development framework created by the
Mescal group. It can be used to describe an architecture
using a formal language and to automatically generate
different parts of the desired platform design [2]. Roses,
by the TIMA group, is a design environment used to
implement a component based methodology to develop
SoCs. Roses main goal is to speed up the refinement of
the platform by generating the required hardware
wrappers and software APIs [3]. StepNP [4], a system-
level exploration platform for network processors, is
another tool that can help answer this challenge by
allowing quick system level exploration of different
designs. Finally, commercial tools like CoWare N2C or
Cadence VCC can be used to create a platform based
design. For this work, three reasons have motivated the
choice of StepNP: 1) the architecture under development
is easily modified by adding or changing some of its
components, 2) it provides the required infrastructure to
perform simulation, debugging and performance analysis
of the architecture 3) and it is open source.

When developing an NP platform, the exploration
phase coarsely consists in two steps. During the first step,
two choices must be done: 1) the right processors offering
the best-suited instruction set for the targeted application
and 2) the interconnections (point-to-point bus or
network-on-a-chip NoC) that will satisfy the required
bandwidth. The second step, named partitioning, is
usually required when specification requirements are not
met. It consists of replacing time-consuming software
parts by specialized accelerating hardwire engines. The
tradeoffs are the software flexibility versus the hardware
performance.

But in the last few years, one more alternative has
appeared to system designers. Between application
specific processors (ASP) and purely hardwired solutions,
the integration of embedded configurable processors has
changed the previous partitioning process. By adding to
them specialized instructions to match specific tasks,
configurable processors can produce interesting gains
similar to hardwired engines. Taking into consideration
the fact that bandwidth and latency are key aspects in
most of today NPUs, they become an interesting solution
for such SoC, avoiding extra communications between
processors and coprocessors.

1530-1591/04 $20.00 (c) 2004 IEEE

Therefore, we incorporated into StepNP the
necessary logic to support the Xtensa configurable
processor provided by Tensilica [5]. This enables the
exploration of a wider range of instruction-set
architectures. We also propose a modification to the
current codesign approach to reflect this new opportunity
at the partitioning level. We apply the resulting
methodology first for the design of an IPv4 compliant
device, and then for the same application supporting
encryption. With one processing element, we accelerated
these applications significantly, up to 3.25 and 6.92 times
faster respectively.

The rest of this paper is organized as follows.
Section 2 outlines the improved system level exploration
platform used. Section 3 presents the current co-design
development methodology and its proposed modification
at the exploration phase. Section 4 illustrates a design
exploration process for two different applications
following the modified methodology. The results are
presented in section 5, while section 6 concludes.

2 Components of the Platform

StepNP is a system-level exploration platform for
NPUs. Starting with a general architecture composed of
standard reduced-instruction-set-computing (RISC)
processors and a simple interconnect, StepNP allows easy
plug-and-play replacement with more specialized
processors, coprocessors, and interconnect; making the
exploration task faster and easier. Its main components
are a high-level multiprocessor-architecture simulation
model; a routing application development kit; and a SoC
control, debugging, and analysis toolset. These concepts
and the modifications done to StepNP are explained in the
next sections.

2.1 The System Level Architecture
A StepNP architecture consists of multiple IP

components, including processors, memories,
interconnections models from high-level split-transaction
channel to more real NoC (e.g. crossbar, mesh, ring) and
specialized coprocessors. All these components are
SystemC 2.0 simulation models [6] with a standardized
interface based on the Open Core Protocol [7]. By
specifying the communication mechanisms, we enable
plug and play of different SoC IP’s at various abstraction
levels and facilitate their development and exchange
within different working groups.

 This work focus on the configurable processor
integration, which will permit to measure the impacts of
different specialized functional units added into the
processor’s pipeline on the NPU performance. Different
alternatives could be chosen to integrate this feature. For
instance, the SimpleScalar tool set [8] can be used to
simulate and analyze different microprocessors. It comes

with an instruction interpreter for standard instruction sets
and could be modified to simulate a more custom set.
Lisatek tools [9] based on the LISA language can be used
to describe a processor with a specialized instruction set.
From this description, simulation tools and a skeleton of
the RTL code can be automatically generated. The Xtensa
processor can also be customized at the instruction set
level with all the required tools automatically generated.
Although the Xtensa solution comes with more
architectural restrictions than the previous ones, the
adopted solution provides a faster way to create custom
processors and generates complete tool chains.

