
Energy-Aware Communication and Task Scheduling for Network-on-Chip
Architectures under Real-Time Constraints∗

Jingcao Hu Radu Marculescu
Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

email:{jingcao, radum}@ece.cmu.edu

Abstract

In this paper, we present a novel Energy-Aware Schedul-
ing (EAS) algorithm which statically schedules both com-
munication transactions and computation tasks onto hetero-
geneous Network-on-Chip (NoC) architectures under real-
time constraints. Our algorithm automatically assigns tasks
onto different processing elements and then schedules their
execution. At the same time, the algorithm also takes into
consideration the exact communication delay by scheduling
communication transactions in parallel. As the main con-
tribution, we first formulate the problem of concurrent com-
munication and task scheduling for heterogeneous NoC ar-
chitectures and then propose an efficient heuristic to solve
it. Experimental results show that significant energy savings
can be achieved by using our energy-aware scheduler while
meeting the specified performance constraints. For instance,
for a complex multimedia application, 44% energy savings
have been observed, on average, compared to the schedules
generated by a standard earliest-deadline-first scheduler.

1 Introduction
Regular NoC architectures have been recently proposed to

mitigate complex on-chip communication problems [1][2].
Such chips consist of regular tiles where each tile can be
a general-purpose processor, a DSP, a memory subsystem,
etc (e.g. [3][4][6]). A router is embedded within each tile
and thus, instead of routing design-specific global on-chip
wires, the inter-tile communication can be achieved by rout-
ing packets. With the increase of IP integration and compo-
nent specialization, the heterogeneity of these designs also
inevitably increases; this helps not only in optimizing per-
formance for low power consumption, but also in keeping
competitive design costs.

For embedded systems running on batteries, maximizing
the battery-life is one of the chief design drivers. As such,
targetinglow-energy consumptionis then extremely impor-
tant. On the other hand, another essential characteristic of
many embedded systems is their performance in terms of
timing behavior; this is usually specified bydeadlinesas-
sociated with individual tasks.

For performance evaluation purposes, any application
running on an embedded system can be described as aCom-
munication Task Graph(CTG) (see right part of Fig. 1 for an
example). The tasks in the CTG can have two types of depen-
dencies:control dependenciesanddata dependencies. The
control dependencies indicate that one task can not start its
execution until another task has finished, while the presence

∗Research supported by NSF CCR-00-93104 and DARPA/Marco Gigas-
cale Research Center (GSRC)

of data dependencies implies that these tasks communicate
with each other.

Given a CTG and a pre-selected architecture, one impor-
tant problem to decide is how to schedule the computation
tasks and the communication transactions onto the target ar-
chitecture. This includesi) deciding on theassignmentof
tasks and communication transactions onto different com-
putation and communication resources, respectively, andii)
fixing theorderof their execution on these shared resources.
We refer to this as the “scheduling problem” for NoC ar-
chitectures. The solution to the scheduling problem has a
significant impact on the total system energy consumption
because:

• Due to the heterogeneity of the architecture, assigning
the same task to different processing elements (PEs)
(e.g. PowerPC vs. DSP) leads to very different com-
putation energy consumption.

• For different task assignments, the inter-task commu-
nication volume and the routing path can vary signifi-
cantly; this leads to very different values for the com-
munication energy consumption.

Although the scheduling problem is a traditional topic for
research, almost all previous work focuses on maximizing
the performance through the scheduling process. The algo-
rithms developed this way are thusnot suitable for real-time
embedded applications, in which a common objective is to
minimize the energy consumption of the system under tight
performance constraints. Moreover, most previous work ne-
glects the inter-processor communication aspects during the
scheduling process, or just assumes a fixed delay propor-
tional to the communication volume, without taking into
consideration subtle effects like the communication conges-
tion which may change dynamically throughout tasks exe-
cution. As we will show later, considering communication
effects is critical for NoC architectures.

