
SoftContract: an Assertion-Based Software Development Process
that Enables Design-by-Contract

Jean-Yves Brunel
Cadence Automotive Team

Paris, FR

Marco Di Natale
Scuola Superiore Sant’Anna

Pisa, IT

Alberto Ferrari
PARADES
Roma, IT

Paolo Giusto
Cadence Automotive Team

San Jose, CA

Luciano Lavagno
Cadence Berkeley Labs

Berkeley, CA

Abstract

This paper discusses a model-based design flow for re-
quirements in distributed embedded software development.
Such requirements are specified using a language similar to
Linear Temporal Logic which allows one to reason about
time and sequencing. They consist of assertions which must
hold for a design, given some assumptions on its environ-
ment. They can be checked both during simulation and, at
least for a subset, even on the target. The key contribution of
the paper is the extension to the embedded software domain
of assertion-based verification, and the automated genera-
tion of property-checking code in multiple target languages,
from simulation, to prototyping, to final production.

1. Introduction

Today, car manufacturers provide specifications to sub-
system suppliers, who design software and hardware sub-
systems that may include mechanical parts (e.g. injectors
and throttle bodies). In general, volumes are large, cost and
dependability being major driving forces. Once the sub-
systems are provided back to the car manufacturers, they
have to be integrated on the car and then the overall system
must be tested. If the car manufacturer detects errors dur-
ing the extensive testing period, which includes driving un-
der extreme conditions, a chain of engineering changes is
initiated that may (and it often does!) cause major delays in
the design. Such problems are traceable for the most part
to software errors [14], because of incorrect understand-
ing of the specifications and unpredictable side effects when
the subsystems are interconnected. The loop is particularly
painful since testing is done when the car is almost ready
for its launch on the market.

This paper addresses directly this issue, and dis-
cusses a model-based design flow for properties in dis-
tributed embedded software design, thus extending the tra-
ditional accepted model-based design paradigm. The
proposed methodology supports the definition of re-
quirements on the performance and dependability of
a real-time distributed system, as well as the valida-
tion that they are met in the fully implemented system.
In this context, we first consider applications of automo-
tive electronics that set stringent requirements in particu-
lar on dependability attributes such as safety, availability,
maintainability, and also confidentiality, due to the com-
plexity of its design chain.

Current model-based design flows, such as those based
on Ascet-SD [2] or Simulink [13] specifications and Real-
Time Workshop Embedded Coder [13] or TargetLink [5]
implementations, emphasize automated transformations of
specifications early in the design cycles, therefore reducing
the risk of incorrect implementations. Yet they neglect au-
tomated transformations of properties. The basic tenet of
the proposed novel flow is that both functional (e.g. relat-
ing I/O values) and non-functional (e.g. specifying perfor-
mance requirements) properties, must be stated formally at
the highest possible level in the flow, immediately deriving
them from the informal requirements captured in a natural
language. The traditional mechanism for representing func-
tional and some non-functional properties, e.g. I/O rates, is
the definition of a testbench, which verifies operationally
that the properties are satisfied. This method is not efficient,
because it is too implicit, non-declarative and partial.

Constraints that a design must satisfy are decomposed,
checked and propagated along the design flow, whether
it uses a top-down, bottom-up or V-cycle path including
specification, implementation and integration. In particular,
propagation entails automated transformation from one do-
main to another when crossing levels of abstraction (e.g.

1530-1591/04 $20.00 (c) 2004 IEEE

temporal logic formulae translated into simulation monitors
and then into on-line error-checking software). Decompo-
sition and checking, on the other hand, enable a clean de-
sign by contract between different parties involved in dif-
ferent design levels (e.g. system architect and software de-
signer).

The goal of contract-based design is speeding up dramat-
ically the design and improve the quality of embedded sys-
tems. The former is achieved by enabling a clear communi-
cation of requirements between various parties involved in
the specification, design and validation of embedded sys-
tems. The latter is obtained by describing and automati-
cally tracking satisfaction of constraints throughout the de-
sign flow, including post-production and on-line (run-time)
checking, in a formal way.

