
 

 

Abstract 
For successful SoC design, efficient and scalable 

communication architecture is crucial. Some bus interconnects 
now provide configurable structures to meet this requirement of 
an SoC design. Furthermore, bus IP vendors provide software 
tools that automatically generate RTL codes of a bus once its 
designer configures it. Configurability, however, imposes more 
challenges upon designers because complexity involved in 
optimization increases exponentially as the number of 
parameters grows. In this paper, we present a novel approach 
with which effort requirement can be dramatically reduced. An 
automated optimization tool we developed is used and it 
exploits a genetic algorithm for fast design exploration. This 
paper shows that the time for the optimizing task can be 
reduced by more than 90% when the tool is used and, more 
significantly the task can be done without an expert’s hand 
while ending up with a better solution. 

Index Terms— Platform-based design, Bus Configuration, 
Optimization, SoC design, genetic algorithm. 

I. Introduction 
latform-based design has become one of  the trends of 
system-on-chip (SoC) design as the complexity of design 

grows. With a billion transistors or a thousand cores expected to 
be integrated on a single chip by 2010, how to interconnect 
those components will be a more challenging problem not only 
because there are many components but also because 
performance requirements are increasingly demanding. For 
instance, prevalence of embedded multimedia applications 
requires frequent accesses to memories and as a result, how to 
utilize shared memory bandwidth becomes a critical issue. 
Moreover, such requirements have to be met while maintaining 
or lowering power consumption.  

Momentum is toward establishing standard on-chip 
interconnects and reusing them for different applications after 
reconfiguration. AMBA, Sonics SiliconBackplane 
MicroNetwork, LOTTERYBUS, National Semiconductor’s 
GeodeLink and IBM CoreConnect are examples of the 
standard on-chip system interconnect [1][2][5][6][7][16]. 

Some of them are tool-configurable to allow designers to 
adapt interconnects to a new application while meeting a new 
set of performance requirements. Designers should perform 
optimization of the configurable buses in addition to employed 
IP blocks that are attached to the buses as either a master or a 

slave to meet all specified requirements. The trend of IP 
(Intellectual Property) reuse and socketization results in 
elevated complexity because more IP components are designed 
with flexible configuration in mind.  

Unfortunately, optimally configuring interconnects is a 
time-consuming task because reconfiguring a bus usually 
involves repeating manual refinement of RTL codes. Some 
interconnect vendors now offer tools for automatic generation 
of the bus and configuration. For instance, the Sonics 
SiliconBackplane parameterizes most aspects of the bus and 
its arbiter and offers software tools to allow designers to 
configure the bus, automatically generate the corresponding 
RTL codes, and simulate the generated RTL codes. (Similar 
functionality is available for AMBA with a third party tool.)   
The parameters that can be configured include bus pipeline 
latency, bus width, the number of masters and arbitration 
policies. The number of parameters configured in Sonics, 
however, exceeds a hundred [2]. 

Configuring a complex system with tens of parameters or 
more is an inherently difficult and tedious task. Although an 
expert can speed up the process with intuition and experience, a 
human being is liable to make mistakes and get stuck in a local 
optimum. In order to avoid it, a more systematic optimizing 
approach is needed. To avoid ending up with a local optimum 
solution, the configuration space needs to be explored with all 
parameters as candidates for variation. For this reason, this task 
needs an automated tool. We developed a tool called ABC 
(Automatic Bus Configurator) to address the issue. 

Our automated approach reduced the configuration time by 
more than 90% with no expert’s ado at all. Our approach was 
evaluated on our testbed that employs the Sonics MicroNetwork 
bus and the MemMax™ memory scheduler as the bus and 
memory backbones. The work presented in this paper, however, 
is generic enough to be readily applied to other similar systems 
or general configuration problems. We plan to extend this tool 
for optimization of the mapping of multiple hardware IP’s to 
multiple interconnects employed in an SoC design. 

