
Time-Energy Design Space Exploration for Multi-Layer Memory Architectures

Radoslaw Szymanek
Dept. of Computer Science

Lund University
221 00 Lund, Sweden

radsz@cs.lth.se

Francky Catthoor
IMEC

Belgium
Also prof. at K.U.Leuven

catthoor@imec.be

Krzysztof Kuchcinski
Dept. of Computer Science

Lund University
221 00 Lund, Sweden

kris@cs.lth.se

Abstract

This paper presents an exploration algorithm which ex-
amines execution time and energy consumption of a given
application, while considering a parameterized mem-
ory architecture. The input to our algorithm is an appli-
cation given as an annotated task graph and a specifi-
cation of a multi-layer memory architecture. The algo-
rithm produces Pareto trade-off points representing dif-
ferent multi-objective execution options for the whole
application. Different metrics are used to estimate pa-
rameters for application-level Pareto points obtained
by merging all Pareto diagrams of the tasks compos-
ing the application. We estimate application execu-
tion time although the final scheduling is not yet known.
The algorithm makes it possible to trade off the qual-
ity of the results and its runtime depending on the used
metrics and the number of levels in the hierarchical com-
position of the tasks’ Pareto points. We have evaluated
our algorithm on a medical image processing applica-
tion and randomly generated task graphs. We have shown
that our algorithm can explore huge design space and ob-
tain (near) optimal results in terms of Pareto diagram
quality.

1. Introduction

Many memory-centric applications, such as multimedia
and image processing applications, need to process huge
amount of data. These data are stored in system memory,
which has to provide bandwidth for processing units. In
this paper, we assume that the processor architecture has
enough processing power and we concentrate instead on the
memory architecture and data access methods. It is now
well-known that the memory organization and data stor-
age/access scheme has become a crucial part of many em-
bedded systems [2, 6].

Several major memory constraints need to be satisfied
during application execution. The first type of constraints

which need to be considered are memory size constraints.
Bandwidth constraints are the second important class of
memory constraints. In order to achieve higher bandwidth,
memories, such as SDRAM’s, with sophisticated access
schemas are used. These schemas often impose bandwidth
related constraints on data placement and memory access
patterns. Finally, modern memories come with different low
energy operation modes [11] to save energy. Therefore en-
ergy considerations can yield their own data placement and
access constraints.

It takes as input timing and energy constraints, which are
obtained from the application tasks and memory architec-
ture specification, and possibly other designer constraints.
The exploration finds a set of Pareto solutions in a two-
dimensional space, time and energy, with memory mapping
and access schedule constraints. These solutions can later
be used by a scheduler to optimally adapt the application’s
execution to the current state of the system.

This paper is organized as follows. Section 2 outlines re-
lated work. In section 3, we present basis and assumptions
of our work. Section 4 describes our algorithm for time-
energy design space exploration. Section 5 presents experi-
mental results. Finally, section 6 concludes the paper.

2. Related Work

Our methodology requires to have Pareto points for ev-
ery individual task. We assume that the task graph for the
application is known. Each Pareto point specifies different
execution mode of the task. Much research, presented in
survey [13], has concentrated on design space exploration
for relatively small pieces of code (tasks). These works of-
ten optimize different parameters, such as execution time,
energy consumption, and bandwidth, taking into account ar-
chitecture constraints. We make a hierarchical composition
of tasks’ Pareto diagrams and obtain a single Pareto diagram
for the whole application. A similar method was proposed
in [1], but they can use monotonic quality evaluation func-
tions as well as independent and strongly correlated metrics

1530-1591/04 $20.00 (c) 2004 IEEE

for their problem. Our problem does not have these features
and we have to use composition heuristics.