In this paper, we propose a new algorithm with the pri-
mary objective of scheduling bothcommunication and com-
putation for NoC architectures that minimizes the energy
consumption. At the same time, the algorithm handles arbi-
trary communication and execution costs for the application,
schedules tasks and communication transactions by consid-
ering the network contention, as well as PE’s heterogeneity.
The novelty of our work can be summarized as follows:

• Instead of using only performance as the optimization
objective, our algorithm tries to minimize the energy
consumption of the application under tight performance
constraints.

• The communication schedulingand the computation
task scheduling are carried out in parallel; therefore, the
obtained scheduling results are more accurate because

1530-1591/04 $20.00 (c) 2004 IEEE

they take the effects of the traffic dynamics into consid-
eration. This is critical for real-time applications.

• The target architecture is heterogeneous; that is, the
generic architecture we consider is composed of PEs
with different power and performance figures.

The remainder of this paper is organized as follows. We
first review related work (Sec. 2) and present a concise
description of the NoC architecture and its energy model
(Sec. 3). The problem of energy-aware communication and
task scheduling is then formulated in Sec. 4. Next, an ef-
ficient heuristic algorithm based on slack budgeting is pro-
posed to solve this problem under performance constraints
(Sec. 5). In Sec. 6, we report our experimental results using
random, as well as real multimedia, task graphs. Finally, we
conclude by summarizing our main contribution.

2 Related Work
Eleset al in [9] present a scheduling algorithm for dis-

tributed embedded systems which takes into consideration
bus access optimization. Sihet al in [10] propose a compile-
time scheduling heuristic calleddynamic-level scheduling
which accounts for interprocessor communication overhead.
Both papers try to maximize the performance of the system
without considering the system’s energy consumption.

From another perspective, most of the work on low-power
scheduling (e.g. [5][11]) focuses on architectures with dy-
namic voltage scaling or dynamic power management capa-
bilities and tries to manipulate the task execution slacks to
exploit them. The authors assume homogeneous, shared-bus
architectures and thus, their work can not be applied in our
scenario where the target architectures are totally different.

3 Platform Characterization
Although our algorithm can easily be applied to architec-

tures with different network topologies, in this paper, we fo-
cus on the tile-based NoC architecture [1][3][4], as an illus-
trative platform for our work. In this section, we describe the
regular tile-based architecture and the energy model for its
communication network.

3.1 Architectural issues
The system under consideration is composed ofn×n tiles

interconnected by a 2D mesh network1. The left part of
Fig. 1 shows the abstract view of the NoC architecture which
has been used recently by several authors [1][4].

Tile-based Architecture

(3,0)
 (3,3)
(3,2)
(3,1)

(0,0)
 (0,3)
(0,2)
(0,1)

(1,0)
 (1,3)
(1,2)
(1,1)

(2,0)
 (2,3)
(2,2)
(2,1)

t
0

t
2

t
1

t
4

t
3

t
5

Communication

Task Graph

t
3
t
2

Schedule Tables

Tile (2,3)

C

1,4

C

1,3

Link (3,1) -->
 (2,3)

Network

Logic

Tile

C
1,3

C
1,4

Figure 1. Tile-based NoC architecture
Each tile in Fig. 1 is composed of aprocessing element

(PE) and arouter. The PEs embedded in the tiles of the NoC
are assumed to be heterogeneous. For instance, one tile can

1We use 2D mesh network simply because it naturally fits the tile-based
architecture. However, our algorithm can be extended for other topologies.

be a DSP, another tile can be a high performance, energy-
hungry CPU, yet another one can be a low-power ARM pro-
cessor. Because of the different performance characteristics,
it takes different amounts of computation time and computa-
tion energy to execute the very same task on different tiles.

Due to the limited resources, the buffers in the routers are
implemented using registers (typically in the size of one or
two flits each). The routers use wormhole routing for pack-
ets delivery [7] which seems to be a reasonable solution for
NoCs. A 5×5 crossbar switch is used as the switching fabric
in the router [6][4]. For the sake of simplicity, the XY rout-
ing scheme is used to direct the packets across the chip. Note
that, with small modifications, the algorithm can be applied
to applications with otherdeterministicrouting algorithms.