This paper is organized as follows: in the next section, we 
discuss issues concerned with bus configuration. In section III, 
we describe the core of our work, automated configuration of a 
system bus. Experimental results are discussed in section IV. 
Conclusion and future work appear in section V. 
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II. Optimizing System Interconnects  
A work [4] on an optimal configuration of a parameterized 

system was recently performed. In the work, performance and 
power were the dual objectives of its Pareto-optimization. To 
reduce the space of design exploration, they used a novel 
pruning technique that works on an optimal dependency graph 
of parameters. The technique was attractive because it could 
significantly reduce complexity while obtaining an exact 
solution if only an optimal parameter dependency graph had 
been available. Unfortunately, the limitation of the study is that 
in a typical system, a dependency graph cannot easily be 
obtained because very commonly there is no way of intuitively 
determining optimal dependency between each pair of 
parameters. Our system is not an exception. In such cases, the 
only way to determine a dependency graph may be through 
sensitivity analysis of each pair of parameters; which is an NP 
complete problem. 

Some studies [25][26] were performed to find out an optimal 
bus configuration of in an SoC design. Those studies, however, 
did not focus on optimizing a specific interconnect and 
automating the task. Instead, the main interest was to investigate 
effects of different topologies. Our study can be applied once a 
topology is chosen through such studies. 

The main interest of our paper lies in how to optimize the 
communication backbone of a system rather than an entire 
system. We claim that the best way of optimizing an SoC is to 
optimize it in three phases. First, a system interconnect is 
optimized based on specifications with pseudo masters that 
characterize the behavioral requirements of them. Then, the 
mapping of multiple IP’s to multiple interconnects is to be 
optimized. (Hardware/software partitioning is also performed in 
this phase.) Finally, each IP is fine-tuned to fully exploit the 
optimized interconnect. For more accuracy, these phases may 
be reiterated until desired analysis result is obtained. In this 
paper, we limit the scope to optimizing communication 
architecture of an SoC. 

Of various communication topologies, buses are most 
commonly used as SoC interconnects. A bus is popular because 
it is area-wise inexpensive and simpler to design compared to 
other topologies in spite of such disadvantages as inefficient 
power consumption, bandwidth bottleneck and complex 
protocol. Among various system buses, we selected Sonics 
SiliconBackplane MicroNetwork as our test vehicle due to its 
relatively higher acceptance and richer set of configuration 
features. 

With more and more IP’s integrated on a single chip, it is 
likely that the bus interconnect expected to become no longer 
effective after some critical point. The networks on chip might 
be one of the solutions to replace the bus interconnect [24]. This 
will, though, impose more burdens in the design of the IP’s. 
Even with the newer interconnect schemes, configuration of 
them will not be a problem that can rely on the intuition and 
expertise of a few engineers.  

III. Automated configuration of an on-chip Bus  
The SoC design of our interest is for a digital TV set-top box 

application as shown in Figure 1. The system contains multiple 
masters each of which covers the functions related to 
audio/video codec, system control, graphics management, 
graphics/video scaling and enhancement, etc. A master in the 
diagram actually represents a functional subsystem that may 
contain one or more processor cores. The master models we use 
in this study are bus-cycle-accurate and represent worst-case 
scenarios of the real operations. (Optimally configuring each 
master is not within the scope of this work.) After obtaining the 
bus-cycle accurate stimuli through characterization of each 
master, we performed an investigation to reduce configuration 
space. 
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Figure 1 Our system configuration and  
the parameters involved. 

A. Configuration Space 

As shown in Table 1, exhaustive exploration is not possible 
even after a significant reduction in the space for exploration. 
With more than hundred parameters available, optimally 
configuring a system can be a daunting task even with an 
automated method because complexity is exponential. Thus, in 
the beginning, an effort must be made to eliminate parameters 
from the list of candidates. Examples of these parameters 
include the ones that make the objective function value 
monotonically increase or decrease, the ones that do not have 
significant effect on the function and those that designers would 
never vary for design reasons. One example is the data bus 
width; whether the data bus should be 32-bit or 64-bit is not 
likely to be an issue of configuration. 