The initial specification often does not fully specify the
order how the data should be accessed. The remaining ac-
cess scheduling freedom can be used to find the cheapest
memory architectures in terms of bandwidth and size re-
quirements. This issue was addressed in [6]. If the access
scheduling is done first then the problem of data assignment
is restricted so much that little optimization of memory ar-
chitecture is possible. The restricted data assignment can be
represented as a minimum cost network flow problem and
solved optimally, as shown in [8]. The importance of the
scheduling for the quality of data assignment was also indi-
cated in [15]. In our work, during time-energy exploration,
we specify the scheduling only partially to preserve good
optimization possibilities during the placement exploration.

The importance of a systematic approach to explore and
tradeoff different Pareto solutions was indicated in [5]. The
authors trade energy and time budget of application tasks to
achieve good solutions for the application itself. We have
explicitly added to the Pareto points additional constraints
for bandwidth and data placement. This addition helps to
address memories with high latencies.

Synchronous DRAM adds another dimension to mem-
ory access patterns. The memory is divided into multiple
banks which can be accessed through page buffers. Multiple
pages can be active at the same time providing possibility
to access different data without page swapping [14]. Mini-
mization of page misses by ordering accesses while respect-
ing data dependencies was presented in [12]. This problem
was solved by forbidding sharing of the same bank by data
with overlapping lifetimes. In our approach, data can share a
bank if they have overlapping lifetimes but not overlapping
accesses. We also allow data to share bandwidth if they are
using different page buffers which makes it possible to use
interleaved burst memory access. The problem of model-
ing (interleaved) burst read and writes modes was also pre-
sented in [9].

Data assignment is important since it influences how
many parallel accesses to different memories can be per-
formed. Parallel accesses to many memories is cheaper than
parallel accesses to one large memory, at least at the SRAM
layer [16]. This problem was modeled as graph coloring
in [3]. In our work, we take a step further. We do not con-
sider single read or write accesses and their parallelism but
we think in terms of the bandwidth we have to sustain to sat-
isfy time and energy constraints.

Finally, some research has concentrated on reducing the
energy consumption at the level of the operating system [7].
Unfortunately, this approach can be hindered if the applica-
tion does not perform a good data assignment. It will be
much harder to use the low power modes of memory com-
ponents if the application scatters its data too much, as can

LowPassFilterimage3_1 image3_2 image3_3

LowPassKernel

HorizontalSmoothing VerticalSmoothing

Initialize_1

image2_1 image2_3image2_2

Threshold_1

image3_1 image3_2 image3_3

HorizontalKernel
VerticalKernel

Initialize_2

imageIn_1 imageIn_2 imageIn_3

Threshold_2 Threshold_3

Figure 1. Medical application example

happen when only bandwidth optimization takes place. In
our work, each task execution option explicitly states both
placement and bandwidth constraints, therefore we make
the application execution more friendly to such approaches.

3. Basis and assumptions

The data of embedded applications usually differ in size
and access patterns. The access pattern is defined by the fre-
quency the data is accessed and duration of burst access.
Data heterogeneity suggests usage of heterogeneous mem-
ory architecture to achieve better overall performance of an
embedded system.

To be able to capture all memory architecture and appli-
cation constraints in a single framework and make consis-
tent decisions we use a Constraint Programming approach
[10]. An important entity in this approach is a constraint
store which checks and enforces consistency of constraints.
All characteristics of the system are represented using fi-
nite domain variables and constraints. For example, appli-
cation energy consumption is represented as a finite domain
variable. This variable has its value at the beginning within
an initial range (domain). Each time the decision on how
to execute a task is made, the constraint store will call con-
sistency methods which will narrow the domain of the en-
ergy consumption variable. During the search for applica-
tion Pareto points, the constraint store helps us to indicate
non-valid solutions which are immediately recognized since
some constraints are not satisfied.