3.2 Energy modeling issues
Energy modeling for NoC architectures was a relatively

unexplored area until recently. Yeet al in [12] proposed a
energy model for network routers by defining thebit energy
(Ebit) metric as the energy consumed when one bit of data is
transferred through the router. For NoCs with buffers imple-
mented by registers, both Huet al in [13] and Yeet al in [14]
suggest calculatingEbit as:

Ebit = ESbit +ELbit (1)
whereESbit andELbit represent the energy consumed on the
switch and on the link between tiles, respectively.

This is a very nice approximation since it eliminates the
buffering energy consumptionEBbit , which is a parameter
tightly coupled with the network congestion whose accurate
value can only be measured by time-consuming simulations.
Thus, by using Eq. (1), the average energy consumption for
sending one bit of data from tileti to tile t j can be analytically
calculated as:

E
ti ,t j
bit = nhops×ESbit +(nhops−1)×ELbit (2)

wherenhops is the number of routers the bit passes on its way
from ti to t j .

For 2D mesh networks withminimal routing, Eq. (2)
shows that the average energy consumption of sending one
bit of data fromti to t j is determined by theManhattandis-
tance between them. Although more accurate energy models
exist in the literature (e.g. [15]), in this paper, we choose the
energy model described in Eq. (1) as it provides an efficient
approximation for the NoC architectures under consideration
with reasonable accuracy for the optimization at this level of
abstraction.

4 Problem Formulation
Simply stated, given the CTG of an application and a tar-

get NoC architecture, the problem we need to solve is to find
a feasible, non-preemptive, staticschedule such that the ap-
plication energy consumption is minimized under tight per-
formance constraints. More specifically, this includes:

1. For each taskti , determiningwhich PEin the NoC ar-
chitecture should it be scheduled to, andthe time slot
when the task will be executed on that PE. For exam-
ple in Fig. 1, this means to determine to which PE (e.g.
(2,2), (2,3)etc.) each task (e.g.t2, t3) should be as-
signed to. Ift2 andt3 are both assigned to the same PE
location (2,3), for instance, our approach should also
determine which one should be executed first and when
exactly it should be executed.

2. Determining the time slot for all the communication
transactions in the application. For instance, if tasks
t1, t3 andt4 are assigned to PEs at locations (3,1), (2,2)
and (2,3), respectively, then we need to determine the
execution order of communication transactionc1,3 and
c1,4 on the link from PE (3,1) to PE (3,2), assuming that
XY routing is used.

To formulate this problem, we define the following terms:
Definition 1: A Communication Task Graph(CTG) G =
G(T,C) is adirected acyclicgraph, where each vertex repre-
sents a computational module of the application referred to
as a taskti ∈ T. Eachti has the following properties:

• An arrayRi , where thej-th elementr i
j ∈ Ri gives the

execution time of taskti if it is executed onj-th PE in
the architecture.

• An arrayEi , where thej-th elementei
j ∈ Ei gives the

energy consumption of taskti if it is executed onj-th
PE in the architecture.

• A deadlined(ti) which represents the time whenti has
to finish. If the designer does not specify a deadline for
taskti , thend(ti) is taken equal to infinity.

Each directed arcci, j ∈C characterizes the communica-
tion or control dependency betweenti andt j . The direction
from ti to t j indicates that the taskt j can not start beforeti is
finished. Eachci, j has associated with itv(ci, j), which stands
for the communication volume (bits) from ci to c j . A non-
zero value ofv(ci, j) denotes thatt j can start only afterti has
finished and transferredv(ci, j) bits of date to taskt j .

