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Abstract 

Productivity data for IC designs indicates an exponential 
increase in design time and cost with the number of elements that 
are to be included in a device. Present applications require the 
development of complex systems to support novel functionality. 
To cope with these difficulties, we need to change radically the 
present design methodology to allow for extensive re-use, early 
verification in the design cycle, pervasive use of software, and 
architecture-level optimization. Platform-based design as 
defined in [1], has these characteristics. We present the 
application of this methodology to a complex industrial 
application provided by Cypress Semiconductor. In this case 
study, we focus on a particular aspect of this methodology that 
eases considerably the verification process: successive 
refinement. We compare this approach versus a parallel team of 
designers who developed the IC using standard design 
approaches. 

1. Introduction 
The design of complex ICs such as a microprocessor often starts 
with a high-level description of the intended operation described 
in C, C++, or, more recently with SystemC [7]. Verification is 
performed using ad hoc simulators that typically run orders of 
magnitude faster than RTL ones. Once the designers are 
satisfied, the description of the design is translated manually in 
an RTL description. This RTL description becomes the “golden 
model” against which all implementations are compared. There 
is no guarantee that the high-level description of the design is 
functionally equivalent to the RTL description and there is no 
method for back annotation of the original model for 
modifications. As complexity increases, this traditional method 
shows signs of severe stress since verification times are reaching 
levels that are no longer affordable. Verification could be much 
faster and accurate were higher levels of abstraction introduced. 
Rigorous “refinement” into the lower levels would allow 
verification performed at higher levels of abstraction to not be 
repeated. Hence, design modifications would be reflected 
through all layers of abstraction. Figure 1 demonstrates this 
approach (b) vs. a traditional flow (a).  To implement (b), we 
need an intellectual framework, a design methodology, and the 
supporting tools.   

These three elements can be found in the Platform-based design 
methodology as described in [1] and in the Metropolis design 
environment [3]. The intellectual framework is provided by the 
semantics of the language used to represent the design formally 
so that its properties can be assessed. The semantics have been 
designed to support a variety of heterogeneous models of 

computation allowing the designer maximum flexibility. The 
semantics have been designed to support both high-level 
abstractions and implementations thus allowing heterogeneity in 
the design both “horizontally” (it supports multiple models of 
computation), and “vertically” (it supports different abstraction 
layers).  

 
Figure 1: Abstraction and Verification in Design Flows 
An essential element of the methodology and of the formal 
semantics is the notion of separation of concerns [5]. This is the 
idea that computation, communication, and coordination should 
be considered as separate elements of the design. By keeping 
functionality and architecture separate, we can explore the design 
space in the architectural and micro-architectural domain while 
keeping the functionality intact. By separating communication 
and computation, we favor design re-use and allow 
composability, so that the properties of the design could be 
assessed by looking at the properties of the elements and of their 
communication mechanism in isolation. Constraints are also 
important in design capture and should also be kept separate 
from functionality. Constraints are expressions involving design 
variables that cannot be evaluated early since they often relate to 
physical properties of the implementation.  

Platform-based design has a “top-down” component and a 
“bottom-up” one. The bottom-up is related to the re-use of 
existing modules and components. Of more interest to this paper, 
is the top-down part, where we “refine” the original 
specification in successive levels of abstraction (platforms). 
Refinement can be defined precisely as commonly done in the 
formal verification community [8]. The fundamental aspect of 
this approach is that the behavior of the refined design is 
“contained” in the behavior of the level of abstraction above. If 
this refinement relation holds, properties of the design assessed 
at the higher level are valid at the lower level and there is no 
need to repeat verification of these properties at the lower level 
thus saving on verification costs. 

The goal of this paper is to validate, at least in part, the 
methodology and the modeling strategy incorporated in 
Metropolis on a complex industrial case study provided by 
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Cypress Semiconductor. We present the process by which 
Metropolis was used to go from a behavioral specification toward 
a specific microarchitecture via a series of abstractions and 
refinement verifications in the Successive Platform Refinement 
Methodology. Finally, we compare some key data points with the 
same design done in parallel in SystemC by another group as 
described in [6]. 