1.1. Previous work

Past work in this area, which traditionally belongs to the
formal and semi-formal verification methods, can be iden-
tified both on the hardware and on the software side. On
the hardware side, assertion-based verification is emerg-
ing as a promising evolutionary method to introduce for-
mal techniques to specify and check properties starting from
the Register Transfer Level, as opposed to merely checking
equivalence between optimized and unoptimized designs or
between layout and netlist. Recent standardization efforts,
such as the PSL proposal by Accellera [8], aim at defining
languages that are close to the way in which designers are
used to model, e.g. Verilog and VHDL, and which provide
a full range of options including full temporal logic, both in
untimed (e.g. every request shall eventually be granted) and
timed (e.g. every request shall be granted within 15 clock
cycles) forms. The Rosetta work [1] also aimed at defining
a very generic mechanism, based on sets and logics, to rea-
son about properties of hardware designs.

On the software side, the Object Management Group has
standardized the Object Constraint Language, which has
similar goals, i.e. to precisely state requirements that ob-
jects, scenarios and software systems modeled in the Uni-
fied Modeling Language must satisfy. The OCL, however,
is very expressive, and suffers from the lack of a standard
executable semantics for the UML (which should be added
in the upcoming UML 2.0 standard, also from the OMG).
Thus it becomes suitable for automated checking and de-
composition only if an application-dependent subset is cho-
sen by a specific UML profile. For example, the proposed
UML Profile for Schedulability, Performance and Time [6]
defines a subset of the OCL that can be used for represent-
ing deadlines, execution times, usage of shared resources
and so on. Other non-standard attempts at enriching the
UML with timing notations include [9, 12], while [3] pro-
posed an integrated environment for expressing functional

and non-functional constraints. Finally, [7, 10, 11] describe
Real-Time Logics (RTL) and a toolset to reason about tem-
poral aspects of real-time systems, but do not attempt to
transform them between levels of abstraction.

In this work we use the Logic Of Constraints [4], which
is a language reminiscent of various temporal logics (CTL,
LTL and RTL) and which has been developed specifically
to reason about various quantitative aspects of an embed-
ded system (not just time). LOC is useful for our purposes,
because it can be translated into simulation monitors for on-
the-fly checking, rather than requiring full-fledged model
checking, which suffers from inherent state explosion prob-
lems. Moreover, its semantics is based on sequences of
events over signals, and it is thus easy to use for designers
who are familiar with tools such as Simulink. This proved
to be a key advantage with respect to more classical tem-
poral logics such as CTL and LTL, which were designed
more with protocol verification in mind. LOC moreover al-
lows one to associate and reason about any annotation, not
just time but also e.g. energy or memory, with events in the
system.

1.2. Terminology

A design is a modeled piece of hardware and/or software,
which must be implemented as a result of the design activ-
ities. A design can be represented as a structure, i.e. a col-
lection of components (also called modules or blocks) con-
nected via nets to each other’s ports (mechanisms to com-
municate between blocks, such as shared variables or mes-
sages). Each component, and thus eventually the whole de-
sign, may have a functional model, describing how its out-
put ports relate over time with its input ports. Both structure
and functionality are described using any appropriate mod-
eling language such as C, StateCharts, Simulink, Verilog,
VHDL, and so on.

An event is an update of value (not necessarily a change
of value, i.e. the updated value may be the same as the old
one) of a port of a module of the design. For example, the
arrival of a value from a sensor, the decision to change the
state of a design component, or the generation of a com-
mand to an actuator are all events. Each event is annotated
with a time of occurrence, and optionally with other quanti-
ties (such as energy) for which constraints can be specified.
This black-box semantics is essential for efficient imple-
mentation and decomposition, since prematurely exposing
information about internal aspects of a design leads to poor
portability, modifiability, re-usability, verifiability and opti-
mizability. Black-boxing also improves security of a com-
pany’s Intellectual Property, by hiding implementation de-
tails.

The environment of a design is a part of the whole sys-
tem which cannot or need not be implemented by the con-

sidered team (e.g. the engine for the electronic control unit
implementors, or the sensor sample conditioning filters for
the control algorithm implementors). In other words, this
paper considers a design flow in which the top-level model
is (recursively) decomposed into sub-models, whose design
must be carried out by different teams or individuals, possi-
bly belonging to different companies.