After examining parameters and eliminating many of them, in 
our target SoC where five masters and eight threads are 
employed, we ended up with a configuration space of 245. 
Because each simulation in our case took between 1 minute and 
5 minutes, it would take at least 67 million years for complete 
exploration. 
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Original 
Exploration 

space 
1 ~ 6256 6 2136 226 2165 ~ 2933 

Reduced 
Exploration 

space 
847 6 324 226 245 

Table 1. Even after a significant reduction in the space for 
exploration, exhaustive exploration is not possible. 

B. Basic Flow of Operation 

An expert, using a GUI tool (provided by Sonics), can vary 
configurations of the bus arbitrator and memory scheduler until 
she/he can find a satisfactory one (Figure 2). With the Sonics 
bus, once a configuration is determined, an RTL design for the 
bus, bus arbiter and memory scheduler are generated, compiled 
and simulated. 

C. ABC’s Flow of Operation 

In ABC, the flow of operation starts with creating a 
population of individuals for one generation for a genetic 
algorithm. The genetic algorithm (GA) [14] creates individuals 
by performing basic operations such as reproduction, crossover 
and mutation. Once a population is formed, the parallel launcher 
invokes simulation of individuals concurrently. (See Figure 3.)  

For each individual, a configuration file is formed based on 
the parameters being used. The file is then used for generation 
of the RTL codes. The RTL model is compiled and simulated to 
produce simulation result files. The result files are analyzed to 
compute the value of the fitness function of each individual. A 
result file is generated for each master and shows how much 
bandwidth has actually been allocated to it. Each master is 
modeled as a bus functional model and its simulation is several 
orders of magnitude faster than that of the RTL counterpart. 

D. GA Implementation 

In the beginning, we considered simulated annealing as our 
optimization engine. Simulated annealing (SA) [3][22] is a 
commonly used combinatorial optimization algorithm that 
resembles a metallurgical phenomenon. Its algorithm is 
controlled by three parameters: temperature, equilibrium 
condition, and cooling schedule, which are related to the total 
simulation time needed. To address SA’s problems such as long 
simulation time, stochastic evolution (SE) was introduced [11]. 
SE offered better control over simulation and stopping 
condition making the exploration faster. However, if parameters 
are not tuned properly, simulation can often be prematurely 
aborted ending up with a local optimum.  
Like SA, SE and other optimization algorithms, GA has a few 
parameters that need to be fine-tuned for correct operation: 
population size [13], the number of generations, crossover rate 
and mutation rate. GA was selected as our optimization engine 
because it indeed outperformed other algorithms as shown in 
section IV. It finds an optimal solution faster and more reliably 
while SA heavily depends on the quality of the initial 

configuration and SE often prematurely converges. Another 
significant reason is its inherent parallelism. Fitness function of 
individuals that belong to a generation can be obtained fully 
independently. In other words, parallelism is only limited by the 
population size. Although SA can be parallelized [12], it needs 
direct modification or extension of the algorithm. GA does not 
need any modification except supporting parallel invocation of 
a fitness function. 

E. Table-based bit string formation for GA 

Scheduling-related parameters usually have a huge space of  

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Begin 

Human
Effort 

EDA
ToolsParameter

Adjustment

Rule of Thumb

Experience

Intuition

Result
Analysis

 

Figure 2 Conventional work flow of bus optimization 
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Figure 3  New workflow of bus optimization offered by our 
automatic bus configurator (ABC).  

configuration where valid solutions are scarcely found because 
of the restrictions forced by the software tool. We contrived a 
way to handle scheduling-related parameters by using a table. 
Based on the requirements imposed on the masters and 
guidelines available from the manuals, we found a generic way 
of forming a table. In this approach, a bit string is formed out of 
the values of each entry’s index (Figure 4). The number of 
entries for the bus arbitration-related parameters and memory 



 

scheduler’s scheduling-related parameters are both less than a 
thousand. This approach can be used to form bit strings of 
hard-to-represent problems. Using this approach we were able 
to reduce the length of a bit string to 45 as shown in Table 1. 
Even after such significant reduction in exploration space, note 
that exhaustive exploration is still not possible. 