3.1. Application Model

The application is modeled as a task graph. The rectan-
gles represent tasks and ellipses represent data which are
used by tasks. A realistic application example, which needs
to be assigned and scheduled, is depicted in Figure 1. This
application consists of 8 tasks and 21 image variables (sin-
gle assignment). Figure 1 shows less variables since some
are already in-placed, making them multiple assignment
variables. The arcs represent data and control precedence

Point Execution Energy [pJ] Bandwidth for Kernel Conflict
Time [µs] consumption [# slots] Graph

1 11.34 395 2 CG1
2 11.83 223 1 CG1
3 10.86 380 2 CG2
4 11.34 213 1 CG2
5 13.34 457 2 CG3
6 13.82 260 1 CG3

Table 1. Pareto points for task example

constraints. The control precedence relation, represented by
arc with white edge, imposes order between tasks which
operate on a multiple assignment variable. We have repre-
sented some variables, such as image3 1 (i31), by two dif-
ferent ellipses to increase picture readability.

Consider a task depicted in Algorithm 1, which is a part
of the bigger task called LowPassFilter as depicted by Fig-
ure 1. This task has seven different data members. Consider
a memory architecture which consists of three memories or-
ganized in two layers. The first layer contains two regis-
ter files. The second layer contains a shared multi-banked
SDRAM memory. Data are preassigned to a memory layer
since it is known beforehand what is the best match for a
given type of data. Mature solutions exist for partitioning
of data into multiple memory layers (e.g. [4] where energy
is incorporated in the cost model). The size of data must
be known in advance. The data placement within a memory
layer is modeled by memory and bank variable. In our ex-
ample, the biggest data Kernel is pre-assigned to SDRAM
and all other variables are preassigned to the memory layer
with register files.

When an assignment of the data to different memory lay-
ers is done, the analysis of the task execution possibilities is
performed. This analysis will yield Pareto points. Each row
in Table 1 represents Pareto point for the normalization task.
Each point, which represents task execution option, will
specify execution time, energy consumption, required band-
width, and data placement. Moreover access patterns are al-
ready fixed for each execution option. This helps to limit the
application scheduling freedom and complexity but keeps
optimization possibility since we use Pareto points for tasks
execution.

The bandwidth required by a task to access a given data
is represented by the number of time slots in the time win-
dow of the memory used to store this data (see column 4 in
Table 1). Each time slot represents a “portion of the band-
width” which can be accessed periodically. In this way, a
task obtains sustainable bandwidth to access a specific data.
The data placement is represented by a conflict graph where

Algorithm 1 Normalization of the kernel - task example
f actor = 0,r = 0,c = 0;
for all r < K do

for all c < K do
f actor+ = abs((kernel + r ∗K)[c])

Memory conflict edge Memory compatibility edge

c

k

factor

r temp

c

k

factor

r temp

c

k temp

factor

r

a) CG1 b) CG2 c) CG3

kernel* kernel*

kernel*

Figure 2. Conflict Graphs for task example

vertexes specify data and edges specify different kind of re-
lations (constraints), as presented in Figure 2. We consider
memory conflict edge, page conflict edge, memory compat-
ibility edge, and bank compatibility edge. In Figure 2 only
memory conflict and memory compatibility edges for regis-
ter layer variables are depicted. The page conflict edge gives
a possibility to constrain data so they are loaded in differ-
ent pages thus giving a chance for concurrent accesses. The
bank compatibility edge enforces that two data are stored in
the same bank to enable page sharing.

In this particular example, after manual analysis, six dif-
ferent Pareto-optimal execution options are found. Option 2
in comparison to option 1 requires less bandwidth to ac-
cess Kernel variable. Therefore it allows another parallel
interleaved burst. It has lower energy consumption since a
chance is present that other tasks will access memory in par-
allel. Therefore the overhead of memory static energy can
be shared among tasks. Execution option 4 gives faster ex-
ecution and lower energy than option 2 but it differs in con-
straints on data placement. Options 5 and 6 differ from the
others since they enforce storage of all data from the regis-
ter layer in one register file.

Our goal is to find Pareto points for the task graph of the
whole application, represented as black circles in the right
part of Figure 3. Each point specifies each task execution
choice, and data assignment/access constraints.

