
Microarchitecture Development via Metropolis Successive Platform
Refinement

Douglas Densmore
University of California, Berkeley

545Q Cory Hall
Berkeley, CA 94720

densmore@eecs.berkeley.edu

Sanjay Rekhi
Cypress Semiconductor
3901 North First Street

San Jose, CA 95134-1599

syr@cypress.com

Alberto Sangiovanni-Vincentelli
University of California, Berkeley

515 Cory Hall
Berkeley, CA 94720

alberto@eecs.berkeley.edu

Abstract

Productivity data for IC designs indicates an exponential
increase in design time and cost with the number of elements that
are to be included in a device. Present applications require the
development of complex systems to support novel functionality.
To cope with these difficulties, we need to change radically the
present design methodology to allow for extensive re-use, early
verification in the design cycle, pervasive use of software, and
architecture-level optimization. Platform-based design as
defined in [1], has these characteristics. We present the
application of this methodology to a complex industrial
application provided by Cypress Semiconductor. In this case
study, we focus on a particular aspect of this methodology that
eases considerably the verification process: successive
refinement. We compare this approach versus a parallel team of
designers who developed the IC using standard design
approaches.

1. Introduction
The design of complex ICs such as a microprocessor often starts
with a high-level description of the intended operation described
in C, C++, or, more recently with SystemC [7]. Verification is
performed using ad hoc simulators that typically run orders of
magnitude faster than RTL ones. Once the designers are
satisfied, the description of the design is translated manually in
an RTL description. This RTL description becomes the “golden
model” against which all implementations are compared. There
is no guarantee that the high-level description of the design is
functionally equivalent to the RTL description and there is no
method for back annotation of the original model for
modifications. As complexity increases, this traditional method
shows signs of severe stress since verification times are reaching
levels that are no longer affordable. Verification could be much
faster and accurate were higher levels of abstraction introduced.
Rigorous “refinement” into the lower levels would allow
verification performed at higher levels of abstraction to not be
repeated. Hence, design modifications would be reflected
through all layers of abstraction. Figure 1 demonstrates this
approach (b) vs. a traditional flow (a). To implement (b), we
need an intellectual framework, a design methodology, and the
supporting tools.

These three elements can be found in the Platform-based design
methodology as described in [1] and in the Metropolis design
environment [3]. The intellectual framework is provided by the
semantics of the language used to represent the design formally
so that its properties can be assessed. The semantics have been
designed to support a variety of heterogeneous models of

computation allowing the designer maximum flexibility. The
semantics have been designed to support both high-level
abstractions and implementations thus allowing heterogeneity in
the design both “horizontally” (it supports multiple models of
computation), and “vertically” (it supports different abstraction
layers).

Figure 1: Abstraction and Verification in Design Flows
An essential element of the methodology and of the formal
semantics is the notion of separation of concerns [5]. This is the
idea that computation, communication, and coordination should
be considered as separate elements of the design. By keeping
functionality and architecture separate, we can explore the design
space in the architectural and micro-architectural domain while
keeping the functionality intact. By separating communication
and computation, we favor design re-use and allow
composability, so that the properties of the design could be
assessed by looking at the properties of the elements and of their
communication mechanism in isolation. Constraints are also
important in design capture and should also be kept separate
from functionality. Constraints are expressions involving design
variables that cannot be evaluated early since they often relate to
physical properties of the implementation.

Platform-based design has a “top-down” component and a
“bottom-up” one. The bottom-up is related to the re-use of
existing modules and components. Of more interest to this paper,
is the top-down part, where we “refine” the original
specification in successive levels of abstraction (platforms).
Refinement can be defined precisely as commonly done in the
formal verification community [8]. The fundamental aspect of
this approach is that the behavior of the refined design is
“contained” in the behavior of the level of abstraction above. If
this refinement relation holds, properties of the design assessed
at the higher level are valid at the lower level and there is no
need to repeat verification of these properties at the lower level
thus saving on verification costs.

The goal of this paper is to validate, at least in part, the
methodology and the modeling strategy incorporated in
Metropolis on a complex industrial case study provided by

1530-1591/04 $20.00 (c) 2004 IEEE

Cypress Semiconductor. We present the process by which
Metropolis was used to go from a behavioral specification toward
a specific microarchitecture via a series of abstractions and
refinement verifications in the Successive Platform Refinement
Methodology. Finally, we compare some key data points with the
same design done in parallel in SystemC by another group as
described in [6].