Figure 4 illustrates how a bit string is formed. For example, a 
master (M0) needs to be guaranteed 20% bandwidth for a fixed 
period. Of 16 scheduling slots, we allow it to be scheduled from 
2 to 4 slots. Though two slots are less than 20%, it is not 
excluded because unscheduled slots can also be allocated the 
master if there are no requests. In these experiments, we did not 
consider permutations for scheduling because we found that the 
simulation result was not sensitive to the ordering of the 
schedule.  
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Figure 4 Table-based bit-string formation 

 

F. Objective function 

Our objective for optimization is to make each bus master 
meet its own throughput requirement. To avoid solving a 
multi-objective optimization problem, we reduced all our 
objectives to one single function as shown in Figure 5. Here, the 
smaller the value is, the better the configuration is. Until every 
master meets its requirement, the focus is on simply bringing all 
masters within requirement based on their weight. In this phase 
surplus throughput does not count at all. Once all masters meet 
requirement, surplus becomes important and exploration 
proceed toward higher surplus throughput. 

We tried another objective function that (Figure 6) focuses on 
the bus bandwidth and latency. In this case, we used the weight 
factors to trade off between the bandwidth and quality of service. 
The weight was also used for normalization. This objective 
function was introduced based on a request from the designer 
after delivering the result for the first objective function. 

We found that it took about a week or so for an expert to 
come up with an optimal configuration when manually going 

through the entire configuration process putting aside the time 
taken for educating the expert for the tools. In this study, the 
goal put on our tool was to reduce the time at least to three days 
because most designers believed more time could not be 
afforded. With three days as the limit, if an iteration of 
simulation takes one to ten minutes, thousands of iterations can 
be completed in the given time. Due to this time limitation, a 
careful choice of algorithmic parameters had to be made. 
Eventually, we were able to reduce simulation time dramatically 
by running simulations in parallel. 
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Figure 5  Objective Function focusing on the throughput 
of the individual master 
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Figure 6 Objective Function focusing on the total 
bandwidth and latency 

IV. Experimental Results 
The ABC was used for architecture exploration of a 

commercial SoC design. As said earlier, it was a chip for digital 
television set-top box applications. An abstract diagram of the 
system architecture is shown in Figure 1. Our goal was to reduce 
design exploration time spent in the bus and memory scheduler 
configuration to minimum. We achieved our goal as shown in 
Figure 7. An expert, for about eight days, tried out only 800 
configurations in series. The ABC tried more than 2,000 
configurations in 8 hours. With 80 machines available, the time 
could be reduced to 2 hours, achieving 99% reduction in time. 



 

To determine the algorithm most suitable to our problem, we 
formed a discrete configuration space where a subset of points 
from the original space are included. The discrete space consists 
of 214 configurations. We once obtained values for all points and 
the objective function was obtained by reading the table. That 
way, simulation is faster resulting in efficient comparison of the 
three algorithms. Table 2 shows the results of the comparison.  

