

Abstract
For successful SoC design, efficient and scalable

communication architecture is crucial. Some bus interconnects
now provide configurable structures to meet this requirement of
an SoC design. Furthermore, bus IP vendors provide software
tools that automatically generate RTL codes of a bus once its
designer configures it. Configurability, however, imposes more
challenges upon designers because complexity involved in
optimization increases exponentially as the number of
parameters grows. In this paper, we present a novel approach
with which effort requirement can be dramatically reduced. An
automated optimization tool we developed is used and it
exploits a genetic algorithm for fast design exploration. This
paper shows that the time for the optimizing task can be
reduced by more than 90% when the tool is used and, more
significantly the task can be done without an expert’s hand
while ending up with a better solution.

Index Terms— Platform-based design, Bus Configuration,
Optimization, SoC design, genetic algorithm.

I. Introduction
latform-based design has become one of the trends of
system-on-chip (SoC) design as the complexity of design

grows. With a billion transistors or a thousand cores expected to
be integrated on a single chip by 2010, how to interconnect
those components will be a more challenging problem not only
because there are many components but also because
performance requirements are increasingly demanding. For
instance, prevalence of embedded multimedia applications
requires frequent accesses to memories and as a result, how to
utilize shared memory bandwidth becomes a critical issue.
Moreover, such requirements have to be met while maintaining
or lowering power consumption.

Momentum is toward establishing standard on-chip
interconnects and reusing them for different applications after
reconfiguration. AMBA, Sonics SiliconBackplane
MicroNetwork, LOTTERYBUS, National Semiconductor’s
GeodeLink and IBM CoreConnect are examples of the
standard on-chip system interconnect [1][2][5][6][7][16].

Some of them are tool-configurable to allow designers to
adapt interconnects to a new application while meeting a new
set of performance requirements. Designers should perform
optimization of the configurable buses in addition to employed
IP blocks that are attached to the buses as either a master or a

slave to meet all specified requirements. The trend of IP
(Intellectual Property) reuse and socketization results in
elevated complexity because more IP components are designed
with flexible configuration in mind.

Unfortunately, optimally configuring interconnects is a
time-consuming task because reconfiguring a bus usually
involves repeating manual refinement of RTL codes. Some
interconnect vendors now offer tools for automatic generation
of the bus and configuration. For instance, the Sonics
SiliconBackplane parameterizes most aspects of the bus and
its arbiter and offers software tools to allow designers to
configure the bus, automatically generate the corresponding
RTL codes, and simulate the generated RTL codes. (Similar
functionality is available for AMBA with a third party tool.)
The parameters that can be configured include bus pipeline
latency, bus width, the number of masters and arbitration
policies. The number of parameters configured in Sonics,
however, exceeds a hundred [2].

Configuring a complex system with tens of parameters or
more is an inherently difficult and tedious task. Although an
expert can speed up the process with intuition and experience, a
human being is liable to make mistakes and get stuck in a local
optimum. In order to avoid it, a more systematic optimizing
approach is needed. To avoid ending up with a local optimum
solution, the configuration space needs to be explored with all
parameters as candidates for variation. For this reason, this task
needs an automated tool. We developed a tool called ABC
(Automatic Bus Configurator) to address the issue.

Our automated approach reduced the configuration time by
more than 90% with no expert’s ado at all. Our approach was
evaluated on our testbed that employs the Sonics MicroNetwork
bus and the MemMax™ memory scheduler as the bus and
memory backbones. The work presented in this paper, however,
is generic enough to be readily applied to other similar systems
or general configuration problems. We plan to extend this tool
for optimization of the mapping of multiple hardware IP’s to
multiple interconnects employed in an SoC design.

This paper is organized as follows: in the next section, we
discuss issues concerned with bus configuration. In section III,
we describe the core of our work, automated configuration of a
system bus. Experimental results are discussed in section IV.
Conclusion and future work appear in section V.

Fast Exploration of Parameterized Bus Architecture
for Communication-Centric SoC Design

Chulho Shin, Young-Taek Kim, Eui-Young Chung, Kyu-Myung Choi, Jeong-Taek Kong, Soo-Kwan Eo
CAE Center, Samsung Electronics Co., LTD.