Obviously, to effectively exploit the parallelism provided
by the NoC, the application has to be partitioned with the
right granularity. The partition of the application has to pro-
vide enough parallelism so that all the PEs in the architecture
can be used more efficiently. Moreover, the granularity also
directly affects the storage space requirements in the PEs as
the messages need to be buffered. Since this paper’s focus
is on communication and computation scheduling, in the fol-
lowing, we will not address the application partitioning and
modeling issues. Instead, we assume that the application to
be scheduled are already partitioned and modeled in the form
of a CTG.
Definition 2: An Architecture Characterization Graph
(ACG) G ′ = G(P,R) is a directedgraph, where each vertex
pi ∈ P represents one PE in the architecture, and each di-
rected arcr i, j ∈ R represents the route frompi to p j . Each
r i, j has associated with it two metrics,e(r i, j) and b(r i, j).
e(r i, j) stands for the average energy consumption (in joules)
of sending one bit of data frompi to p j , i. e., E

pi ,p j
bit . b(r i, j)

gives the bandwidth (in bits/second) of that route.
Definition 3: Communication transactionci1,i2 is said to be
compatiblewith another communication transactionc j1, j2 if
and only if their execution times do not overlap or their rout-
ing paths do not intersect.
Definition 4: Taskti is said to be compatible with taskt j if
and only if their execution times do not overlap or they are
assigned onto different PEs.

Using these definitions, the energy-aware scheduling
problem for heterogeneous NoC architectures under real-
time constraints can be formulated as:

Given a CTG and an ACG,find a mapping functionM ()
from tasks (T) to PEs (P), together with a start time for each
task and communication transactions which:

min{Energy= ∑
∀ti

ei
M (ti)

+ ∑
∀ci, j

v(ci, j)×e(rM (ti),M (t j))} (3)

such that

• All tasks are compatible with each other.

• All communication transactions are compatible with
each other.

• All the control/data dependencies are satisfied.

• All the tasksti for which deadlinesd(ti) are specified
finish execution before or at their respective deadlines.

Since finding an optimal schedule for a multi-processor
system that consumes the minimum energy is known to be
NP-hard [16], in the following, we propose a heuristic algo-
rithm which is capable of finding satisfactory solutions with
reasonable short computation time.

5 Energy-Aware Scheduling
The energy-aware scheduling (EAS) approach is based on

slack-budgetingwhich allocates more slack to those tasks
whose mapping onto PEs has a larger impact on energy con-
sumption and performance of the application. More specif-
ically, our proposed approach performs the following three
steps during the scheduling:

Step 1. Budget slack allocation for each task

1. For each taskti , three metrics are calculated:VARei is
the variance of the energy consumption ofti on different
PEs, andVARr i is the variance of the execution time of
ti on different PEs. Finally,Mti is the mean execution
time of taskti on different PEs.

2. Using the calculatedVARei and VARr i , task ti is as-
signed a weightWti = VARei ×VARti . This weight
is an important concept in our algorithm. Intuitively,
the higher this weight, the higher the priority the task
should have in selecting the PE to be scheduled onto (as
the execution of that task has a higher impact on the en-
ergy consumption and the performance of the system).

3. UsingMti of different tasks, we calculate the slack for
different paths, and then allocate the slack to different
tasks based on their respective weights.

t
1
 t
2
 t
3
 d(t
3
)=1300

M
t1
 = 300

W
t1
 = 100

M
t2
 = 200

W
t2
 = 200

M
t3
 = 400

W
t3
 = 100

Figure 2. An example for budget slack allocation
For example, as shown in Fig. 2, taskst1, t2 andt3 have
the mean execution time of 300, 200 and 400 time units,
respectively. Now, suppose that using the step 1 and
2 above, the weight of these tasks are calculated to be
100, 200 and 100, respectively. Ift3 has a deadline of
1300 time units, then there will be a total slack of 400
time units for this path. The slack will be allocated to
these three tasks proportionally to their weights. Thus,
the slack fort1, t2 andt3 will be 100, 200 and 100 time
units, respectively.