3.2. Memory Model

A parameterized memory architecture with suffi-
cient heterogeneity and freedom for assignment is assumed
to be predefined. Our memory model reflects impor-
tant constraints which influence the usage of memories.
Three classes of constraints are associated with the mem-
ory structure namely size, page, and bandwidth constraints.
A memory model for a memory architecture, which is spec-
ified in subsection 3.1, is depicted in Figure 4. Each mem-

time

en
er

gy

time

en
er

gy

TN-1

TN

time

en
er

gy

time

en
er

gy

T1

T2 App

time

en
er

gy

Figure 3. Application Pareto Diagram

R
0

R
1

R
2

R
3

R
4

R
5B0 B1

P0 P1

S1 S2 S3 S4

U = 2

P = 2

S = 4

t

a) dual SDRAM memory model

S = 2

P = NA

b) register file - dual port

S1 S2 t

U = 6

Figure 4. Memory Model

ory can be divided into U units. In our example, U = 2 for
SDRAM memory. At any time of the application execu-
tion, the sum of the data stored in each unit cannot exceed
its size.

For some memories, e.g. SDRAMs, a fixed number of
page buffers is used to access data. The data itself has to be
first in the page buffer to be accessible. In our model, we al-
low those values of U and P that U mod P = 0. We assume
that the each page can be loaded from U div P consecu-
tive banks. The page buffer is reserved by a task during its
execution so other tasks do not interfere.

Each memory has fixed maximum bandwidth. The time
axis is divided into an infinite number of time windows,
consisting of a given number of time slots, denoted by S.
Each slot of the time window is assigned an equal portion
of the bandwidth. For proper execution, each task may re-
quire different bandwidth to access a specific data. There-
fore one or more time slots within time window will be re-
served by a task during its execution. Our requirement on
memory technology makes it possible to model memories,
such as SDRAM, DRAM, on-chip, which have good en-
ergy estimates based on required bandwidth and possibility
to divide bandwidth into smaller portions. Each portion can
be used to access different data under well specified con-
straints.

4. Application Pareto Points Creation

The number of possible ways of executing an application
is equal to the product of number of possible ways to exe-
cute tasks. This number grows exponentially with respect

Algorithm 2 Branch-and-bound search algorithm
exhaustiveComposition(S , T , R , S P)
{S denotes constraint store with input constraints}
if T 6= /0 then

nextTask ∈ T
for all Pareto Point P of nextTask do

Add constraints to S to enforce P
if consistent(S) then

exhaustiveComposition (S , T \nextTask, R ∪P , S P)
Remove constraints which enforced P from S

else
Add current solution R to S P
Add constraint to S so all following solutions will be better

to the number of tasks. Algorithm 2 performs branch and
bound search to find Pareto points among all possible com-
positions of task executions. Pareto points are depicted as
black circles in the right part of Figure 3.

This algorithm selects task by task recursively and as-
signs it to execute in one of possible ways. Each time the
decision on how to execute a task is made, additional con-
straints are added to store S and an evaluation of current
partial solution follows. If constraint store S is not consis-
tent then either a resource violation has occurred or the cur-
rent partial solution has no chance to become a Pareto solu-
tion. In this case, another execution point for current and/or
previous tasks is chosen. If the algorithm succeeds in as-
signing execution option to all tasks then new Pareto solu-
tion was found.

The branch and bound algorithm works well for small
examples, but it has excessively long runtime for larger
problems since it has exponential complexity. Therefore we
have also developed a heuristic, presented in algorithm 3,
to solve larger problems in reasonable time. In algorithm 3,
the first while loop uses branch and bound search to com-
pute optimal Pareto points for small task subsets. The merge
part of the algorithm, represented by the second while loop,
recursively calls the exhaustive search but for two closest
neighbors task subsets only. Each time the inner while loop
finishes, a Pareto diagrams for the next level are created.
Eventually, the heuristic obtains one Pareto diagram on the
highest level as a result of merging smaller Pareto diagrams.