In Table 2, each is obtained by averaging over 100 different 
simulation runs in which up to 5,000 iterations are allowed. The 
number of iterations means how fast the known optimum has 
been found on the average. If the optimum value were not found, 
the number of iterations becomes 5,000 and a sub-optimal value 
would be recorded. From Table 2 the followings can be inferred. 
The simulated annealing is not good at handling too many 
parameters and it is not consistent for various initial 
configurations of parameters. The stochastic evolution tends to 
make a decision prematurely with a bad local optimum solution. 
The genetic algorithm’s results are not always the best but 
obviously it is faster and consistent. In this experiment, we were 
sure that GA was finding good optimal solutions because we 
had a list of the actual measured values and we knew where the 
genuine optimal value was located. 
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Figure 7 ABC (20 machines) vs. Human Effort 

 

 SA SE GA 

Objective Func. (avg.) 8.81 8.5 8.21 

Iterations (avg.) 4231.6 3663.7 1664.2 

Table 2. Comparison of SA, SE, and GA 

 
Cross-over rate  

60% 70% 80% 

1-point 1726.6 1664.2 1764.2 

2-point 2110.6 1762.6 1881.8 
Cross 
-over 

Method Uniform 2309.8 2313.8 1868.2 

Table 3. Effect of crossover method and crossover rate on 
the average number of iterations 

 
For optimization of our GA approach, we performed 

simulations to find optimal parameters. One of important 
parameters is the crossover method. We evaluated three 
different methods based on how to determine the boundary of a 
crossover operation: 1-point, 2-point and uniform. It turned out 
1-point was optimal for our problem as shown in Table 3. The 
best crossover rate was 70%. We also evaluated different 
mutation rates to conclude that the mutation rate of 25% works 
the best for our problem. 

We also conducted simulations to gauge the effect of 
population size of GA (Figure 8). The number of iterations 
(equivalent to search speed) varied and the highest speed was 
observed with the population size of 80. The average objective 
function values were barely affected by the population size. 

With the parallel ABC, we were able to find a solution 
slightly better than the one found by an expert. The expert took 
more than eighty hours for the task while our approach took less 
than eight hours using the load-balanced workstation clusters. 
The value of this tool is in the following facts: 

(1) ABC finds a solution better than the one found by an 
expert. 

(2) ABC finds a solution in less than 1/10 of the time spent 
by an expert. 

(3) ABC can be reused for different system configurations 
without an expert’s help. 
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Figure 8 Effect of Population Size in GA 

V. Conclusion 
In this paper we demonstrated how an optimal configuration 

of a parameterized on-chip system bus could be found using a 
software tool we developed. Without the tool, an experienced 
engineer should undergo a difficult and tedious task of repeating 
the two phases of work; tweaking the configuration and waiting 
for a long simulation to end. We found this process could last 
more than eighty working hours. 

We used a genetic algorithm to quickly find an optimal 
configuration solution. Various population sizes were tested to 
find out the optimal value. We contrived an efficient way of 
representing scheduling-related parameters where table indices 
are used as the bit strings of the genetic algorithm.  

In our case study, we corroborated the value of the tool by 
reducing the optimization time from about eighty hours to eight 
hours. It should be noted that, during the eight hours, the 
engineer could do other more valuable works while the software 



 

is running. In fact, exploiting more parallelism could further 
reduce the time. 

As long as IP reuse and socketization remain as the keywords 
of SoC design approaches, the trends of making IP components 
configurable will continue and software tools like ABC 
demonstrated in this paper will be indispensable.  

The work presented in this paper is being extended for more 
general use. The configurator software is being extended for use 
in a SystemC-based virtual platform environment under 
development. Once the virtual platform is ready, the tool will be 
used for configuration of its interconnect. The SoC design we 
are modeling exploits two identical interconnects and placement 
of the hardware IP’s is a crucial design decision. The virtual 
platform will be used for fast simulation of various choices and 
the optimal solution will be found using the extended tool. The 
indices used in this paper will represent the mapping of a 
hardware IP to one of the two interconnects.  

The virtual platform under development will offer faster 
simulation speed because the models for hardware IP’s and 
processor cores are transaction-level and the simulation 
environment will not require slow event-based logic simulation. 
It will still give accurate results because the models are 
cycle-accurate. We are planning to support high-level power 
estimation in this environment as well by adding table-based 
power metrics in each hardware IP model. 
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