A property is LOC formula, involving events and their
annotations (e.g. time of occurrence), which must be true,
and which can play different roles depending on the con-
text. An assertion is a property which must be guaranteed
to hold by a design. For example, the statement that the la-
tency between an input and an output event must be less
than 0.1 msec is an assertion. An assumption is a property
which limits the set of environment behaviors to be consid-
ered, and thus exhibits some freedom that can be exploited
by knowing that some cases can never occur. For exam-
ple the statement that the maximum rate of arrival of in-
put events is 1 per msec is an assumption.

Quite often, a requirement on a design component is ex-
pressed as a pair including: an assertion that is assumed by
users of the component to hold, and guaranteed by its im-
plementer to hold, and an assumption that is assumed by the
implementer of the component to hold, and must be guaran-
teed by its users to hold, as illustrated by the following sim-
ple example. First of all, the designer in charge of assign-
ing priorities to tasks running on a real-time executive can
make assumptions on the maximum rate of arrival of events
triggering them and on their WCET, and must satisfy asser-
tions on the priority ranking (e.g. based on Rate Monotonic
Analysis). Then the team who is in charge of implement-
ing the tasks can make assumptions on the maximum rate
of arrival of events and on priorities, and must satisfy as-
sertions on their WCET. Finally, the integrator of the con-
trol unit in the car can assume priorities and WCETs and
must satisfy assertions on event arrival rates.

A monitor finally is a component of a design whose main
task is to verify that an assumption or an assertion on an-
other component or set of components is satisfied. Moni-
tors are executable checkers that can be used in simulation,
prototyping and production code in order to ensure that the
design contracts are respected.

2. Design flow

In the proposed design flow, the requirements on a de-
sign are first specified as assertions which must hold, given
some assumptions on its environment. In order to be able to
define such assertions and assumptions, one must have de-
fined a skeletal structure for the design, at the very least
the I/O ports with which it communicates with its environ-
ment. Assertions are checkable only when the functionality
of the design has been specified. Some of them, e.g. those

related with timing, are checkable only when the functional
model has been annotated with performance information, so
that the time information attached to events reflects the ef-
fects of the underlying architecture.

These requirements can be used both bottom-up and top-
down. Bottom-up, they clearly specify the contract that the
implementer promises to obey with respect to the users of
a component. Assertions are guaranteed provided that as-
sumptions are satisfied (e.g., this piece of software written
in C computes the response with a precision of 1% pro-
vided that “int” variables have at least 32 bits). Top-down
they specify requirements that the implementer must obey,
and state the assumptions he can make on the users of the
component.

An essential aspect of a bottom-up design flow is the
composition of assertions on individual components, while
checking that the used components guarantee each other’s
assumptions. A full-fledged compositional proof methodol-
ogy would require theorem proving, an expensive proposi-
tion today even for safety-critical applications. More prac-
tically, monitors can be used to trace the requirements
throughout the lifetime of a component. For example, gov-
ernments have imposed regulations for the automotive in-
dustry that limit the level of chemical emissions from car
engine exhausts. In order to comply with these regulations,
a vehicle must satisfy the European On Board Diagnostics,
a standard which imposes a set of properties of the system
that must hold and are checked at run-time. This is imple-
mented through a set of monitors allocated to the different
electronic control units, which check relevant values of the
state of the software (variables). These monitors are typi-
cally coupled with other components that implement recov-
ery and logging in case of violations.

In top-down design, on the other hand, requirements
on the global I/O of the system are decomposed into sub-
properties that must hold for each component of the de-
sign. The collection of sub-properties on other components,
not under design by a specific team, together with assump-
tions on the global top-level environment, become the set of
assumptions that an implementer can make on his compo-
nent’s environment, as illustrated in Section 3.

2.1. Property specification language

Logic Of Constraints [5] is a formalism designed to
reason about execution traces. It consists of basic rela-
tional, Boolean and implication operators, with additions
that make it possible to specify system level quantitative
functional and performance constraints without compro-
mising the ease of analysis. The basic components of an
LOC formula are: events (defined above), the index vari-
able

�
and annotations:

1. Annotation: each event may be associated with one or
more annotations. Annotations can be used to denote
the time, power, area, or any value related to the event.
E.g., Display � ��������� 	

denotes the
	

annotation (by con-
vention time, while annotation
 represents its value)
of the

�����
-th event of the Display port.