The proposed heuristic needs the following number of
constraint store consistency techniques executions as pre-
sented below

O(
n
s
· plog2(n

s) · k2 +
n
s
· ks) (1)

where n is the number of tasks, k is the number of execu-
tion modes, s is the task cluster size and p is the problem
dependent constant. In general, a larger constant p means
that more Pareto points exist in the intermediate Pareto dia-
grams. In the worst case, the number of Pareto points in the
combined diagram is in the order of O(kn), but typically,
like in the medical image processing example, the number
of Pareto points for the application is in the order of O(kn).

Algorithm 3 The Pareto points composition heuristic
heuristicCombinePD(Size,C)
{C denotes constraint store with input constraints}
i = 0 {Compose Pareto diagrams for task sets of size (Size) }
while i < (noTasks/Size)) do

exhaustiveComposition (C , Ti∗Size to T(i+1)∗Size, /0, S P)
add constraints to C to enforce solutions only from S P , i++

{Recursively join two previously obtained Pareto diagrams}
while Size < noTasks do

i = 0,Size = Size∗2
while i < (noTasks/Size)) do

exhaustiveComposition (C , Ti∗Size to T(i+1)∗Size, /0, S P)
update constraints to enforce solutions only from S P , i++

Return constraints to enforce application Pareto points from S P

task 1 2 3 4
initialize 640 µs 1250 µs 1860 µs 1880 µs
threshold 1080 nJ 650 nJ 560 nJ 550 nJ
smoothing 14680 µs 16500 µs 20120 µs 27400 µs

lowpassfilter 16740 nJ 15250 nJ 13800 nJ 11770 nJ

Table 2. Pareto points for medical appl. tasks

The creation of time-energy Pareto points for an appli-
cation requires a multi-objective cost function. The energy
requirement for an application is defined as a sum of the en-
ergy requirements for all tasks. We can estimate how much
energy application will require since we have energy esti-
mates for each task execution option. On the other hand,
determining how much time application requires is harder
since no assignment or scheduling decisions are made at
this point. Therefore, we decided to use an estimation func-
tion presented below

time = w1 · ∑
j∈T

time j +w2 ·max(min
j∈T

ECTj) (2)

where ECTj denotes earliest completion time of task j and
time j denotes the execution time of task j. If architecture
has a large amount of parallelism available then the second
measure, called ECT here, is a much better criterion to as-
sess the execution time of application. On the other hand if
most work is done sequentially then the sum of task execu-
tion times, called SUM here, is a much better measure for
the overall time of an application execution time.

5. Experimental Results

Each task of the medical image processing application,
which was depicted in Figure 1, has been analyzed and dif-
ferent code transformation techniques, such as loop split-
ting and loop unrolling, are applied to adapt the task to
the memory structure. Different task execution alternatives
are evaluated yielding Pareto points for each task as pre-
sented in Table 2. The energy values for each task are com-
puted using the power model for DRAM memories from
Micron [11]. These Pareto points have different data place-
ment constraints, e.g. at the SDRAM layer. Despite the fact
that data assignment is not performed it is still possible to
check consistency constraints deduced from conflict graphs.
These checks may indicate non satisfiable solutions.

Some tasks, such as initialize and threshold, perform the
same amount of accesses and since they can be scheduled
in the same amount of cycles, the energy model gives the
same amount of consumed energy.