P

1530-1591/04 $20.00 (c) 2004 IEEE

II. Optimizing System Interconnects
A work [4] on an optimal configuration of a parameterized

system was recently performed. In the work, performance and
power were the dual objectives of its Pareto-optimization. To
reduce the space of design exploration, they used a novel
pruning technique that works on an optimal dependency graph
of parameters. The technique was attractive because it could
significantly reduce complexity while obtaining an exact
solution if only an optimal parameter dependency graph had
been available. Unfortunately, the limitation of the study is that
in a typical system, a dependency graph cannot easily be
obtained because very commonly there is no way of intuitively
determining optimal dependency between each pair of
parameters. Our system is not an exception. In such cases, the
only way to determine a dependency graph may be through
sensitivity analysis of each pair of parameters; which is an NP
complete problem.

Some studies [25][26] were performed to find out an optimal
bus configuration of in an SoC design. Those studies, however,
did not focus on optimizing a specific interconnect and
automating the task. Instead, the main interest was to investigate
effects of different topologies. Our study can be applied once a
topology is chosen through such studies.

The main interest of our paper lies in how to optimize the
communication backbone of a system rather than an entire
system. We claim that the best way of optimizing an SoC is to
optimize it in three phases. First, a system interconnect is
optimized based on specifications with pseudo masters that
characterize the behavioral requirements of them. Then, the
mapping of multiple IP’s to multiple interconnects is to be
optimized. (Hardware/software partitioning is also performed in
this phase.) Finally, each IP is fine-tuned to fully exploit the
optimized interconnect. For more accuracy, these phases may
be reiterated until desired analysis result is obtained. In this
paper, we limit the scope to optimizing communication
architecture of an SoC.

Of various communication topologies, buses are most
commonly used as SoC interconnects. A bus is popular because
it is area-wise inexpensive and simpler to design compared to
other topologies in spite of such disadvantages as inefficient
power consumption, bandwidth bottleneck and complex
protocol. Among various system buses, we selected Sonics
SiliconBackplane MicroNetwork as our test vehicle due to its
relatively higher acceptance and richer set of configuration
features.

With more and more IP’s integrated on a single chip, it is
likely that the bus interconnect expected to become no longer
effective after some critical point. The networks on chip might
be one of the solutions to replace the bus interconnect [24]. This
will, though, impose more burdens in the design of the IP’s.
Even with the newer interconnect schemes, configuration of
them will not be a problem that can rely on the intuition and
expertise of a few engineers.

III. Automated configuration of an on-chip Bus
The SoC design of our interest is for a digital TV set-top box

application as shown in Figure 1. The system contains multiple
masters each of which covers the functions related to
audio/video codec, system control, graphics management,
graphics/video scaling and enhancement, etc. A master in the
diagram actually represents a functional subsystem that may
contain one or more processor cores. The master models we use
in this study are bus-cycle-accurate and represent worst-case
scenarios of the real operations. (Optimally configuring each
master is not within the scope of this work.) After obtaining the
bus-cycle accurate stimuli through characterization of each
master, we performed an investigation to reduce configuration
space.

Master
#0

Master
#(n-1)

Slave
#0

Slave
#(m-1)

Memory
Scheduler

Memory
Controller

Memory

Master
#1

Bus Architecture Parameters

Bus Scheduling Parameters

Architecture Parameters

Scheduling Parameters

BUSBUS

Figure 1 Our system configuration and
the parameters involved.

A. Configuration Space

As shown in Table 1, exhaustive exploration is not possible
even after a significant reduction in the space for exploration.
With more than hundred parameters available, optimally
configuring a system can be a daunting task even with an
automated method because complexity is exponential. Thus, in
the beginning, an effort must be made to eliminate parameters
from the list of candidates. Examples of these parameters
include the ones that make the objective function value
monotonically increase or decrease, the ones that do not have
significant effect on the function and those that designers would
never vary for design reasons. One example is the data bus
width; whether the data bus should be 32-bit or 64-bit is not
likely to be an issue of configuration.

After examining parameters and eliminating many of them, in
our target SoC where five masters and eight threads are
employed, we ended up with a configuration space of 245.
Because each simulation in our case took between 1 minute and
5 minutes, it would take at least 67 million years for complete
exploration.

Bus Bus

Memory
Scheduler

Memory
Scheduler

Parameter
Class

Arbitration Others Scheduling Others

Total

Parameters Per-master
time slice
allocation

Pipeline
Latency

Bandwidth
allocation per
thread, etc.

Prefetch limit,
direction change

limit, etc.