2. Index variable: LOC permits only one event in-
dex variable

�
, a positive integer, in a given ex-

pression (the limitation helps ensuring checkabil-
ity in bounded memory). Index expressions of events
may be any arithmetic operations involving

�
and con-

stants, e.g. Display � �������
, Stimuli � ��

.

LOC can be used to specify some very common and use-
ful real-time performance constraints:
� rate: E.g. “Displays are produced every 10 time units”:

Display � ���� 	��
Display � ��������� 	��������

� latency: E.g. “Display is generated no more than 25
time units after Stimuli”:
Display � ���� 	��

Stimuli � ���� 	��������
For a LOC formula to be formally proven for a design,

it needs to hold for all possible traces and all values of the
index

�
, as it appears in the index expressions of the for-

mula. For a formula to be checked for a particular simula-
tion trace, it needs to hold for that trace only and all values
of

�
. In the rest of the paper we are concerned only about

checkability.

2.2. Target language translations

The properties specified using the language above can be
translated automatically, into:
� Off-line database query code, which checks that both

assertions and assumptions are satisfied on a given set
of simulation traces. Probes are automatically gener-
ated and instantiated in order to collect enough infor-
mation to answer the queries corresponding to all the
properties being checked. The example described in
Section 3 was checked in this off-line mode of design
by contract.

� On-line monitor modules written in whatever simu-
lation language is used for design verification. These
monitors emit error messages when the assertion or as-
sumption is violated, as well as a warning at the end of
the simulation if an assertion or assumption is neither
satisfied nor violated.

� On-line code to be integrated within the software tasks,
to which the ports referenced in the property text be-
long. Note that any property that allows the RTOS to
inspect the state of a running task, or that relates values
of variables of different mutually asynchronous tasks,

Figure 1. The adaptive cruise control applica-
tion

is expensive to check in the target system. Hence it is
recommendable to keep until implementation only lo-
cal assertions (which refer to ports of a single compo-
nent), and assertions related only to time, e.g. those
modeling scheduling deadlines and assumed worst-
case execution times, which can be checked by timers
and watchdogs.

� Off-line and on-line hardware-assisted property check-
ers, using in-circuit debuggers or on-chip real-time
tracers. The hardware resources provided by the these
devices strongly limit the number and complexity of
the properties that can be concurrently checked.

3. A design example

For the sake of illustrating our proposal, we describe
an example of a safety critical application, typically imple-
mented on a distributed multi-cluster ECU architecture. The
application is a simplified version of an Adaptive Cruise
Control (ACC), shown in Figure 1. The ACC includes “reg-
ular” cruise control features, but must also automatically de-
crease the speed of the vehicle, if an obstacle is detected at a
distance less than the safety distance threshold. In this case,
actuation signals are automatically sent to the brake system
and to the engine control system.

The functional model that we used includes models of
the driver, the radar system, the engine, and the brake. The
ACC algorithm determines the gas pedal position (there-
fore replacing the driver) based upon the vehicle speed, the
distance between the vehicles, and their relative speed. The
control strategy is defined by the ACC Finite State Machine.
Based on choices from the driver, it decides which position
of the gas pedal is provided to the engine control.

3.1. Some simple properties

An important safety feature of our algorithm, that can be
used to test the contract-based design flow, is that the cur-
rent value of the gas pedal is retained in case the new po-
sition determined automatically is very different (for exam-
ple due to data corruption) from the current one. This is ex-
pressed by the following LOC property:

define limit_change (comp, act, thr) {
abs (comp[i].v - act[i-1].v) > thr ->
act[i].v == act[i-1].v }

instantiated as the following requirement (assumption
plus assertion):

assume FSM.State[i].v == ACCon
assert limit_change (FSM.GasPedalPositionFSM,
FSM.GasPedalPositionACC, FSM.threshold);

Here FSM is the name of the block whose inputs and out-
puts are used in the property, state is a viewport expos-
ing its state, GasPedalPositionACC is the output of
the automated cruise control block (and input to the FSM
block) which determines the required position to deceler-
ate smoothly when required, GasPedalPositionFSM is
the output of the FSM block which goes directly to the actu-
ator, and threshold is a parameter which must be tuned
on the prototype car in order to provide a smooth and safe
driving experience. Finally, -> denotes logical implication