The results of design space exploration for the medical
application is presented in Table 3. Different time metrics
are applied to estimate the execution time of an application.
In case of a two-dimensional design space exploration we
have used different values for weights w1 and w2 in (2). It

Exp Size Time # Cost # Pareto Heuristic
(w1, w2) Tasks [%] Points Runtime

1 4 (0,1) 8 100.00 50 5 s
2 8 (0,1) 8 100.00 50 200 s
3 4 (1,0) 8 100.00 161 30 s
4 8 (1,0) 8 100.00 161 130 s
5 4 (1,1) 8 100.06 190 60 s
6 8 (1,1) 8 100.00 219 200 s
7 4 3D 8 100.00 384 150 s
8 8 3D 8 100.00 384 520 s
9 2 (0,1) 16 103.00 48 33 s

10 4 (0,1) 16 103.00 68 50 s
11 8 (0,1) 16 100.00 61 2 min
12 2 (1,0) 16 100.00 427 11 min
13 4 (1,0) 16 100.00 427 18 min
14 8 (1,0) 16 100.00 427 22 min
15 2 (1,1) 16 100.08 590 66 min
16 4 (1,1) 16 100.06 455 29 min
17 8 (1,1) 16 100.00 536 120 min
18 2 3D 16 100.00 2316 23 hours

Table 3. Results for medical application

is also possible to perform 3-dimensional space exploration
where energy, ECT, and SUM are the cost functions. ECT
without any index denotes the maximum value of ECTj for
any task j. Figure 5 depicts the result of such an exploration
for the pipelined version of the medical application.

The cost of the created 2D Pareto diagram is computed
by the formula:

cost =
tn

∑
t0

energy(ti−1) · (ti − ti−1) (3)

where smaller cost represents a better solution, energy(tx)
gives the required energy for execution time tx, t0 (tn) de-
notes the fastest (slowest) application execution mode. Ex-
periments 2,4,6, and 8 show optimal solutions since we have
used a size equal to the number of tasks.

We have normalized the cost of the solutions, where
100% denotes the optimal solution in case of experiments
1 to 8, and in other cases 100% denotes the best obtained
results. We have used a two-dimensional projection, energy
and sum dimension, for experiments 7,8, and 18 to be able
to compute the cost for them. Experiments 9 to 18 present
results for the pipelined version, where two instances of the

5500 6000 6500 7000 7500 8000

12000
13000

14000
15000

16000
17000

18000
19000

20000

7500

8000

8500

9000

9500

10000

10500

11000

11500

ECT

SUM

Energy

Figure 5. 3D Pareto diagram

Exp Size Task # known sub- # Pareto Heuristic
Order Tasks optimal Points Runtime

1 2 t 32 1 310 10 min
2 4 t 32 1 310 25 min
3 8 t 32 0 310 2 hours
4 2 r 32 0 310 10 min
5 4 r 32 0 310 25 min
6 8 r 32 0 310 2 hours

Table 4. Results for rtg - SUM

medical application are executed concurrently with 20 ms
delay. For this case, it is not possible to prove, in reason-
able time, that results are optimal. However, increasing the
scope of the checked design space gives only minor gains.
So this indicates that our heuristic can obtain very good re-
sults even when the design space is not fully explored.

We have also evaluated our approach on larger randomly
generated task graphs (rtg). Each task has between four and
six different execution options. In this case task graphs are
more diverse and irregular than in the medical application
case. Each experimental result is computed as an average
value of results obtained for 20 task graphs.

The experimental results for random task graphs and
time metric SUM are presented in Table 4. The heuristic can
be influenced by two parameters: the group size and task or-
der. Two orders of tasks are considered. They are used to
group tasks, where t stands for the topological order and r
stands for random order. It has been possible to find one bet-
ter solution, for 1 out of 20 task graphs, by changing the task
order or increasing the size parameter. In this case, we ob-
tained marginal improvement of less than 1% since only one
Pareto point is slightly improved. The experiments are run
on Sun Sparc with a 300 MHz processor.

The results for random task graphs (rtg) and weighted
time function are presented in Table 5. Since the graphs are
irregular and the metric is complicated, many more inter-
mediate Pareto points exist. Therefore, it is beneficial from
runtime and cost point of view to increase the size from two
to four. Further increase of size to 8 will, however, increase
the runtimes while giving little improvement as shown al-
ready in other cases. Even for this difficult time metric com-
posed of two terms, we are able to find a set of Pareto points
of the order O(nk) out of O(nk) possible application execu-
tions.