This paper is organized as follows: Section 2 describes the
specifics of the case study problem. Section 3 describes design
methodology and background terminology. Section 4 describes
the development of the design and its platform abstractions.
Section 5 examines the implemented Metropolis approach.
Section 6 concludes with comments on the methodology.

2. Case Study
The goal of this exercise was to analyze the architecture of an
interface unit for a very high bandwidth Optical Internetworking
Forum (OIF) standard, e.g., System Packet Interface Level-4
(SPI-4), Level-5 (SPI-5) [4] with the following requirements:

• Interface must provide maximum bandwidth as required by
the specification.

• No loss of data with minimum backpressure; backpressure
reduces upstream traffic flow. Generate backpressure only if
downstream system requires it.

• Optimally sized standard embedded memory elements.
Optimal is a lower bound size with no packet loss.

• The interface supports multiple input channels.

• The insertion of idles (no activity) when packets are of
different size must be minimized.

For this project we defined a simple SPI-5 data generator model
that generates data every clock cycle for given number of
channels. Two types of parameters are considered: architecture
and application. Architecture parameters help to determine the
microarchitecture parameters for various application parameters.
We should choose a set of architecture parameters that match all
application parameters for a given specification.

2.1 Application Parameters
Number of Channels (NP) – Number of PHY units. A PHY unit
is a physical layer device that converts the serial optical signal to
an electrical signal.

Data Rate/Channel (BP) – What configuration of PHY units can
be used. The electrical signals from the PHY units are typically
in a byte or multiples of bytes format.

The application parameters define what different types of
PHY units our design could interface with. This is a tradeoff
between flexibility and clock frequency. A smaller Bp will
deliver data at a higher clock frequency.

2.2 Architecture Parameters
Our objective was to devise a robust architecture that will allow
our design to interface with different types of systems. To
evaluate the various architectures we defined the following two
parameters:

Number of channels/bus (NB) - Number of channels that can
simultaneously deliver data at the same time.

Bytes of data/bus (BB) - Number of bytes from each channel.

In the simplest case NP = NB and BP = BB, i.e., the system is
configured to accept and deliver the data when all channels are
equivalent. However, each channel can deliver data at a different
rate. The only characteristic known is that the aggregate data
from all the channels will be no more than 40 Gb/sec.

We support up to 16 channels. For 16 channels, each channel
must be 2.5 Gb/sec, to get an aggregate of 40 Gb/sec rate
(2.5*16). Alternatively, 4 channels can each be 10 Gb/sec.

The various parameters also control the internal bus width and
internal clock frequency:

Bus Width (BW) = NB * BB

NP*BP*CSYS/BW → (Ideally small as possible); where CSYS, is
the system clock frequency.

An interface unit that can interact with the PHY units and deliver
data to the downstream modules can now be designed. However,
the effect of our decisions at this level will impact the operation
and storage requirements of the design.

Example: Consider NB = 8 and BB = 4, then BW = 32 (Bytes).
Then when BP = 4 and NP = 16, then data sequence is produced
as shown in Table 1. For the first clock cycle, the 1st byte from
the selected channels appears on the bus. In the second clock, the
1st byte from the remaining channels is delivered.

Table 1: Example of SPI-5 Data Generation

Data Transfer Byte (Bp = 4)

1st SOP Byte 2nd 3rd 4th EOP Byte

Channels using Bus (NB = 8, Np = 16)

0-7 8-F 0-7 8-F 0-7 8-F 0-7 8-F

Clock Cycle

C=0 C=1 C=2 C=3 C=4 C=5 C=6 C=7

For this system configuration, it will take 8 clock cycles to send
256 bytes of data over an 8 channel wide bus (16 total channels)
with packets of 4 data units each. This is a simplified scenario.
A more constrained implementation has been described in [6].

 The purpose of this study was to use Metropolis to quickly
evaluate the impact of various parameters on the entire design
while minimizing the verification effort.