Original
Exploration

space
1 ~ 6256 6 2136 226 2165 ~ 2933

Reduced
Exploration

space
847 6 324 226 245

Table 1. Even after a significant reduction in the space for
exploration, exhaustive exploration is not possible.

B. Basic Flow of Operation

An expert, using a GUI tool (provided by Sonics), can vary
configurations of the bus arbitrator and memory scheduler until
she/he can find a satisfactory one (Figure 2). With the Sonics
bus, once a configuration is determined, an RTL design for the
bus, bus arbiter and memory scheduler are generated, compiled
and simulated.

C. ABC’s Flow of Operation

In ABC, the flow of operation starts with creating a
population of individuals for one generation for a genetic
algorithm. The genetic algorithm (GA) [14] creates individuals
by performing basic operations such as reproduction, crossover
and mutation. Once a population is formed, the parallel launcher
invokes simulation of individuals concurrently. (See Figure 3.)

For each individual, a configuration file is formed based on
the parameters being used. The file is then used for generation
of the RTL codes. The RTL model is compiled and simulated to
produce simulation result files. The result files are analyzed to
compute the value of the fitness function of each individual. A
result file is generated for each master and shows how much
bandwidth has actually been allocated to it. Each master is
modeled as a bus functional model and its simulation is several
orders of magnitude faster than that of the RTL counterpart.

D. GA Implementation

In the beginning, we considered simulated annealing as our
optimization engine. Simulated annealing (SA) [3][22] is a
commonly used combinatorial optimization algorithm that
resembles a metallurgical phenomenon. Its algorithm is
controlled by three parameters: temperature, equilibrium
condition, and cooling schedule, which are related to the total
simulation time needed. To address SA’s problems such as long
simulation time, stochastic evolution (SE) was introduced [11].
SE offered better control over simulation and stopping
condition making the exploration faster. However, if parameters
are not tuned properly, simulation can often be prematurely
aborted ending up with a local optimum.
Like SA, SE and other optimization algorithms, GA has a few
parameters that need to be fine-tuned for correct operation:
population size [13], the number of generations, crossover rate
and mutation rate. GA was selected as our optimization engine
because it indeed outperformed other algorithms as shown in
section IV. It finds an optimal solution faster and more reliably
while SA heavily depends on the quality of the initial

configuration and SE often prematurely converges. Another
significant reason is its inherent parallelism. Fitness function of
individuals that belong to a generation can be obtained fully
independently. In other words, parallelism is only limited by the
population size. Although SA can be parallelized [12], it needs
direct modification or extension of the algorithm. GA does not
need any modification except supporting parallel invocation of
a fitness function.

E. Table-based bit string formation for GA

Scheduling-related parameters usually have a huge space of

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Begin

Human
Effort

EDA
ToolsParameter

Adjustment

Rule of Thumb

Experience

Intuition

Result
Analysis

Figure 2 Conventional work flow of bus optimization

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Simulation
Result

System
Configuration

RTL
Generation

RTL
Compilation

RTL
Simulation

Parallel
Launcher

Best
Result

Selection

Parameter Encoding

Genetic Algorithm

Automatic
Bus

Configurator

Begin

Crossover

Mutation

Evaluation

Analysis

Logging

Figure 3 New workflow of bus optimization offered by our
automatic bus configurator (ABC).

configuration where valid solutions are scarcely found because
of the restrictions forced by the software tool. We contrived a
way to handle scheduling-related parameters by using a table.
Based on the requirements imposed on the masters and
guidelines available from the manuals, we found a generic way
of forming a table. In this approach, a bit string is formed out of
the values of each entry’s index (Figure 4). The number of
entries for the bus arbitration-related parameters and memory

scheduler’s scheduling-related parameters are both less than a
thousand. This approach can be used to form bit strings of
hard-to-represent problems. Using this approach we were able
to reduce the length of a bit string to 45 as shown in Table 1.
Even after such significant reduction in exploration space, note
that exhaustive exploration is still not possible.

Figure 4 illustrates how a bit string is formed. For example, a
master (M0) needs to be guaranteed 20% bandwidth for a fixed
period. Of 16 scheduling slots, we allow it to be scheduled from
2 to 4 slots. Though two slots are less than 20%, it is not
excluded because unscheduled slots can also be allocated the
master if there are no requests. In these experiments, we did not
consider permutations for scheduling because we found that the
simulation result was not sensitive to the ordering of the
schedule.