Another assertion that was checked in this design, using
the LOC database monitors, is the following: if the distance
between vehicles goes below a given threshold, then within
30 seconds the distance will be again above threshold.

define rate (g, thr, tol) {
abs (g[i].t - g[i-1].t) < thr + thr * tol and
abs (g[i].t - g[i-1].t) > thr - thr * tol) }

define slowdown (dist, thr, delta) {
dist[i-delta].v < thr -> dist[i].v >= thr; }

assume ACCCore.Speed - Radar.OtherVehSpeed < 10
and rate (ACCCore.speed, 0.001, 0.01)

assert slowdown (ACCCore.distance,
ACCCore.threshold, 30 / 0.001);

Here we assume that the difference between vehi-
cle speeds is less that 10m/s, otherwise, the only safe op-
tion for the driver is to brake by himself (this is not
a drive-by-wire system, only an enhanced cruise con-
trol). Here ACCCore.speed is the speed of the cur-
rent vehicle (an input to the ACC controller ACCCore),
Radar.OtherVehSpeed is the speed of the other ve-
hicle, as measured by the Radar, distance is their
distance and threshold is a parameter defining the dis-
tance at which the speed must begin to be reduced. Time
is measured here in terms of discrete controller invoca-
tion intervals, which is consistent e.g. with the Simulink

semantics, and assumptions on the rate establish the re-
lationship between invocations and time. For example,
since the ACCCore model is invoked once every mil-
lisecond and the tolerance tol on the invocation rate is
1%, the index difference 30 / 0.001 refers to a time inter-
val of 30 seconds plus or minus 1%.

Debounce assertions are important to correctly evalu-
ate Boolean signals produced by the environment. When a
switch is pressed, the output signal oscillates until it reaches
a new stable value. The debouncing functionality guaran-
tees that only the final value of the switch signal is used as
input value. In our example, the switches that turn on and
off the cruise control and the adaptive feature must be de-
bounced before evaluation. The requirements to debounce a
switch in a time window of 200ms can be expressed as fol-
lows:

event EdgeSwitch { Switch[j-1].v!=Switch[j].v }
assert EdgeSwitch[i+1].t-EdgeSwitch[i].t > 0.2;

This example uses an “event definition” facility of LOC,
which allows one to define new events based on the occur-
rence of logic and relational conditions on existing events.

3.2. Assertion/assumption decomposition

We will now consider an example of how decomposition
of assertions into pairs of assumptions and assertions can be
used to define and verify the interface between two teams
or companies working on two portions of the system. The
adaptive cruise control must guarantee a certain degree of
comfort during cruise. For instance the vehicle should not
accelerate or decelerate, after reaching the cruising speed,
by more than a 0.5 �

�����
, which can be expressed with the

following assertion:

assert FSM.State[i].v == ACCon =>
abs(Acceleration[i].v) < 0.5;

The overall system, as shown in Figure 1, is decomposed
into ACC, Engine control and Brake control. The ACC pro-
vides the gas pedal position to the Engine control, which
translates it to a request for a given amount of torque. The
Engine finally produces the torque. The previous assertion,
checked at run-time, would inform the designer if a viola-
tion on the vehicle acceleration occurred, but would not ex-
plain if this was due to a design error of the engine con-
trol or of the ACC control. If the two control units are built
by different sub-system makers, it would be problematic to
pinpoint the cause of the error in the design.

Following our methodology, the assertion should be de-
composed into three parts: (1) an assertion on the torque
requested by the ACC, (2) an assertion on the torque pro-
vided by the Engine control and the engine, and (3) an asser-
tion on the relation between vehicle acceleration and torque.
The third assertion is always satisfied in a given gear, since
it checks the inputs and outputs of a mechanical system,
that is the powertrain of the vehicle. In this case, a torque

smaller than 20 ensures an acceleration smaller than 0.5.
The first assertion on the behavior of the ACC can thus be
expressed as follows:

assert FSM.State[i].v == ACCon =>
abs(ACC.TorqueRequest[i].v) < 20;

The Engine control unit maker is using the same prop-
erty as an assumption, instead of an assertion, checking that
the torque request, when the cruise control is on, is limited
as specified and agreed. The second assertion thus is ex-
pressed as follows:

assume FSM.State[i].v == ACCon
and abs(ACC.TorqueRequest[i].v) < 20

assert abs(Engine.Torque[i].v) < 20;

A violation of the vehicle acceleration is now shown by
different checkers, and the sub-system causing the violation
is easily found, even before system integration.