The Xtensa configuration process begins by
accessing the Tensilica processor generator Web page.
The designers can then select the desired features like
endianess, basic functional units, bus width, instruction
and data cache types and sizes. Using a proprietary
language, they can also incorporate application-specific
functionality to the processor by adding new instructions
named TIE (Tensilica Instruction Extension). After
selecting the proper options, the generation process
produces the processor’s configured RTL description and
its configured software development tools, including a
complete instruction set simulator (ISS). We wrapped in a
SystemC module this ISS to support the StepNP
standardized interface. By respecting the proposed
interface and SystemC methodology, designers can also
easily and quickly develop and incorporate dedicated
coprocessors to accelerate specific tasks and evaluate
their effects like complexity, speed and communication
overhead on their design. Although it is possible to
simulate an entire system using the Tensilica framework,
creating a SystemC model for the Xtensa holds some
advantages. For instance, StepNP contains tools to profile
and trace the simulation of the entire system, not only the
processor. Furthermore, based on IP reuse approach, it
can simulate heterogeneous systems.

2.2 The routing Application Development
Framework

At system level exploration, many design styles
have to be evaluated in a short period of time. The routing
application development framework needs therefore to be
easy to use, flexible and modular. Because it will be
executed on different types of architecture, the developed
application needs also to be high-level straightforward
portable code. Click is, by itself, a framework for rapid
development of routing applications, which satisfies
almost all these requirements. Built in C++, it is a
modular software router originally developed by MIT
[10]. It was ported on the Xtensa processor and modified
to take advantage of the customized instruction set and
the coprocessors on the platform.

Click can also serve as a testbench. Using a
specialized communication mechanism named SIDL [4],

a simple interface definition language used to pass data
between two processes, Click can serve as a packets
generator to feed the platform; and takes them out to
verify if the right behavior is achieved.

2.3 The SoC Toolset
The toolset includes all the specific development

tools for the individual processors used in StepNP
(compiler, profiler, linker, etc.); and a top-level tool
allowing a global visualization of the model execution
from a number of perspectives.

3 Methodology

Figure 1 shows the main steps of the current co-
design development methodology, with a few
modifications applied to it (illustrated by dashed lines).
This base design is analogous to other co-design
methodologies as presented in [3] which focus mainly on
the refinement process; contrarily to our approach that
puts more emphasis on the architectural exploration.

Profiling

Hardware
models Software

Custom
processor
creation

Cosimulation

HW/SW partitioning

Customs
instructions

Architecture simulation
and validation

Hardware
refinement

Software
compilation

Specification capture

Figure 1. Co-design Proposed Methodology

Our approach starts by considering a complete

software implementation on which we apply a software
optimization to insure that no poor coded functions are
wasting time. After a software analysis, the next step is to
choose the best suited processor(s) for the targeted
application. In the configurable processors world, it
consists in selecting the right architectural features. Next,
we propose a modification at the classical partitioning
phase. At this level, instead of being completely hardware
or software, the functionality to implement can be
realized by one or many specialized processor

instructions. A custom instruction has the advantage to be
fairly easy created, added to the processor core, and
integrated into the software that will run on it. Although it
can give a significant performance speed-up, one has to
be careful to not create too complex instructions that
could slow the processor’s pipeline to unacceptable speed.
Furthermore, the instruction is only described with an
instruction extension language [5]. With this description,
all the necessary logic to implement the new functional
units is automatically generated and added into the
processor pipeline. This approach is therefore quicker and
less prone to errors than custom hardware creation. As our
results will show, custom instructions can be quite
beneficial in certain cases, for example when a lot of bit
manipulation has to be performed. On the other hand, a
custom instruction yields no advantage for certain tasks
like the copy of the packets between the input and output
interfaces and the memory. In that case, a coprocessor
managing the memory is a more appropriate choice.

In summary, our hardware/software partitioning is
performed in four steps. First, the application should be
run exclusively as software, since it is quicker and easier
to develop this way, especially with a development
framework like Click. After an initial profiling and the
identification of bottlenecks not easily optimized in
software, a second step selects the right architectural
features, while a third step investigates the introduction of
new functional units through the definition of custom
instructions. The last step implements specialized
hardware to replace the parts ill suited to be implemented
directly into the processor.

In addition, sorted by progressive refinements, the
following features complete our co-design flow:
- Individual profiling can be done for each processor,

while StepNP provides tools for global performance
analysis in SystemC.

- The initial and subsequent simulations and validations
of the SoC design are done on the StepNP platform. The
exploration process usually starts with a transactional
channel that can be refined to a more complex
communication mechanism afterwards.