Time Slots for Scheduling

remaining slots55%don’t care

(0 or 1 or 2) /1610%M2

(1 or 2 or 3) /1615%M1

(2 or 3 or 4) /1620%M0

of Scheduled Slots /
Total Slots

Required
Bandwidth

Symbol Master

remaining slots55%don’t care

(0 or 1 or 2) /1610%M2

(1 or 2 or 3) /1615%M1

(2 or 3 or 4) /1620%M0

of Scheduled Slots /
Total Slots

Required
Bandwidth

Symbol Master

Index M0–M1–M2 Scheduling
00000 2 – 1 – 0
00001 2 – 1 – 1
00010 2 – 2 – 0

11010 4 – 3 – 2

�

�

�

�

�

�

�

�

�

�

�

�

Figure 4 Table-based bit-string formation

F. Objective function

Our objective for optimization is to make each bus master
meet its own throughput requirement. To avoid solving a
multi-objective optimization problem, we reduced all our
objectives to one single function as shown in Figure 5. Here, the
smaller the value is, the better the configuration is. Until every
master meets its requirement, the focus is on simply bringing all
masters within requirement based on their weight. In this phase
surplus throughput does not count at all. Once all masters meet
requirement, surplus becomes important and exploration
proceed toward higher surplus throughput.

We tried another objective function that (Figure 6) focuses on
the bus bandwidth and latency. In this case, we used the weight
factors to trade off between the bandwidth and quality of service.
The weight was also used for normalization. This objective
function was introduced based on a request from the designer
after delivering the result for the first objective function.

We found that it took about a week or so for an expert to
come up with an optimal configuration when manually going

through the entire configuration process putting aside the time
taken for educating the expert for the tools. In this study, the
goal put on our tool was to reduce the time at least to three days
because most designers believed more time could not be
afforded. With three days as the limit, if an iteration of
simulation takes one to ten minutes, thousands of iterations can
be completed in the given time. Due to this time limitation, a
careful choice of algorithmic parameters had to be made.
Eventually, we were able to reduce simulation time dramatically
by running simulations in parallel.

Objective Function :=
iiw ∆∑

 where
i i i

R Q∆ = − if 0
i i

R Q− >
 or

 0
i

∆ = if 0
i i

R Q− ≤

i

R : Required Throughput for Master i.

i

Q : Observed Throughput for Master i.

i

w : Weight for Master i.

Final Fitness Value :=
iiw ∆∑ if 0

i i
w ∆ >∑

 ()
i iiw Q R−∑ if 0

i i
w ∆ =∑

Figure 5 Objective Function focusing on the throughput
of the individual master

Objective Function := B Lw w σ∆ +

 where
req obv

B B∆ = − if 0
req obv

B B− >
 or

 0∆ = if 0
req obv

B B− ≤

where
obv cst

L Lσ = − if 0
obv cst

L L− >
 or

 0σ = if 0
obv cst

L L− ≤

req

B : Required Bandwidth

obv

B : Observed Bandwidth

cst

L : Required Latency

obv

L : Observed Latency

B

w : Weight for Bandwidth

 w : Weight for Latency

Figure 6 Objective Function focusing on the total
bandwidth and latency

IV. Experimental Results
The ABC was used for architecture exploration of a

commercial SoC design. As said earlier, it was a chip for digital
television set-top box applications. An abstract diagram of the
system architecture is shown in Figure 1. Our goal was to reduce
design exploration time spent in the bus and memory scheduler
configuration to minimum. We achieved our goal as shown in
Figure 7. An expert, for about eight days, tried out only 800
configurations in series. The ABC tried more than 2,000
configurations in 8 hours. With 80 machines available, the time
could be reduced to 2 hours, achieving 99% reduction in time.

To determine the algorithm most suitable to our problem, we
formed a discrete configuration space where a subset of points
from the original space are included. The discrete space consists
of 214 configurations. We once obtained values for all points and
the objective function was obtained by reading the table. That
way, simulation is faster resulting in efficient comparison of the
three algorithms. Table 2 shows the results of the comparison.

In Table 2, each is obtained by averaging over 100 different
simulation runs in which up to 5,000 iterations are allowed. The
number of iterations means how fast the known optimum has
been found on the average. If the optimum value were not found,
the number of iterations becomes 5,000 and a sub-optimal value
would be recorded. From Table 2 the followings can be inferred.
The simulated annealing is not good at handling too many
parameters and it is not consistent for various initial
configurations of parameters. The stochastic evolution tends to
make a decision prematurely with a bad local optimum solution.
The genetic algorithm’s results are not always the best but
obviously it is faster and consistent. In this experiment, we were
sure that GA was finding good optimal solutions because we
had a list of the actual measured values and we knew where the
genuine optimal value was located.