3. Design Methodology
3.1 Refinement Verification
The notion of refinement verification for this paper stems from
model checking work such as [8]. We define the problem as
follows:

A model is generically defined as an object that can generate a
set of finite sequences of behaviors, B. One of these possible
finite sequences, B, is considered a trace, a. A trace, a, is
considered a sequenced set of observable values for a finite

execution of the module. An observable value is produced by an
[Obs]ervable variable (an API of the model). A projection of a
trace, a[ObsY], is the trace produced on module Y for the
execution which created a over the observable variables of Y.
Given a model X and a model Y, X refines the model Y, denoted
X < Y if given a trace a of X then the projection a[ObsY] is a
trace of Y. The two modules X and Y are trace equivalent, X ≈
Y, if X < Y and Y < X. The answer to the refinement problem
(X, Y) is YES if X refines Y and otherwise NO.

This notation refers to the refinement verification procedure.

3.2 Design Flow
We wanted to (1) observe if Metropolis could effectively aid in
the process of microarchitecture design and verification as
compared to the other model and (2) derive the architecture and
application parameters described in Section 2. Our design flow
should simplify the microarchitecture development and help to
determine which portions of the design need to be further refined
with formal analysis methods.

The notion of successive platform refinement was essential in our
flow. Each Metropolis model represented a specific platform
instance. Each subsequent platformi+1, kept a reusable abstract
specification with correct behavior and equally importantly, each
successive platform held the refinement relationship required
with its parent platform. Theoretically any microarchitecture is a
candidate for refinement. In our case, we require the presence of
observable communication involving computation elements.

Platform abstraction was driven by the separation of concerns as
mentioned. Beginning with the initial specification each
subsequent platform would address previous platform constraints
and application and architecture parameters. At each step, we
performed refinement verification. If the refinement relationship
held, we would collect a set of data points concerning various
metrics relevant to the design. Figure 2 illustrates our design
flow.

Figure 2: Successive Platform Refinement Methodology
This methodology produced several different platforms, which
exposed different aspects of the application. We referred to these
platforms sequentially; they drove the micro-architecture design
by revealing designs that did not meet the constraints implied by
the application parameters. Simulation performance analysis
drove refinement to the next platform.

4. Platform Development
The goal of platform development is to address and transform
some of constraints of the previous platform and develop the
architecture and application parameters outlined previously.
This creates a hierarchy of platforms with their corresponding
successors and parents. Platforms naturally address changes to
computation, communication, or coordination structure. This was
natural for this application but can be more ambiguous for other
applications. Metropolis semantics make this relatively easy.

4.1 Platform 0
Platform 0 represents the minimally constrained functionality of
the initial specification. This provides the initial platform in
Figure 3. This is a buffered producer/consumer where there is a
data source (producer), some internal storage (buffer) and a
packet processor (consumer). There is communication (A, B) but
no notion of what architectural form they take (i.e. bus, shared
memory, etc). There is only notion of direction (read or write)
and that A and B can only be accessed by one element per unit
time. The initial system has only “constraint 0”:

Constraint 0 - Only complete packets can be delivered to the
packet processors. Partial packets have to remain in the internal
storage or dropped based on other system requirements.

Inherent constraints are reflected by the application topology:

MaxRateProduction(DS) � MinRateConsumption(IS) (1)

MaxCapacity(IS) � MaxProduction(DS) -
MinConsumption(PP) at any instant t (2)

DataFormat(DS) = DataFormat(IS) = DataFormat(PP) (3)
DS = Data Source; IS = Internal Storage; PP = Packet Processor

Equations (1) and (2) ensure that this is a loss less
communication mechanism while (3) captures the fact that these
are primitive communication mechanisms in which data is
merely transferred not transformed. The next platform should
look to transform some of these constraints.

Figure 3: Platform Development

4.2 Platform 1
The internal storage for each channel depends on the data rate of
the channel. A simple implementation due to this constraint can
be stated as a set of refined constraints on the internal storage.

Constraint 1 - BP is an application parameter; hence the
internal memory must allow storage space for each channel to be
dynamically adjusted. Aggregate data rate of 40Gb/sec must be
preserved. The number of divisions (NM) must equal the number
of PHY units, i.e., NM = NP

With the aggregate data rate and different data rate per PHY
units, application parameters were combined as in Table 2.