- The Xtensa generator web page is used to provide an
estimate of the speed, surface and power for a given
implementation technology.

- It is possible to synthesize a compiled TIE instruction in
order to estimate its critical path and see if it will
negatively impact the pipeline speed.

- Hardware modules in SystemC can be refined towards a
synthesizable model or described in other HDL
languages.

4 Case Study

This section intends to clarify and enforce the
proposed methodology by illustrating its use in a step-by-

step process. The efficiency of the improved StepNP is
also demonstrated. Two speculative but realistic network
applications are initially developed with Click for this
purpose. Different architectural alternatives are then
presented with their associated results.

4.1 Specification Capture
The first specification is an IPv4 router that forwards

packets in nearly full compliance with the standards. Such
application includes pattern matching, lookup, data
manipulation, computation and queue management;
which are usual NPU’s tasks. We limited the lookups to a
small static IP routing table, since many commercial
solutions already propose different algorithmic or
hardwired approaches to perform searches and updates of
huge tables [1, 11].

We included encryption to the previous IPv4 router
specification to form the second application. Becoming an
immediate necessity for nearly all information exchange
systems, data encryption often requires high-speed
encryption and decryption. A common algorithm is the
Data Encryption Standard (DES) or a straightforward
improvement known as Triple-DES. The enhanced
version has been specified as an encryption algorithm for
both the Secure Shell tools (SSH) and the Internet
Protocol for Security (IPSEC). For these reasons, we
chose to support the core of the DES encryption algorithm
with cipher block chaining (CBC) mode.

4.2 Profiling
The profiling phase usually starts with a basic

architecture composed of standard processors and a
simple interconnect. We limit here the exploration process
to one configurable processor for which we will try to
attain the maximum achievable data rates for both
applications. Nevertheless, it is possible to duplicate the
processor and its coprocessor(s) to reach the required
bandwidth by exploiting the inherent parallelism in packet
processing. The characteristics of the initial Xtensa
processor are: 32 bits bus width, 2 way 8KB instruction
and data caches; and no special functional units. At this
step, the code is compiled and profiled to identify the
bigger time consuming tasks.

The platform is fed with two kinds of packets. First
with minimal packets of 64 bytes, usually used as a
benchmark standard by the industry; then with a more
realistic workload consisting of variable Ethernet packet
lengths as recommended in the RFC2544. The total
execution time of the IPv4 application is distributed as
follow:
1. Window Overflow and Window Underflow: Instead of

wasting cycles to push and pop registers values at each
procedure entry and exit, Xtensa processors use a
‘sliding window’ mechanism. Nevertheless, when

Window Overflow and Window Underflow occurred,
some cycles are necessary to recover.

2. Push: A Click router is an interconnected collection of
modules called elements; each element performs a
precise part of the overall application. Routing
applications are built by gluing elements together. The
virtual Push function is used to drive packets across
these elements.

3. Memory Management: This category includes all
memory management functions like memcpy, malloc,
memset, free, etc.

4. Packets In and Out: Packets are accessible from the
processor by a direct memory mapping. The Packets
In and Out category includes all the functions in
charge of these packet exchanges.

5. CheckIPHeader: It validates the different IP header
fields.

6. IP Checksum: Consists on the IP checksum computing
and update.

7. Others: Includes among other things lookups,
fragmentations, Ethernet header settings, etc.

Table 1 gives for each of these categories the
fraction of the time consumed. As the results show, there
is a substantial price to pay on the performance for the use
of a high level and flexible coded application. The
overhead almost exclusively comes from a lot of
embedded and virtual function calls. It is obvious with the
Window Overflow, Window Underflow and Push
functions, which spend as much as 39.7% of the total
processing time of small packets and 25% for those of
variable lengths. For packets of minimal length, the
execution time is roughly distributed over all categories.
For larger ones, Memory Management operations
consume the main part, for which the memcpy function
alone takes nearly half of the entire time. This can be
explained by the fact that packets need to be copied from
interfaces to the processor’s RAM before any actions; and
copied back after completed the processing. The memcpy
function is also used two more times to align packets in
memory, when their original 14 bytes Ethernet header is
removed after proper treatments and replaced by a new
one just before sending it back.