4. With these numbers, thebudgeted deadline(BD) of
each task is calculated. For example, in Fig. 2, the BD

of taskt1, t2 andt3 will be 400, 800 and 1300 respec-
tively. We useBDi to denote the BD of taskti .

Step 2. Level based scheduling

1. Generate theReady Tasks List; that is, the tasks whose
precedent tasks have already been scheduled. In the fol-
lowing, this list will be referred as RTL.

2. Let F(i,k) be theearliest finish timeof task ti if it is
assigned to PEpk. For each combination of taskti ∈
RTLand PEpk ∈ P, calculate itsF(i,k) as:

F(i,k) = DRT(i,k)+ r i
k (4)

wherer i
k is the execution time of taskti on PEpk.

In Eq. (4), DRT represents thedata ready time, which
is defined as the latest arrival time of all the receiving
communication transactions of the corresponding task.
Obviously, to calculateDRT(i,k), all the receiving
communication transactions ofti have to be scheduled.
Given the list of the receiving communication transac-
tions (LCT) of the task under consideration, the pseudo
code shown in Fig. 3 is used to schedule the execution
of these transactions.

sort LCT by the finish time of its sender;
for each trans in LCT {

path = get path(trans);
dur = trans.bandwidth();
path.build schedule table();
sender f t = trans. sender.finish time();
start t=path. scheduletable.find earliest(sender f t, dur);
for each link in path

link.update schedule table(start t, dur);
}

Figure 3. The communication scheduler

In Fig. 3, the transactions in the LCT are first sorted
by the sender tasks’ finish time. For each transaction,
the path that it uses is then determined and the schedule
table of that path is built by merging all the occupied
slots of its comprising links. The transaction is finally
scheduled to the earliest time while honoring the current
schedule table of the path.
Please note that in this process, the communication
transactions and tasks are only scheduled for the pur-
pose of calculateF(i,k). The schedule tables of both
links and the PEs will be restored every time aF(i,k)
is calculated. Thus, the processing order for the tasks
does not affect the results ofF(i,k) calculation.

3. For each taskti in the RTL, calculate its metricminF(i):

minF(i) = minF(i,k) ∀k (5)

If there are tasks which satisfyminF(i) ≥ BDi , then we
select the task which has the largestminF(i)−BDi and
assign it to the PE that corresponds tominF(i).

4. On the other hand, if all the tasks in the RTL satisfies
minF(i) < BDi , then we use the following way to select
the next task to be scheduled and to which PE it should
be scheduled to.
First, for eachti in the RTL, a listLi is generated which
contains a list of PEs. Each PEpk in that list must sat-
isfy the conditionF(i,k)≤ BDi . Thus, this list gives all

the PEs that if taskti is scheduled onto any of the tiles,
its budget deadline can be satisfied.
Next, for each taskti , let Ei

1 to be the minimum energy
consumption if it is scheduled onto a tile in the listLi .
And Ei

2 to be the second minimum energy consump-
tion2. A metricδi

E = Ei
2−Ei

1 is then calculated for each
task.
Finally, we select the task in the RTL which has the
largestδE and this task is assigned to the PE which leads
to Ei

1 energy consumption.
5. Update the schedule table of the corresponding PE and

links. The level based scheduling is repeated until all
the tasks are assigned and scheduled.

Step 3. Search and repair

Since the optimization objective for this scheduler is the
energy consumption minimization, the performance can not
be sometimes guaranteed to satisfy all the specified dead-
line constraints, although the budgeted deadline of each task
does help the scheduler in meeting most of the deadlines.
As shown by the experimental results in Sec. 6, there can
be occasional deadline misses if we just rely on aforemen-
tioned two steps. Because of this issue, here we present a
search and repair procedurewhich can be used to fix the
missed deadlines. This procedure takes as input the gener-
ated schedule, and then iteratively improves the solution in
terms of deadline misses as described below.