Table 2: Application Parameters and Platform 1

Data Rate/Phy NP
40Gb/sec 1

10Gb/sec 4

2.5Gb/sec 16

1.25Gb/sec 64

625Mb/sec 256

As with the previous platform there are still constraints but now
they generate a relationship between platforms. These can be
derived from topology (5) as before or Metropolis semantics (4).

Coordination (Platform1) > Coordination (Platform 0) (4)

Processes (Platform 1) = Processes (Platform 0) (5)
This relation indicates that platform 1 will require more explicit
coordination with equal processes. This will restrict behaviors,
which hold a refinement relationship.

4.3 Platform 2 and Platform 3
Analysis with the above set of constraints imposes strict timing
based on the clock frequency. For a large memory this will be a
difficult constraint to meet. The constraint of platform 1 needs to
be further refined or implemented differently. As the constraint
refinement proceeds, implementation related considerations
dominate. The refined constraint can now be stated as:

Constraint 2 -The data rate and number of channel based
internal storage should have pipelined writes.

The implementation with this constraint leads to:

- Using a mux-based logic organization as shown in platform 3.
We chose not to implement this scheme due to lack of formal
refinement relationship.

- Using an external buffer to intermediately store incoming
packets (read transaction) and then pass them to the internal
storage (write transaction), as shown in platform 2.

The coordination introduced in platform 1 manifests itself as
control logic as shown platform 3. This makes the coordination
explicit but does not ensure refinement. We need communication
refinement and to revert to a previous communication refinement
of the IS as in Platform 2.

As Figure 3 shows, if communication (A) is actually refined into
buffers as in platform 2 then there is no need for platform 3. As
hoped, this will prevent the continued growth of the coordination
overhead introduced in platform 1 and the refinement of the IS

into internal memory does not change the platform properties in
platform 0. The design will now proceed from platform 2.

4.4 Platform 2.1
Our analysis indicated that during peak times the read
transactions dominated the system. Therefore:

Constraint 3 - The pipelined write transaction should be
independent to the read transaction.

Platform 2.1 recognizes that coordination must be added in order
to manage buffers and for constraint 3. This will require two
units of control introducing added coordination. This
coordination will further constrain the behavior into the
refinement relationship. Figure 3 shows this refinement where
the two additional process objects added in order to provide
buffer management.

At this point, few architecture parameters are changing, but the
refinement is proceeding more closely to a final implementation.

4.5 Platform 2.2
The “final” constraint on the system was added to have
independently operating PHY units. This is important because
we wanted to ensure that there were no assumptions built into
our data generation and internal bus organization. The final
constraint can be stated as:

Constraint 4 - Packet generation from various channels should
be independent activities.

This refinement is performed on the data source and implements
the application parameters, that is:

Number of DS = NP (6)

Size of DS = BP (7)

This platform shows a final refinement of the microarchitecture.
This computation refinement requires a coordination refinement
in order to process this data properly.

Notice that the DS block now is made up of multiple blocks. This
requires a similar transformation for the FIFO Control (FC) and
the memory control (MC). This final refinement will be by
design a refinement of all previous platforms before it.

5. Metropolis Investigation

5.1 Metropolis Overview
Metropolis is a design environment based on the principles of
platform based design [1]. Its core is the Metropolis Meta Model
(MMM). This meta-model provides, via its components,
processes, media, and schedulers (quantity managers), strict
separation of computation, communication, and coordination
concerns respectively. While enforcing this separation, it does
not enforce any one particular model of computation [2]. Since it
adheres to a precise semantic, the MMM supports a number of
backends that provide services such as simulation, verification,
and synthesis. For more information we refer the reader to [3].

5.2 Metropolis Models
Taking a functional specification and expressing it in Metropolis
requires a decomposition into processes, media, and schedulers.
Metropolis models were derived to represent platforms 2, 2.1

Simulations indicated that for
large number of channels the
current bus architecture would
not be sufficient.

We discussed with other groups
and decided to restrict NP to 1, 4
and 16.

and 2.2. Figure 4 shows a diagram of the “final” model, platform
2.2. Metropolis processes correspond to computation (DS, FC,
MC) in platform 2.2 while Metropolis media reflect memory
elements (buffers). Implicit in 2.2 is the FIFO Scheduler process.