Table 1. Profiling results of the IPv4 application

Min. Length Var. Length
Window Over/Under Flow 22.8 14.6
Push 16.9 10.4
Memory Management 24.9 58.2
Paquets IN / OUT 4.8 3.1
CheckIPHeader 3.4 1.2
IP Checksum 3.6 2
Others 23.6 10.5

Functions Time Consumed (%)

Table 2 presents the profiling results of the

application supporting DES-CBC encryption. We suppose

that all packets need to be encrypted before leaving the
router. A new category is then added to the previous ones:
8. DES-CBC Encryption: Contains all functions relative

to DES-CBC encryption.
The encryption is obviously the main consuming

task, reducing significantly the impact of all other
categories on the performance. Because the DES-CBC
algorithm is performed on the entire IP packet, its work is
almost proportional to the packets size, taking from
48.9% of the complete processing time of small packets
up to 86.8% for a more realistic workload.

Table 2. Profiling results of the IPv4 application with
DES-CBC encryption

Min. Length Var. Length
DES-CBC Encryption 48.9 86.8
Window Over/Under Flow 11.7 1.9
Push 8.3 1.4
Memory Management 14.3 7
Paquets IN / OUT 1.6 0.3
CheckIPHeader 0.8 0.1
IP Checksum 1.5 0.2
Others 12.9 2.3

Time Consumed (%)Functions

4.3 Exploration Phase (Partitioning)
Guided by the profiling results and the specification

constraints, the partitioning steps consist mainly in
exploring the solution of the eventual SoC
implementation area in order to find the best-suited
components (processors, coprocessors, NoC, etc.) and
their organization.

Following our methodology (section 3), Click
allows for the first step a quick code optimization by
means of minimal compilation/linking and
devirtualization of the Push function. For our
applications, these techniques do not significantly change
the previous results.

In step 2, the architectural feature selection, it is
possible to double the XTensa registers in order to
decrease the WindowOverflow and WindowUnderflow
functions calls. This reduces the task by almost a factor of
two for both applications. For this particular case study,
no additional features provide significant speed-ups.

In step 3, the best candidate found for custom
instructions is the encryption. Consisting on extensive bit
permutations and use of unusual registers lengths, the
DES algorithm can easily be speed up with TIE
instructions. Few of them accelerate this task by an
interesting factor of 8. To illustrate TIE utilization, we
also replace the IP checksum computing and update
algorithms by two TIE instructions. Table 3 presents the
speed-ups provided by different optimizations on the
profiling categories for both applications. Since the time
to perform most of these tasks is the same regardless the
packets size, only the results to process packets of

variable lengths are given. These gains are cumulative
since there is no reason not to use previous optimizations;
and they also include the function calls overhead.

A second candidate to keep improving the overall
performance is the Memory Management processing,
consisted essentially of memcpy functions calls. The first
half of these function calls can easily be avoided simply
by supporting unaligned accesses. The Xtensa processor
has an Xtensa Local Memory Interface (XLMI) to
connect peripherals, coprocessors or extra memories. We
attached to this interface a fast 4K memory and modified
the code of the application to move and process the
packets in this memory range. We finally added the
necessary logic to the XLMI interface (implemented in
step 4) to support unaligned access, after that, packets can
now be accessed unaligned.

Unfortunately, the other half of the memcpy calls
cannot be easily avoided. Since this function mainly
realized consecutive memory accesses, hardware cannot
significantly improve it. So a TIE instruction is not best
suited. Nevertheless, the processor can benefit from the
use of a coprocessor (also implemented in step 4) to
alleviate the memory management tasks. Therefore, we
built a simple Direct Memory Access (DMA) controller to
exchange the packets between the XLMI memory and the
interfaces. Instead of calling the memcpy function to copy
the packets, the processor now instructs the DMA
controller to perform this function. Few modifications to
the code are necessary to insure that a packet is always
ready to be processed in memory. An additional port
needs also to be added to the memory to allow two
simultaneous accesses. No special cares for the cache and
memory coherency are taken since this memory area is
not cached. Together, unaligned access support and DMA
controller reduce significantly the memory management
processing by an order of magnitude.