This paper is organized as follows: Section 2 describes the 
specifics of the case study problem. Section 3 describes design 
methodology and background terminology. Section 4 describes 
the development of the design and its platform abstractions. 
Section 5 examines the implemented Metropolis approach. 
Section 6 concludes with comments on the methodology.  

2. Case Study 
The goal of this exercise was to analyze the architecture of an 
interface unit for a very high bandwidth Optical Internetworking 
Forum (OIF) standard, e.g., System Packet Interface Level-4 
(SPI-4), Level-5 (SPI-5) [4] with the following requirements: 

• Interface must provide maximum bandwidth as required by 
the specification. 

• No loss of data with minimum backpressure; backpressure 
reduces upstream traffic flow. Generate backpressure only if 
downstream system requires it. 

• Optimally sized standard embedded memory elements.  
Optimal is a lower bound size with no packet loss. 

• The interface supports multiple input channels. 

• The insertion of idles (no activity) when packets are of 
different size must be minimized. 

For this project we defined a simple SPI-5 data generator model 
that generates data every clock cycle for given number of 
channels.  Two types of parameters are considered: architecture 
and application. Architecture parameters help to determine the 
microarchitecture parameters for various application parameters. 
We should choose a set of architecture parameters that match all 
application parameters for a given specification. 

2.1 Application Parameters 
Number of Channels (NP) – Number of PHY units. A PHY unit 
is a physical layer device that converts the serial optical signal to 
an electrical signal.  

Data Rate/Channel (BP) – What configuration of PHY units can 
be used. The electrical signals from the PHY units are typically 
in a byte or multiples of bytes format.  

The application parameters define what different types of 
PHY units our design could interface with. This is a tradeoff 
between flexibility and clock frequency. A smaller Bp will 
deliver data at a higher clock frequency.  

2.2 Architecture Parameters 
Our objective was to devise a robust architecture that will allow 
our design to interface with different types of systems.  To 
evaluate the various architectures we defined the following two 
parameters: 

Number of channels/bus (NB) - Number of channels that can 
simultaneously deliver data at the same time.  

Bytes of data/bus (BB) - Number of bytes from each channel. 

In the simplest case NP = NB and BP = BB, i.e., the system is 
configured to accept and deliver the data when all channels are 
equivalent. However, each channel can deliver data at a different 
rate. The only characteristic known is that the aggregate data 
from all the channels will be no more than 40 Gb/sec. 

We support up to 16 channels. For 16 channels, each channel 
must be 2.5 Gb/sec, to get an aggregate of 40 Gb/sec rate 
(2.5*16). Alternatively, 4 channels can each be 10 Gb/sec.  

The various parameters also control the internal bus width and 
internal clock frequency: 

Bus Width (BW) = NB * BB 

NP*BP*CSYS/BW  → (Ideally small as possible); where CSYS, is 
the system clock frequency. 

An interface unit that can interact with the PHY units and deliver 
data to the downstream modules can now be designed. However, 
the effect of our decisions at this level will impact the operation 
and storage requirements of the design.  

Example: Consider NB = 8 and BB = 4, then BW = 32 (Bytes). 
Then when BP = 4 and NP = 16, then data sequence is produced 
as shown in Table 1. For the first clock cycle, the 1st byte from 
the selected channels appears on the bus. In the second clock, the 
1st byte from the remaining channels is delivered. 
 

Table 1: Example of SPI-5 Data Generation 

Data Transfer Byte  (Bp = 4) 

1st  SOP Byte 2nd 3rd 4th EOP Byte 

Channels using Bus (NB = 8, Np = 16) 

0-7 8-F 0-7 8-F 0-7 8-F 0-7 8-F 

Clock Cycle 

C=0 C=1 C=2 C=3 C=4 C=5 C=6 C=7 

For this system configuration, it will take 8 clock cycles to send 
256 bytes of data over an 8 channel wide bus (16 total channels) 
with packets of 4 data units each. This is a simplified scenario.  
A more constrained implementation has been described in [6]. 