ABC - 20 machines
(Total Iteration = 2000)

O
bj

ec
ti

ve
 F

uc
ti

on

1

Time (day)

2

Human Effort
(Total Iteration = 800)

8

300

200

100

= 100 iterations
= 100 iterations

ABC - 20 machines
(Total Iteration = 2000)

O
bj

ec
ti

ve
 F

uc
ti

on

1

Time (day)

2

Human Effort
(Total Iteration = 800)

8

300

200

100

= 100 iterations
= 100 iterations

Figure 7 ABC (20 machines) vs. Human Effort

 SA SE GA

Objective Func. (avg.) 8.81 8.5 8.21

Iterations (avg.) 4231.6 3663.7 1664.2

Table 2. Comparison of SA, SE, and GA

Cross-over rate

60% 70% 80%

1-point 1726.6 1664.2 1764.2

2-point 2110.6 1762.6 1881.8
Cross
-over

Method Uniform 2309.8 2313.8 1868.2

Table 3. Effect of crossover method and crossover rate on
the average number of iterations

For optimization of our GA approach, we performed

simulations to find optimal parameters. One of important
parameters is the crossover method. We evaluated three
different methods based on how to determine the boundary of a
crossover operation: 1-point, 2-point and uniform. It turned out
1-point was optimal for our problem as shown in Table 3. The
best crossover rate was 70%. We also evaluated different
mutation rates to conclude that the mutation rate of 25% works
the best for our problem.

We also conducted simulations to gauge the effect of
population size of GA (Figure 8). The number of iterations
(equivalent to search speed) varied and the highest speed was
observed with the population size of 80. The average objective
function values were barely affected by the population size.

With the parallel ABC, we were able to find a solution
slightly better than the one found by an expert. The expert took
more than eighty hours for the task while our approach took less
than eight hours using the load-balanced workstation clusters.
The value of this tool is in the following facts:

(1) ABC finds a solution better than the one found by an
expert.

(2) ABC finds a solution in less than 1/10 of the time spent
by an expert.

(3) ABC can be reused for different system configurations
without an expert’s help.

Population Size / Iteration (Avg.)

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Population Size

of

 In
te

ra
tio

n
(A

vg
.)

50

80

100 150

200

30030

Figure 8 Effect of Population Size in GA

V. Conclusion
In this paper we demonstrated how an optimal configuration

of a parameterized on-chip system bus could be found using a
software tool we developed. Without the tool, an experienced
engineer should undergo a difficult and tedious task of repeating
the two phases of work; tweaking the configuration and waiting
for a long simulation to end. We found this process could last
more than eighty working hours.

We used a genetic algorithm to quickly find an optimal
configuration solution. Various population sizes were tested to
find out the optimal value. We contrived an efficient way of
representing scheduling-related parameters where table indices
are used as the bit strings of the genetic algorithm.

In our case study, we corroborated the value of the tool by
reducing the optimization time from about eighty hours to eight
hours. It should be noted that, during the eight hours, the
engineer could do other more valuable works while the software

is running. In fact, exploiting more parallelism could further
reduce the time.

As long as IP reuse and socketization remain as the keywords
of SoC design approaches, the trends of making IP components
configurable will continue and software tools like ABC
demonstrated in this paper will be indispensable.

The work presented in this paper is being extended for more
general use. The configurator software is being extended for use
in a SystemC-based virtual platform environment under
development. Once the virtual platform is ready, the tool will be
used for configuration of its interconnect. The SoC design we
are modeling exploits two identical interconnects and placement
of the hardware IP’s is a crucial design decision. The virtual
platform will be used for fast simulation of various choices and
the optimal solution will be found using the extended tool. The
indices used in this paper will represent the mapping of a
hardware IP to one of the two interconnects.

The virtual platform under development will offer faster
simulation speed because the models for hardware IP’s and
processor cores are transaction-level and the simulation
environment will not require slow event-based logic simulation.
It will still give accurate results because the models are
cycle-accurate. We are planning to support high-level power
estimation in this environment as well by adding table-based
power metrics in each hardware IP model.

References
[1] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. “LOTTERYBUS:

A new high-performance communication architecture for system-on-chip
designs,” in Proc. of 38th Design Automation Conference, 2001.