The search and repair procedure has two main compo-
nents:local task swapping(LTS) andglobal task migration
(GTM). The relationship between LTS and GTM is shown in
Fig. 4.

In the LTS mode, the procedure will enumeratively pick
up each critical task in the current solution and swap its or-
der of execution with other non-critical tasks assigned to the
same PE. The idea is to let the critical tasks execute earlier
than non-critical tasks so that the deadline misses can be re-
duced. If the swapping helps in reducing the deadline misses,
then this move is accepted. Otherwise, it is rejected. Obvi-
ously, since LTS only swaps the execution order of tasks on
the same processing element, it willnotchange the computa-
tion and communication energy consumption of the system.

In certain cases, the deadline misses can not be fixed by
LTS. This can be, for instance, the case in which one PE is
so heavily loaded that no matter how one changes the execu-
tion order of the tasks on that PE, there will always be some
tasks causing deadline misses (these tasks may not neces-
sarily have a specified deadline, but it causes one of its de-
scendant tasks to miss its deadline). In this case, GTM helps
by identifying acritical task and migrating it to other PEs.
To reduce its impact on the energy increase, the destination
PEs are tried in the increasing order of the execution and
communication energy if that task is to be migrated onto the
corresponding PEs. If the migration of that task reduces the
deadline misses, then it’s accepted. Otherwise, the next task
will be selected for migration. Note that, as opposite to LTS,
both communication energy consumption and computation
energy consumption can be changed in GTM.

Because of the greedy nature of this algorithm, the search
and repair procedure will always converge.

2Note that when we calculateEi
1 andEi

2, the communication energy con-
sumption is also taken into account since we have already scheduled all the
sender tasks toti .

Initial schedule
generated by EAS

Has deadline
misses?

Output
schedule

No

Migrate task

Local task
swapping

Local task
swapping

Select the next
critical task

Select the PE
to migrate

Deadline misses
reduced?

Yes

Yes

No

Global task
migration mode

Roll back
task migration

Yes Has deadline
misses?

No
Output

schedule

Get the next
critcal task (t1)

Select a task t2
on the same PE

Swap t1
and t2

Deadline misses
reduced?

Roll back
task swapping

No

Yes

Enter local task
swaping mode

Leave local
swaping mode

Local task
swapping mode

More critical
tasks to select?

Figure 4. Flow of search and repair procedure
6 Experimental Results

To evaluate its effectiveness, we implemented the above
framework and performed several experiments on random
task sets and a set of generic multimedia systems.

6.1 Experiments on random benchmarks
Two categories of random benchmarks were generated us-

ing TGFF [8]. Each category contains 10 randomly gen-
erated benchmarks and each benchmark has around 500
tasks with about 1000 communication transactions. Both
of these two categories of benchmarks are to be sched-
uled onto a 4× 4 heterogeneous NoC. To evaluate the ro-
bustness of our algorithm, various parameters are used in
TGFF to generate benchmarks with different topologies and
task/communication distributions. Compared to category I,
benchmarks in category II have tighter deadlines. We ap-
ply two versions of our algorithm to these benchmarks; that
is, EAS-base (Energy-Aware Schedulerwithout search and
repair) and EAS (Energy-Aware Schedulerwith search and
repair). To evaluate the energy savings of using our algo-
rithm, we also implemented a standardEarliest Deadline
First (EDF) scheduler and compared the schedules in terms
of energy figures and deadline misses.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8
x 10

5

benchmarks

en
er

gy
 c

on
su

m
pt

io
n

(n
J)

EAS−base
EAS
EDF

Figure 5. Comparison using category I benchmarks

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10
x 10

5

benchmarks

en
er

gy
 c

on
su

m
pt

io
n

(n
J)

EAS−base
EAS
EDF

Figure 6. Comparison using category II benchmarks

Fig. 5 and Fig. 6 show the comparison of energy con-
sumption of the schedules generated for category I and II
benchmarks, respectively. As shown in both figures, signifi-
cant energy savings can be observed compared to the sched-
ules generated by the EDF scheduler. For category I and cat-
egory II of benchmarks, the results generated by EDF con-
sume, on average, 55% and 39% more energy compared to
those generated by EAS, respectively.