6. Conclusions

We have presented a heuristic that finds executions
modes for a given application. These modes are char-
acterized by Pareto points in time-energy space. They
are created by our heuristic which hierarchically com-
poses Pareto diagrams of single tasks in a given task
graph. Our heuristic achieves adjustable complexity reduc-
tion while keeping the quality of the results. We have shown

Exp Size # Cost # Pareto Heuristic
Tasks [%] Points Runtime

1 2 32 100.96 345 53 min
2 4 32 100.42 340 45 min
3 8 32 100.00 333 113 min

Table 5. Results for rtg - SUM and ECT.

that small size values give (near) optimal or good qual-
ity solutions and increasing the size parameter to ex-
plore larger design space gives little improvement at a high
run-time cost.

References

[1] S. G. Abraham, B. R. Rau, and R. Schreiber. Fast design space
exploration through validity and quality filtering of subsystems de-
signs. Technical report, Hewlett Packard Laboratories, 2000.

[2] L. Benini and G. De Micheli. System-level power optimization tech-
niques and tools. ACM Transactions on Design Automation for Em-
bedded Systems, 5(2):115–192, April 2000.

[3] M. Breternitz and J. Shen. Organization of array data for concurrent
memory access. In Proc. of 21st Workshop on Microprogramming
and Microarchitecture, pages 97–98, 1988.

[4] E. Brockmeyer, M. Miranda, and H. Corporaal. Layer assignment
techniques for low energy in multi-layered memory organizations.
In Proc. of 6th ACM/IEEE Design, Automation and Test in Europe
Conference, pages 1070–1075, 2003.

[5] E. Brockmeyer, A. Vandecappelle, and F. Catthoor. Systematic cy-
cle budget versus system power trade-off: a new perspective on sys-
tem exploration of real-time data dominated applications. In Proc.
of IEEE International Symposium on Low Power Design, 2000.

[6] F. Catthoor et al. Custom Memory Management Methodology: Ex-
ploration of Memory Organisation. Kluwer, 1998. ISBN 0-7923-
8288-9.

[7] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan,
and M. J. Irwin. Scheduler based DRAM energy management. In
Proc. of 39th Design Automation Conf., 2002.

[8] C. Gebotys. Low energy memory and register allocation using net-
work flow. In Proc. of Design Automation Conference, pages 435–
440, 1997.

[9] A. Khare, P. Panda, N. D. Dutt, and A. Nicolau. High-level synthesis
with SDRAMs and RAMBUS DRAMs. IEICE Trans. on Fundam.
Electron. Commun. Comput. Sci., 6(2):149–206, April 2001.

[10] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. ACM Transactions on Design Automation of Electronic Sys-
tems, 8(3):355–383, July 2003.

[11] Micron Technology Inc. SDRAM power model. www.micron.com.
[12] P. Panda. Memory bank customization and assignment in behav-

ioral synthesis. In Proc. of IEEE/ACM International Conference on
Computer-Aided Design, pages 477–481, 1999.

[13] P. Panda, F. Catthoor, N. D. Dutt, et al. Data and memory optimiza-
tion techniques for embedded systems. ACM Transactions on De-
sign Automation of Electronic Systems, 6(2):149–206, April 2001.

[14] P. Ranjan Panda, N. Dutt, and A. Nicolau. Incorporating dram access
modes into high-level synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(2):96–109,
February 1998.

[15] J. Seo, T. Kim, and P. Panda. An integrated algorithm for memory
allocation and assignment in high-level synthesis. In Proc. of 39th
Design Autom. Conf., pages 608–611, 2002.

[16] P. Slock, S. Wuytack, F. Catthoor, and G. D. Jon. Fast and extensive
system-level memory exploration for atn applications. In Proc. of
Tenth International Symposium on System Synthesis, pages 74–81,
1997.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