[2] SiliconBackplane µNetwork Reference Document Revision 2.3b,
Confidential Document, Sonics, Inc.2002.

[3] K. Choi and S. Levitan, “Exploration of Area and Performance Optimized
Datapath Design Using Realistic Cost Metrics”, in Proc. of International
Symposium on Circuits and Systems (ISCAS-95), 1995

[4] T. Givargis, F. Vahid, J. Henkel. "System-Level Exploration for
Pareto-Optimal Configurations in Parameterized System-on-a-Chip,"
IEEE Trans. on Very Large Scale Integration Systems (TVLSI), vol. 10,
no. 4, Aug. 2002.

[5] IBM Microelectronics: CoreConnect™ bus architecture,
http://www-3.ibm.com/chips/products/coreconnect/

[6] The GeodeLink™ System Architecture,
http://www.national.com/appinfo/solutions/files/geodelink_white_paper
.pdf

[7] S. Furber. ARM System Architecture. Addison Wesley, 1996.
[8] J. Peng, S. Abdi and D. Gajski, “Automatic Model Refinement for Fast

Architecture Exploration,” in ASP-DAC/VLSI Design, pp. 1–6, 2002.
[9] M. Hashempour, et. al, “Rapid Design Space Exploration of DSP

Applications using Programmable SoC Devices – A Case Study,” in SoC
Conference, 2002.

[10] A. Naeemi, R. Venkatesan, and J. Meindl, “System-on-a-chip Global
Interconnect Optimization,” in SoC Conference, pp. 399-403, 2002.

[11] Y. Saab and V. Rao, “Stochastic Evolution : A Fast Effective Heuristic
for Some Generic Layout Problems,” in Proc. of 27th ACM/IEEE Design
Automation Conference, pp. 26-31, 1990.

[12] R. Azencott, Simulated Annealing : Parallelization Techniques, Wiley,
New York, 1992.

[13] J.T. Alander, “On optimal population size of genetic algorithms,” in Proc.
of CompEuro92, 65-70, IEEE Computer Society Press, 1992.

[14] J. Koza, Genetic Programming : on the programming of computers by
means of natural selection, Massachusetts Institute of Technology,
Namco Ltd.1998.

[15] A. Goel and W. Lee, "Formal verification of an IBM CoreConnect
processor local bus arbiter core", in Proc. of the 37th conference on
Design automation, p.196-200, June, 2000.

[16] ARM, Amba Specification, available from www.arm.com
[17] J. Koza, Genetic Programming : on the programming of computers by

means of natural selection, Massachusetts Institute of Technology,
Namco Ltd.1998.

[18] K. Lahiri, A. Raghunathan, and S. Dey, "Efficient Exploration of the SoC
Communication Architecture Design Space," in Proc. IEEE/ACM Intl.
Conf. on Computer Aided Design, pp.424-430, San Jose, California,
November 2000.

[19] K. Jong and W. Spears, “An Analysis of the Interacting Roles of
Population Size and Crossover,” in Proc. of the International Workshop
Parallel Problem Solving from Nature, Springer-Verlag, pp. 38-47, 1990

[20] F. Polloni, L. Mazzoni, S. Matteo, “Fast System-Level Design Space
Exploration for Low Power Configurable Multimedia Systems-on-Chip,”
in SoC Conference, pp. 150–154, 2002.

[21] A. Brinkmann, et. al, “On-Chip Interconnects for Next Generation
System-on-Chips,” in SoC Conference, pp. 211–215, 2002.

[22] D. Wong, H. Leong, and C. Liu, Simulated Annealing for VLSI Design,
Kluwer Academic Publishers, Boston, 1988.

[23] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller, "The gambler's
ruin problem, genetic algorithms, and the sizing of populations," in Proc.
of the 1997 IEEE International Conference on Evolutionary
Computation, pp. 7--12, 1997.

[24] L. Benini and G. De Micheli, "Networks on chips: a new SoC paradigm",
IEEE Computer, volume 35, pp. 70--78, January 2002.

[25] K.Lahiri, A.Raghunathan, S.Dey, "System-Level Performance Analysis
for Designing On-Chip Communication Architectures", IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no.6,
pp.768-783, June 2001.

[26] K. Ryu and V. Mooney, "Automated Bus Generation for Multiprocessor
SoC Design," Proceedings of the Design Automation and Test in Europe
Conference (DATE'03), pp. 282-287, March 2003

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