Although EAS-base is able to generate schedules for most
of these benchmarks, the schedules it generates for bench-
mark 0 in Category I and benchmark 0, 5, 6 in Category II
failed in meeting some of the specified deadlines. By post
processing these schedules using search and repair proce-
dure, EAS fixes all the deadline misses for all these bench-
marks with negligible increase in the energy consumption.
However, it does increase the run time of the scheduler. For
the aforementioned four benchmarks, the run time increase
from 1.77 sec., 2.45 sec., 3.23 sec. and 2.34 sec. to 2.17 sec.,
214.21 sec., 1171.23 sec. and 958.95 sec., respectively.

6.2 Experiments on a multimedia system
To evaluate the potential of using our algorithm for real-

world applications, we apply it to a set of generic Multimedia
System Benchmarks (MSB).

The first system we consider consists of an MP3/H263 au-
dio/video (A/V) encoder pair. We partition these two appli-
cations into 24 tasks, and insert monitors in the C++ code to
profile the intertask communication, as well as the execution
time taken for each task. We experiment with three different
real clips (akiyo, foremanandtoybox). Using the profiled in-
formation in the application task graph, we schedule the task
graph on a heterogeneous 2×2 NoC architecture using EAS
and the results are shown in Table 1. Also shown in Table 1
is the energy consumption of the scheduling results using the
EDF scheduler.

Table 1. Results on an A/V encoder application
MSB Task Set akiyo foreman toybox

EAS Energy (nJ) 56980 45390 55520
EDF Energy (nJ) 84078 52252 68405

Energy Savings (%) 47.6 15.1 23.2

The second system that we consider is an MP3/H263 A/V
decoder system. The application is partitioned into 16 tasks
and is profiled in the similar way as above. We schedule the
task graph on a heterogeneous 2×2 NoC and the results are
shown in Table 2.

Table 2. Results on an A/V decoder application
MSB Task Set akiyo foreman toybox

EAS Energy (nJ) 32504 27865 27486
EDF Energy (nJ) 38773 34231 33148

Energy Savings (%) 19.3 22.8 20.6

The last system that we consider integrates the above two
systems by including an A/V encoder pair and an A/V de-
coder pair. The application contains 40 tasks and needs to be
scheduled onto a heterogeneous 3× 3 tile-based NoC. The
results are shown in Table 3.
Table 3. Results on A/V encoder/decoder application

MSB Task Set akiyo foreman toybox
EAS Energy (nJ) 107648 78224 93413
EDF Energy (nJ) 153992 117553 129386

Energy Savings (%) 43.1 50.3 38.5

As we can see, compared to the schedule generated by
EDF, significant energy savings can achieved by using our
EAS algorithm for all the above test cases. This further vali-
dates the effectiveness of our algorithm.

It is worth pointing out that these energy savings are a
combinedeffect of reducing both computation energy and
communication energy. For instance, with the movie clip
foreman, the schedule generated using EAS successfully re-
duced the computation energy from 42674nJ to 34512nJ.
In addition, it also reduces the communication energy from
74878nJ to 43710nJ by decreasing the average hops per
packet from 2.55 to 1.70.

To see the trade-off between the energy savings and the
performance constraints, we perform the following exper-
iment on the integrated MSB application. Starting with a
given encoding rate (40 frames/sec.) and decoding rate (67
frames/sec.), we slowly increase the required encoding rate
and decoding rate and then observe its impact on the energy
savings. The results are shown in Fig. 7.