Figure 4: Metropolis Model of Platform 2.2
Processes (squares) and media (circles) define observability. The
FIFO Scheduler is examined in section 5.4.

5.3 Refinement Concept in Metropolis
Due to the semantics of Metropolis, processes must communicate
via media. This leads to a natural definition of observable
behavior of processes in terms of their function calls to media.
Recall that observable traces were a key part of our refinement
definition (section 3.1).

Definition: Metropolis Observable Behavior – the ordered set of
function calls to media that a process may execute.

This Observable Behavior can be captured for the processes in
the model via the creation of a control flow graph (CFG). This is
a tuple of <Q, q0, X, op, →>. Q is a finite set of control
locations, q0 is an initial location, X is a finite set of variables,
and Op are operations which denote (1) function calls to media
(2) Boolean predicates. An edge (q, Op, q’) is a member of a
finite set of edges and the transition relationship→, is defined as
(Q x Op x Q). An edge makes a transition based on the Op
present, q→Op q’.

The creation of a CFG for single threaded processes will be used
in our discussion to check for refinement relationships between
the various abstraction levels.

5.4 Metro Platform Refinement Verification
After the creation a subsequent platformi+1, the second step to
continue our development process was refinement verification.
Our procedure, in keeping with our successive platform
refinement methodology, was concurrent with each subsequent
platform development. We would consider this Platform i+1
only if the answer to the question, (Platform i+1, Platform i)
was YES.
Refinement verification required the creation of a control flow
graph (CFG) for both the abstract and the refined model to
capture the behaviors, B, of each model. The CFG creation can
be done via a backend service (Section 5.1) in Metropolis that
extracts this information automatically.

A trace, a, is determined by the traversal the CFG. This
represents execution of the model. Once the set of traces, B, for
each model is determined, the refinement verification stage is
simply ensuring that the behavior of the refined model is a subset
of the abstract behavior.

Refinement Verification via CFG Creation - For each process,
P, in the Model, M (1) Create a CFG with the Metropolis
Backend. (2) Identify a cycle in the CFG, this is a trace a. (2)
Add, a, to the set of behaviors, B. (3) Continue until all cycles
are identified. (4) Compare the behaviors Bref to the abstract
behavior Bab. (5) If Bref ⊆ Bab return YES; Else return NO.

Figure 5: CFGs for Metropolis Processes
Figure 5 shows the control flow graphs for two particular
processes in platform 2.1 (ab) and 2.2 (ref). This is just one
example of the 5 processes shown in figure 4. The circles are the
control locations, Q. Control location 1 is the initial location, q0.
The operations, Op, on each transition,→, are specific function
calls used in the model (denoted by “()”) or Boolean predicates.
The cycles in these represent possible execution traces of the
model and are show in Table 3.

Table 3: Traces for FIFO Scheduler Process, Bref and Bab
Trace FIFO Scheduler Process Traces (*function calls abbreviated)

T1 Terminated()

T2 Terminated() wRnd()*

T3 Terminated() wRnd()* wRnd()*

T4 Terminated() wRnd()* Tnated()* qData ()*ω

T4 cont putPolicy() PR1S()*

Bref = {T1, T3, T4} ⊆ Bab = {T1, T2, T3, T4} � Refinement!

Naturally since these are cyclic graphs there must be some notion
that each cycle may be subsequently followed by any other cycle
in the set infinitely often. We will use ω for this.

Therefore, the abstract FIFO scheduler is {T1, T2, T3, T4}ωωωω and
the refinement is {T1, T3, T4}ωωωω. Notice that the FIFO scheduler
trace has a function call, qData(), which also is denoted with a ω.
This is due to the loop shown in the graph containing finitely
many calls to this function. This shows the nested use of ω.

The creation of the CFG is automatic and the evaluation of the
traces via graph traversal is manual but will be automated in the

future. This demonstrates refinement verification in the design
flow prior to creating another platform and gathering data.

5.5 Design Data Points
There were two primary concerns of this investigation. (1) How
did this method compare to the concurrent investigation in [6]
(see Table 4). (2) What information could we learn regarding the
application and architecture parameters?