Table 3. Gain provided by different optimizations on

the profiling categories for a) Ipv4 application
b) Ipv4 application supporting DES-CBC encryption

Software 32->62 reg. TIE DMA
Window Over/Under Flow 0.95 1.78 1.76 2.03
Push 1.11 1.10 1.04 1.40
Memory Management 1.00 0.99 0.99 12.84
Packets IN/OUT 1.13 1.13 1.18 1.17
CheckIPHeader 1.09 0.82 1.00 0.99
IP Checksum 1.12 0.98 1.77 2.18
Others 0.95 0.67 1.06 1.53

Gain SpeedFunctions

a)

Software 32->62 reg. TIE DMA
DES-CBC Encryption 1.01 1.00 7.96 7.93
Window Over/Under Flow 0.97 1.91 1.94 2.93
Push 1.11 1.08 1.18 1.55
Memory Management 1.09 1.04 1.10 9.83
Packets IN/OUT 1.01 1.01 1.05 1.06
CheckIPHeader 1.01 1.01 0.99 1.00
IP Checksum 0.97 1.02 1.85 2.22
Others 0.78 1.06 1.13 2.99

Functions Gain Speed

b)

4.4 Simulation/Validation and Synthesis
After each architectural modification, we simulate

the platform and verify the accuracy of the functionality.
By the same occasion, it serves as profiling tests to find
the next possible optimizations.

Only the TIE instructions have been synthesized to
insure than the processor frequency was not reduced.
Since the DMA performance can be easily approximated,
no synthesis model had to be done.

5 Overall Results

Figure 2 shows the overall speed-ups achieved after
the different steps of our methodology. We obtain a gain
of 1.92 for small packets forwarding and 3.25 for real
packets with all optimizations applied. When encryption
is added, the gains are boosted to 3.57 and 6.92.

Assuming a processor running at 400 MHz (using a
typical 0.13µm technology), the obtained data rates are
109 Mbps and 1.16 Gbps for minimal and variable packet
lengths processing respectively. They drop to 57.1 Mbps
and 193 Mbps when the encryption is considered. Better
results should be obtained by reducing the overhead of the
high level coded application.

Figure 2. Overall gains for a) IPv4 application b) IPv4

application with encryption

Finally, the time spent on those optimizations can be

divided in two parts: TIE instructions creation and co-
processor model development. Considering a good
understanding of the applications and a basic knowledge
of the Tensilica tools, extracting potential instructions and
creating TIE instructions have required 2-3 weeks. Note
that, once the instructions have been created, integration
into the processor is completely automated. On the other
hand, developing a behavioral model of the custom co-

processor in SystemC has been relatively fast (1-2 week)
but the resulting model is farther from a synthesizable
model.

6 Conclusion

In this paper we presented a system level exploration
methodology for platform-based designs based on
configurable processors. The enhanced StepNP
development tool was used to develop different
architecture prototypes. By using a custom instruction set
processor and accelerating engines when appropriate, we
obtained significant speed-ups for two different network
applications. The main advantage of the proposed
methodology is the rapidity to develop different NP
architectures, allowing an efficient exploration of a large
design space.

In order to improve the presented architectures,
more realistic interconnects will be used. To better hide
those new bus latencies, we plan to investigate on
different hardware multi-threading architectures.

7 Acknowledgments

The authors would like to thank STMicroeletronics
SoC platform automation group in Ottawa for their
financial and technical support. Also, particular thanks to
Tensilica for their support through their tools.

8 References

[1] Shah, N.; “Understanding Network Processors”, Master's
Thesis, Dept. of Electrical Engineering and Computer
Science, Univ. of California, Berkeley. 2001.

[2] Mihal, A. et al.; “Developing architectural platforms: a
disciplined approach”, Design & Test of Computers,
IEEE , Volume: 19 Issue: 6 , Nov.-Dec. 2002 , pp. 6-16.

[3] Cesario, W.O. et al.; “Multiprocessor SoC platforms: a
component-based design approach”, Design & Test of
Computers, IEEE, Volume: 19 Issue: 6, Nov.-Dec. 2002,
pp. 52- 63.

[4] Paulin, P.G.; Pilkington, C.; Bensoudane, E.; “StepNP: a
system-level exploration platform for network
processors”, Design & Test of Computers, IEEE,
Volume: 19 Issue: 6, Nov.-Dec. 2002, pp. 17-26.

[5] Gonzalez, R.E.; “Xtensa: a configurable and extensible
processor”, Micro, IEEE, vol. 20 Issue: 2, March-April
2000, pp. 60-70.

[6] See Open SystemC web site: www.systemc.org
[7] See Open Core Protocol web site: www.ocpip.org
[8] See the SimpleScalar web site: www.simplescalar.com
[9] See the Lisatek web site: www.coware.com
[10] E. Kohler et al., “The Click Modular Router”,

ACMTrans. Computer Systems, vol. 18, no. 3, Aug.
2000, pp. 263-297.

[11] Ji, H.M.; Srinivasan, R.; "Fast IP routing lookup with
configurable processor and compressed routing table",
GLOBECOM, IEEE, vol 4, Nov. 2001, pp. 2373-2377

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