 The purpose of this study was to use Metropolis to quickly 
evaluate the impact of various parameters on the entire design 
while minimizing the verification effort. 

3. Design Methodology 
3.1 Refinement Verification 
The notion of refinement verification for this paper stems from 
model checking work such as [8]. We define the problem as 
follows: 

A model is generically defined as an object that can generate a 
set of finite sequences of behaviors, B. One of these possible 
finite sequences, B, is considered a trace, a.  A trace, a, is 
considered a sequenced set of observable values for a finite 



execution of the module. An observable value is produced by an 
[Obs]ervable variable (an API of the model).  A projection of a 
trace, a[ObsY], is the trace produced on module Y for the 
execution which created a over the observable variables of Y.  
Given a model X and a model Y, X refines the model Y, denoted 
X < Y if given a trace a of X then the projection a[ObsY] is a 
trace of Y.  The two modules X and Y are trace equivalent, X ≈ 
Y, if X < Y and Y < X.  The answer to the refinement problem 
(X, Y) is YES if X refines Y and otherwise NO. 

This notation refers to the refinement verification procedure. 

3.2 Design Flow 
We wanted to (1) observe if Metropolis could effectively aid in 
the process of microarchitecture design and verification as 
compared to the other model and (2) derive the architecture and 
application parameters described in Section 2.  Our design flow 
should simplify the microarchitecture development and help to 
determine which portions of the design need to be further refined 
with formal analysis methods.   

The notion of successive platform refinement was essential in our 
flow.  Each Metropolis model represented a specific platform 
instance. Each subsequent platformi+1, kept a reusable abstract 
specification with correct behavior and equally importantly, each 
successive platform held the refinement relationship required 
with its parent platform.  Theoretically any microarchitecture is a 
candidate for refinement. In our case, we require the presence of 
observable communication involving computation elements. 

Platform abstraction was driven by the separation of concerns as 
mentioned. Beginning with the initial specification each 
subsequent platform would address previous platform constraints 
and application and architecture parameters. At each step, we 
performed refinement verification. If the refinement relationship 
held, we would collect a set of data points concerning various 
metrics relevant to the design.  Figure 2 illustrates our design 
flow. 

 
Figure 2: Successive Platform Refinement Methodology 
This methodology produced several different platforms, which 
exposed different aspects of the application. We referred to these 
platforms sequentially; they drove the micro-architecture design 
by revealing designs that did not meet the constraints implied by 
the application parameters. Simulation performance analysis 
drove refinement to the next platform.  

4. Platform Development 
The goal of platform development is to address and transform 
some of constraints of the previous platform and develop the 
architecture and application parameters outlined previously.  
This creates a hierarchy of platforms with their corresponding 
successors and parents.  Platforms naturally address changes to 
computation, communication, or coordination structure. This was 
natural for this application but can be more ambiguous for other 
applications. Metropolis semantics make this relatively easy. 

4.1 Platform 0 
Platform 0 represents the minimally constrained functionality of 
the initial specification. This provides the initial platform in 
Figure 3. This is a buffered producer/consumer where there is a 
data source (producer), some internal storage (buffer) and a 
packet processor (consumer).  There is communication (A, B) but 
no notion of what architectural form they take (i.e. bus, shared 
memory, etc). There is only notion of direction (read or write) 
and that A and B can only be accessed by one element per unit 
time. The initial system has only “constraint 0”: 

Constraint 0 - Only complete packets can be delivered to the 
packet processors. Partial packets have to remain in the internal 
storage or dropped based on other system requirements. 

Inherent constraints are reflected by the application topology:  

MaxRateProduction(DS) �  MinRateConsumption(IS) (1) 

MaxCapacity(IS) �  MaxProduction(DS) - 
MinConsumption(PP)  at any instant t   (2) 

DataFormat(DS) = DataFormat(IS) = DataFormat(PP) (3) 
DS = Data Source; IS = Internal Storage; PP = Packet Processor 

Equations (1) and (2) ensure that this is a loss less 
communication mechanism while (3) captures the fact that these 
are primitive communication mechanisms in which data is 
merely transferred not transformed. The next platform should 
look to transform some of these constraints. 