The X axis in Fig. 7 represents the required performance
of the application compared to the baseline specification. For
instance, 1.4 in the X axis means that the required encod-
ing and decoding rates are 1.4× 40 = 56 frames/sec and
1.4× 67 = 93.8 frames/sec respectively. It is interesting
to note that as the performance requirements become more
stringent, the schedule generated by EAS consumes more en-

1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

12
x 10

4

unified performance ratio

en
er

gy
 c

on
su

m
pt

io
n

(n
J)

EAS
EDF

Figure 7. Performance and energy tradeoff
ergy consumption as the scheduler has less flexibility in as-
signing and ordering the execution of tasks/communication.

7 Conclusion and Future Work
In this paper, we proposed an efficient energy-aware

scheduling algorithm which statically schedules both com-
munication transactions and computation tasks onto hetero-
geneous NoC architectures under real-time constraints.

Although we focus on the architectures interconnected
by 2D mesh networks with XY routing schemes, our algo-
rithm can be adapted to other regular architectures with dif-
ferent network topologies or different deterministic routing
schemes. For instance, if the honeycomb topology in [3] is
used, then we can still use Eq. (2) to calculate theEbit metric
for each sending and receiving PE pair, although this met-
ric may no longer be determined by theManhattandistance
between them. Other practical implications of such changes
are planned to be explored as future work.

References
[1] W. J. Dally, B. Towles, “Route packets, not wires: on-chip interconnection

networks,”Proc. DAC, pp. 684–689, June 2001.
[2] L. Benini, G. .De Micheli, “Networks on chips: a new SoC paradigm,”IEEE

Computer, vol. 35, pp. 70-78, Jan. 2002.
[3] A. Hemani,et al, “Network on a chip: an architecture for billion transistor era,”

Proc. of the IEEE NorChip Conf., Nov. 2000.
[4] S. Kumar,et al, “A network on chip architecture and design methodology,”

Proc. Symposium on VLSI, pp. 117–124, April 2002.
[5] Y. Zhang, X. Hu and D. Chen, “Task scheduling and voltage selection for en-

ergy minimization,”Proc. DAC, June 2002.
[6] J. Liang, S. Swaminathan and R. Tesssier, “aSoC: a scalable, single-chip com-

munications architecture,”Proc. Intl. Conf. on PACT, Oct. 2000.
[7] L. M. Ni, P. K. McKinley “A survey of wormhole routing techniques in direct

networks,”Computer, vol. 26, no. 2, Feb. 1993.
[8] R. P. Dick, D. L. Rhodes and W. Wolf, “TGFF: task graphs for free,”Proc. Intl.

Workshop on Hardware/Software Codesign, March 1998.
[9] P. Eles,et al, “Scheduling with bus access optimization for distributed embed-

ded systems,”IEEE Tran. on VLSI, vol. 8, No. 5, pp. 472–491, 2000.
[10] G. C. Sih, E. A. Lee, “A compile-time scheduling heuristic for interconnection-

constrained heterogeneous processor architectures,”IEEE Tran. on Parallel
and Distributed Systems, vol. 4, No. 2, 1993.

[11] J. Luo, N. K. Jha, “Power-conscious joint scheduling of periodic task graphs
and aperiodic tasks in distributed real-time embedded systems,”Proc. ICCAD,
Nov. 2000.

[12] T. T. Ye, L. Benini and G. De Micheli, “Analysis of power consumption on
switch fabrics in network routers,”Proc. DAC, June 2002.

[13] J. Hu, R. Marculescu, “Energy-aware mapping for tile-based NoC architectures
under performance constraints,”Proc. ASP-DAC, Jan. 2003.

[14] T. T. Ye, L. Benini and G. De Micheli, “Packetized on-chip interconnect com-
munication analysis for MPSoC,”Proc. DATE, March 2003.

[15] H. Wang,et al, “Power model for routers: modeling Alpha 21364 and Infini-
Band routers,”IEEE Micro, vol . 24, No. 1, pp. 26–35, Jan. 2003.

[16] M. R. Garey, D. S. Johnson, “Computers and intractability: a guide to the
theory of NP-completeness,” W.H. Freeman and Company, 1979.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