The design described here was created using the Ca-
dence Automotive System Design Platform (also known
as SysDesign). Plant models were imported from Simulink
via a special Real-Time Workshop target. The Engine con-
trol model along with the task structure was imported from
Ascet-SD [2], a model based design environment for algo-
rithmic development, with code generation capabilities for
both prototype and target. The definition of the target multi-
ECU architecture, the task allocation to the ECUs, the bus
modeling and the simulation were performed in SysDesign.

Properties were checked automatically using a tool
which compiles the LOC formula into a fragment of C
code which reads the SysDesign simulation database and
checks the validity of the formula off-line over a simula-
tion run.

4. Conclusions

This paper proposes a model-based design flow for asser-
tions and assumptions that together ensure the correctness,
both functional and non-functional, of a complex embed-
ded system. The paper uses examples, terminology and sce-
narios from the automotive software domain, but the flow
is applicable to any safety-critical mixed hardware/software
system. Assertion-based verification is becoming a corner-
stone of hardware design. What is new in the case of safety-
critical embedded systems is the extension to the software
domain of assertion-based verification, and the automated
generation of code in multiple target languages, from simu-
lation database queries, to simulation monitors, to prototyp-
ing, to final production. This leads to:

� faster time-to-market, by reducing design iterations,
� real contract-based design between specifiers (system

architects), implementors (software designers) and in-
tegrators, by allowing

– fast verification by the sub-system providers
that the assertions made by the architect on
sub-systems are satisfied and

– delivery of partial assumptions and assertions
from sub-system providers to system integrators
for earlier verification of end-to-end assertions.� faster implementation, thanks to automated target code

generation for assumption and assertion checking,� safer implementation, due to the formal property spec-
ification mechanism.

In the future we are planning to explore the use of asser-
tions and assumptions for automated testbench generation,
e.g. by constraint solving.

References

[1] P. Alexander, C. Kong, and D. Barton. Rosetta usage guide.
http://www.sldl.org.

[2] ETAS Ascet-SD. http://www.etas.de.
[3] A. Burns and A. J. Welling. HRT-HOOD: A design method

for hard real-time. Journal of Real-Time Systems, 6(1):73–
114, 1994.

[4] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Automatic
generation of simulation monitors from quantitative constr
aint formula. In Proceedings of Design Automation and Test
in Europe, March 2003.

[5] dSPACE TargetLink. http://www.dspace.de/.
[6] Object Management Group, editor. UML Profile for Schedu-

lability, Performance, and Time. OMG document ptc/02-03-
02, 2002.

[7] F. Jahanian and A. Mok. Modechart: a specification language
for real-time systems. IEEE Transactions on Software Engi-
neering, 20(12):933–947, 1994.

[8] Accellera Property Specification Language.
http://www.accellera.org/.

[9] J.L. Medina, M. Gonzalez Harbour, and J.M. Drake. Mast
real-time view: A graphic uml tool for modeling object-
oriented real-time systems. In Proceedings of IEEE Real-
Time Systems Symposium, December 2001.

[10] A. Mok and G. Liu. Early detection of timing violation at
runtime. In Proceedings of IEEE Real-Time Systems Sympo-
sium, December 1997.

[11] C. Puchol and A. Mok. Integrated design tools for hard real-
time systems. In Proceedings of IEEE Real-Time Systems
Symposium, December 1998.

[12] M. Saksena, P. Freedman, and P. Rodziewic. Automated im-
plementation of executable object oriented models for real-
time embedded control systems. In Proceedings of IEEE
Real-Time Systems Symposium, December 1997.

[13] The Mathworks Simulink and StateFlow.
http://www.mathworks.com.

[14] USA Today. Advances in car technology
bring high-class headaches, November 2003.
http://www.usatoday.com/tech/news/2003-11-11-
carrepairs x.htm.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