 
Figure 3: Platform Development 



4.2 Platform 1 
The internal storage for each channel depends on the data rate of 
the channel. A simple implementation due to this constraint can 
be stated as a set of refined constraints on the internal storage. 

Constraint 1 - BP is an application parameter; hence the 
internal memory must allow storage space for each channel to be 
dynamically adjusted. Aggregate data rate of 40Gb/sec must be 
preserved.  The number of divisions (NM) must equal the number 
of PHY units, i.e., NM = NP 

With the aggregate data rate and different data rate per PHY 
units, application parameters were combined as in Table 2. 

Table 2: Application Parameters and Platform 1 

Data Rate/Phy NP 
40Gb/sec 1 

10Gb/sec 4 

2.5Gb/sec 16 

1.25Gb/sec 64 

625Mb/sec 256 

As with the previous platform there are still constraints but now 
they generate a relationship between platforms. These can be 
derived from topology (5) as before or Metropolis semantics (4). 

Coordination (Platform1) > Coordination (Platform 0) (4) 

Processes (Platform 1) = Processes (Platform 0) (5) 
This relation indicates that platform 1 will require more explicit 
coordination with equal processes. This will restrict behaviors, 
which hold a refinement relationship. 

4.3 Platform 2 and Platform 3 
Analysis with the above set of constraints imposes strict timing 
based on the clock frequency. For a large memory this will be a 
difficult constraint to meet. The constraint of platform 1 needs to 
be further refined or implemented differently. As the constraint 
refinement proceeds, implementation related considerations 
dominate.  The refined constraint can now be stated as: 

Constraint 2 -The data rate and number of channel based 
internal storage should have pipelined writes. 

The implementation with this constraint leads to: 

- Using a mux-based logic organization as shown in platform 3. 
We chose not to implement this scheme due to lack of formal 
refinement relationship. 

- Using an external buffer to intermediately store incoming 
packets (read transaction) and then pass them to the internal 
storage (write transaction), as shown in platform 2. 

The coordination introduced in platform 1 manifests itself as 
control logic as shown platform 3. This makes the coordination 
explicit but does not ensure refinement. We need communication 
refinement and to revert to a previous communication refinement 
of the IS as in Platform 2. 

As Figure 3 shows, if communication (A) is actually refined into 
buffers as in platform 2 then there is no need for platform 3. As 
hoped, this will prevent the continued growth of the coordination 
overhead introduced in platform 1 and the refinement of the IS 

into internal memory does not change the platform properties in 
platform 0. The design will now proceed from platform 2. 

4.4 Platform 2.1 
Our analysis indicated that during peak times the read 
transactions dominated the system. Therefore: 

Constraint 3 - The pipelined write transaction should be 
independent to the read transaction. 

Platform 2.1 recognizes that coordination must be added in order 
to manage buffers and for constraint 3. This will require two 
units of control introducing added coordination. This 
coordination will further constrain the behavior into the 
refinement relationship.  Figure 3 shows this refinement where 
the two additional process objects added in order to provide 
buffer management. 

At this point, few architecture parameters are changing, but the 
refinement is proceeding more closely to a final implementation. 

4.5 Platform 2.2 
The “final” constraint on the system was added to have 
independently operating PHY units. This is important because 
we wanted to ensure that there were no assumptions built into 
our data generation and internal bus organization. The final 
constraint can be stated as: 

Constraint 4 - Packet generation from various channels should 
be independent activities. 

This refinement is performed on the data source and implements 
the application parameters, that is: 

Number of DS = NP (6) 

Size of DS = BP  (7) 

This platform shows a final refinement of the microarchitecture. 
This computation refinement requires a coordination refinement 
in order to process this data properly. 

Notice that the DS block now is made up of multiple blocks. This 
requires a similar transformation for the FIFO Control (FC) and 
the memory control (MC).  This final refinement will be by 
design a refinement of all previous platforms before it.  