Table 4: Design Effort Comparison

Development SystemC [6] Metropolis
Man Weeks 15 4

Code Size (~lines) 5200 1700

Design Aids Algorithm failure and
system throughput

Evaluate alternate
architectures quickly

Primary Effort Test environment
development

Modeling and Model
refinement

Strengths Mature, commercial
environment

Platform Based Design

Models of
Computation
Flexibility

The SystemC modeling and testing environment provides a good
mechanism to measure architecture metrics. However, it still
requires a considerable effort, because the testing and modeling
environment have to be built together. Evaluation of alternate
architectures is also a considerable effort with the SystemC-
based method. However, once an architecture platform has been
obtained, reuse of the test environment to measure throughput
and find algorithmic bugs is simplified.

The Metropolis environment not only provides the same
capability as [6]’s design specific modeling and test environment,
but it also provides a means to evaluate alternate architectures
quickly. We estimate that, assuming knowledge of Metropolis
design, this procedure is roughly a 5% increase in effort (design
time and tool overhead) compared to “normal” Metropolis use.

FIFO Occupancy in Platforms 2.1 (left) and 2.2 (right)

0
10
20
30
40
50
60
70
80
90

NB = 1 NB = 4 NB = 8 NB = 1 NB = 4 NB = 8

Numbers of Channels/Bus (NB)

B
yt

es

Bp = 1

Bp = 2

Bp = 3

Bp = 4

Figure 6: FIFO Occupancy Data
Finally, Figure 6, a sample of the data analysis possible in our
design, shows FIFO occupancy between subsequent platforms in
combination with changes in both architecture (NB) and
application (BP) parameters. Notice that the FIFO occupancy in
the refined model is bounded by the worst case in the abstract

model. This type of data will drive the platform development and
demonstrates design exploration.

6. Conclusions
We feel that the Metropolis environment was used successfully
to demonstrate microarchitecture development via a successive
platform refinement methodology. It provided not only a reusable
model at many different abstractions but also supplied an
environment to continue the refinement process. Each platform
gave a unique perspective of the application and architecture
parameters and produced a new design space given a different
focus on a refinement property.

Platform 2.2 could be further refined towards implementation or
we could explore the possibility of defining a higher platform
than platform 0 in a quest for an abstraction that will ease the
process of defining design variants.

The design was functionally verified at each refinement step,
thus providing increased confidence in its correctness.

Metropolis is an integrated framework where the entire design
could be carried out. In addition, given its architecture and the
structure of the meta-model, the design can be exported to other
design environments, especially for implementation, providing
flexibility that is of high value for industrial designers.

Acknowledgements
Thanks to entire Metropolis design team in particular Yoshi
Watanabe, Guang Yang, Felice Balarin, Alessando Pinto, John
Moondanos, Harry Hsieh, and Cypress’ Sri Purisai.

References
[1] A.Sangiovanni-Vincentelli, “Defining Platform Based Design”, EE

Design, March 5th, 2002.

[2] E.Lee, A.Sangiovanni-Vincentelli, “A Framework for Comparing
Models of Computation”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(12):1217-29, Dec 1998.

[3] F.Balarin, Y.Watanabe, H.Hsieh, L.Lavagno, C.Passerone,
A.Sangiovanni-Vincentelli, “Metropolis: An Integrated Electronic
System Design Environment”, IEEE Computer, April 2003, p 45-52.

[4] K. Gass, and R. Tuck, “System Packet Interface Level 5”, Optical
Internetworking Forum Contribution – OIF 2001.134, November
2001.

[5] K.Keutzer, S.Malik, A.R. Newton, J.Rabaey, A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns and
Platform Based Design”, IEEE Transactions on Computer Aided
Design, December 2000.

[6] S.Rekhi, R.Purasai, “The Next Level of Abstraction: Evolution in the
Life of an ASIC Design Engineer”, Synopsys Users Group (SNUG),
San Jose, 2003.

[7] T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with
SystemC”, Kluwer Academic Publishers, May 2002.

[8] T. Henzinger, S. Qadeer, S.K. Rajamani, "You Assume, We
Guarantee: Methodology and Case Studies", 10th International
Conference on Computer Aided Verification (CAV), Lecture Notes in
Computer Science 1427, Springer-Verlag, 1998, p.440-451.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