5. Metropolis Investigation 

5.1 Metropolis Overview 
Metropolis is a design environment based on the principles of 
platform based design [1]. Its core is the Metropolis Meta Model 
(MMM). This meta-model provides, via its components, 
processes, media, and schedulers (quantity managers), strict 
separation of computation, communication, and coordination 
concerns respectively. While enforcing this separation, it does 
not enforce any one particular model of computation [2]. Since it 
adheres to a precise semantic, the MMM supports a number of 
backends that provide services such as simulation, verification, 
and synthesis. For more information we refer the reader to [3]. 

5.2 Metropolis Models 
Taking a functional specification and expressing it in Metropolis 
requires a decomposition into processes, media, and schedulers. 
Metropolis models were derived to represent platforms 2, 2.1 

Simulations indicated that for 
large number of channels the 
current bus architecture would 
not be sufficient.  

We discussed with other groups 
and decided to restrict NP to 1, 4 
and 16. 



and 2.2. Figure 4 shows a diagram of the “final” model, platform 
2.2. Metropolis processes correspond to computation (DS, FC, 
MC) in platform 2.2 while Metropolis media reflect memory 
elements (buffers). Implicit in 2.2 is the FIFO Scheduler process. 

 
Figure 4: Metropolis Model of Platform 2.2 
Processes (squares) and media (circles) define observability. The 
FIFO Scheduler is examined in section 5.4. 

5.3 Refinement Concept in Metropolis 
Due to the semantics of Metropolis, processes must communicate 
via media. This leads to a natural definition of observable 
behavior of processes in terms of their function calls to media. 
Recall that observable traces were a key part of our refinement 
definition (section 3.1). 

Definition: Metropolis Observable Behavior – the ordered set of 
function calls to media that a process may execute. 

This Observable Behavior can be captured for the processes in 
the model via the creation of a control flow graph (CFG). This is 
a tuple of <Q, q0, X, op, →>. Q is a finite set of control 
locations, q0 is an initial location, X is a finite set of variables, 
and Op are operations which denote (1) function calls to media 
(2) Boolean predicates. An edge (q, Op, q’) is a member of a 
finite set of edges and the transition relationship→, is defined as 
(Q x Op x Q). An edge makes a transition based on the Op 
present, q→Op q’. 

The creation of a CFG for single threaded processes will be used 
in our discussion to check for refinement relationships between 
the various abstraction levels. 

5.4 Metro Platform Refinement Verification 
After the creation a subsequent platformi+1, the second step to 
continue our development process was refinement verification. 
Our procedure, in keeping with our successive platform 
refinement methodology, was concurrent with each subsequent 
platform development. We would consider this Platform i+1 
only if the answer to the question, (Platform i+1, Platform i) 
was YES. 
Refinement verification required the creation of a control flow 
graph (CFG) for both the abstract and the refined model to 
capture the behaviors, B, of each model. The CFG creation can 
be done via a backend service (Section 5.1) in Metropolis that 
extracts this information automatically. 

A trace, a, is determined by the traversal the CFG.  This 
represents execution of the model. Once the set of traces, B, for 
each model is determined, the refinement verification stage is 
simply ensuring that the behavior of the refined model is a subset 
of the abstract behavior.  

Refinement Verification via CFG Creation - For each process, 
P, in the Model, M (1) Create a CFG with the Metropolis 
Backend. (2) Identify a cycle in the CFG, this is a trace a. (2) 
Add, a, to the set of behaviors, B. (3) Continue until all cycles 
are identified. (4) Compare the behaviors Bref to the abstract 
behavior Bab. (5) If Bref ⊆ Bab return YES; Else return NO. 

 
Figure 5: CFGs for Metropolis Processes 
Figure 5 shows the control flow graphs for two particular 
processes in platform 2.1 (ab) and 2.2 (ref). This is just one 
example of the 5 processes shown in figure 4. The circles are the 
control locations, Q.  Control location 1 is the initial location, q0. 
The operations, Op, on each transition,→, are specific function 
calls used in the model (denoted by “()”) or Boolean predicates. 
The cycles in these represent possible execution traces of the 
model and are show in Table 3. 

Table 3: Traces for FIFO Scheduler Process, Bref and Bab 
Trace FIFO Scheduler Process Traces  (*function calls abbreviated) 

T1 Terminated()    

T2 Terminated() wRnd()*   

T3 Terminated() wRnd()* wRnd()*  

T4 Terminated() wRnd()* Tnated()* qData ()*ω 

T4 cont putPolicy() PR1S()*   

Bref = {T1, T3, T4} ⊆  Bab = {T1, T2, T3, T4} �  Refinement! 

Naturally since these are cyclic graphs there must be some notion 
that each cycle may be subsequently followed by any other cycle 
in the set infinitely often. We will use ω for this. 

Therefore, the abstract FIFO scheduler is {T1, T2, T3, T4}ωωωω and 
the refinement is {T1, T3, T4}ωωωω. Notice that the FIFO scheduler 
trace has a function call, qData(), which also is denoted with a ω. 
This is due to the loop shown in the graph containing finitely 
many calls to this function. This shows the nested use of ω. 

The creation of the CFG is automatic and the evaluation of the 
traces via graph traversal is manual but will be automated in the 



future. This demonstrates refinement verification in the design 
flow prior to creating another platform and gathering data. 

5.5 Design Data Points 
There were two primary concerns of this investigation. (1) How 
did this method compare to the concurrent investigation in [6] 
(see Table 4). (2) What information could we learn regarding the 
application and architecture parameters?  

Table 4: Design Effort Comparison 

Development SystemC [6] Metropolis 
Man Weeks 15 4 

Code Size (~lines) 5200 1700 

Design Aids Algorithm failure and 
system throughput 

Evaluate alternate 
architectures quickly 

Primary Effort Test environment 
development 

Modeling and Model 
refinement 

Strengths Mature, commercial 
environment 

Platform Based Design 

Models of 
Computation 
Flexibility 

The SystemC modeling and testing environment provides a good 
mechanism to measure architecture metrics. However, it still 
requires a considerable effort, because the testing and modeling 
environment have to be built together. Evaluation of alternate 
architectures is also a considerable effort with the SystemC-
based method. However, once an architecture platform has been 
obtained, reuse of the test environment to measure throughput 
and find algorithmic bugs is simplified.   

The Metropolis environment not only provides the same 
capability as [6]’s design specific modeling and test environment, 
but it also provides a means to evaluate alternate architectures 
quickly. We estimate that, assuming knowledge of Metropolis 
design, this procedure is roughly a 5% increase in effort (design 
time and tool overhead) compared to “normal” Metropolis use. 

FIFO Occupancy in Platforms 2.1 (left) and 2.2 (right)
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Figure 6: FIFO Occupancy Data 
Finally, Figure 6, a sample of the data analysis possible in our 
design, shows FIFO occupancy between subsequent platforms in 
combination with changes in both architecture (NB) and 
application (BP) parameters. Notice that the FIFO occupancy in 
the refined model is bounded by the worst case in the abstract 

model. This type of data will drive the platform development and 
demonstrates design exploration. 

6. Conclusions 
We feel that the Metropolis environment was used successfully 
to demonstrate microarchitecture development via a successive 
platform refinement methodology. It provided not only a reusable 
model at many different abstractions but also supplied an 
environment to continue the refinement process. Each platform 
gave a unique perspective of the application and architecture 
parameters and produced a new design space given a different 
focus on a refinement property. 

Platform 2.2 could be further refined towards implementation or 
we could explore the possibility of defining a higher platform 
than platform 0 in a quest for an abstraction that will ease the 
process of defining design variants.  

The design was functionally verified at each refinement step, 
thus providing increased confidence in its correctness.  

Metropolis is an integrated framework where the entire design 
could be carried out. In addition, given its architecture and the 
structure of the meta-model, the design can be exported to other 
design environments, especially for implementation, providing 
flexibility that is of high value for industrial designers.  
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