
Low Static-Power Frequent-Value Data Caches
Chuanjun Zhang*, Jun Yang and Frank Vahid

Department of Computer Science and Engineering
*Department of Electrical Engineering

University of California, Riverside
czhang@ee.ucr.edu, {junyang/vahid}@cs.ucr.edu,

 F. Vahid is also with the Center for Embedded Computer Systems at UC Irvine

Abstract: Static energy dissipation in cache
memories will constitute an increasingly larger portion
of total microprocessor energy dissipation due to
nanoscale technology characteristics and the large size
of on-chip caches. We propose to reduce the static
energy dissipation of an on-chip data cache by taking
advantage of the frequent values (FV) that widely exist in
a data cache memory. The original FV-based low-power
cache design aimed at only reducing dynamic power, at
the cost of a 5% slowdown. We propose a better design
that reduces both static and dynamic cache power, and
that uses a circuit design that eliminates performance
overhead. A designer can utilize our architecture by
simulating an application and then synthesizing the FVs
into an application-specific FV cache design when values
will not change, or by simulating and then writing to an
FV-cache with configuration registers when values could
change. Furthermore, we describe hardware that can
dynamically determine FVs and write to the
configuration registers completely transparently.
Experiments on 11 Spec 2000 benchmarks show that, in
addition to the dynamic power savings, 33% static
energy savings for data caches can be achieved.

1. Introduction
As the speed gap between processors and memories
continues to increase, modern processors tend to include
larger on-chip caches to reduce the number of accesses to
long latency memories. For this reason, on-chip caches
remain a major chip power consumer. For example, the
Intel Pentium Pro dissipates 33% [5] and the
StrongARM-110 dissipates 42% [12] of its total power in
caches. Moreover, as the number of on-chip transistors
continues to grow and the threshold voltage continues to
decrease in nanoscale technologies, leakage power (i.e.,
static power) accounts for a larger portion of total power
consumption.

As a result, numerous techniques have been proposed
to conserve cache memory power. To reduce dynamic
energy dissipation, techniques including filtering
mechanisms[10], on-demand reconfiguration [14][18],
way selection and prediction [2][8], cache decomposition
[6], and value based low cache activity [16] have been
proposed. At the same time, many techniques have also
appeared to reduce cache static power consumption

[1][2][9][11][13]. Most of the proposed techniques are based
on turning off portions of the cache at the cost of losing data
and increasing miss rates. Even techniques that try to control
this negative effect incur performance overhead to a certain
extent [9]. In this paper, we propose a technique that can turn
off cache portions with zero information loss and no
performance degradation with proper design of cache cell
circuitry.

Recently, a frequent value low power data cache design
was proposed based on the observation that a major portion
of data cache accesses involves frequent values that can be
dynamically captured [16]. Frequent values are stored in
cache in an encoded form occupying only a few bits. For
example, 32-bit frequent values, say “FFFFFFFF” and
“FFFF0000” in hex, might be encoded using 5 bits as
“00000” and “00001” respectively. The cache data array
bank is separated into two sub-arrays such that all the
frequent value encodings are located in a smaller sub-array.
Non-frequent values occupy both the smaller and larger
sub-arrays. On each frequent value access, only the smaller
sub-array is activated, saving dynamic power by not driving
the larger sub-array.

In this paper, we propose to reduce static power by
shutting off the unused bits in the larger sub-array for
encoded frequent values. Since frequent values are stored in
encoded form using only the few bits in the smaller
sub-array, the remaining bits in the larger sub-array serve no
purpose as long as the value stays frequent. Such shutoff may
be very beneficial since FVs occupy many words in data
caches [16].

Furthermore, the original FV low power cache design
suffers from an extra cycle when reading non-FVs [16],
which account for 68% of all data cache accesses, resulting
in a 5% increase in execution time. We were able to use
circuit design to remove the extra cycle.

Our low power FV cache can be designed in various
ways. For application-specific processors, the FVs can be
first identified offline through profiling, and then synthesized
into the cache so that power consumption is optimized for the
hard coded FVs. For processors that run multiple
applications, the FVs can be located in a register file to
which different applications can write a different set of FVs.
To obtain maximum flexibility, a third approach is to embed
the process of identifying and updating FVs into registers, so

1530-1591/04 $20.00 (c) 2004 IEEE

that the design dynamically and transparently adapts to
different workloads with different inputs automatically.

The rest of the paper is organized as the following. In
Section 2, we briefly summarize existing static power
reduction techniques. In Section 3 and Section 4, we
describe the low static power FV data cache techniques
and its design choices. In Section 5, we present
experimental results, and we conclude the paper in
Section 6.

2. Previous Work
There have been a number of techniques proposed to
reduce cache static power consumption. Gated-Vdd [13]
inserts an extra transistor between the voltage source and
the SRAM cells to shut off the unused on-chip cache
lines, achieving 62% energy-delay product reductions.
Gated-Vdd has been widely used by many researchers to
shutoff part of the cache. The DRG [1] cache
dynamically resizes itself by monitoring the miss rate of
the cache and shutting off part of the sets according to
the application’s dynamic behavior. Cache line decay
[11] dynamically turns off cache lines that have not been
visited for a designated period, reducing the L1 cache
leakage energy dissipation by 4x in SPEC2000
applications. Zhou [19] proposed to dynamically
determine the time interval for deactivating cache lines,
achieving an average of 73% instruction cache lines and
54% of data cache lines being put into sleep mode, with
an average IPC impact of 1.7%.

In contrast to shutoff mechanisms that lose the
information in the cache, a drowsy cache [9] keeps the
unused cache line in a low power mode by lowering the
SRAM source voltage while retaining the contents of the
cache. 80% to 90% of the cache lines can be put into
drowsy mode without affecting the performance by more
than 1% for SPEC2000.

Notice that all previous works increased the program
execution time, mostly due to higher level-one cache

misses. As a result, more power is consumed in the
higher-level caches or memories. The significance of our
proposed technique is that no additional cache misses are
introduced, and neither the core nor the higher-level cache
memories are affected. In other words, we reduced the cache
energy consumption (dynamic + static) without slowing
down the processor. Furthermore, our technique can be also
applied jointly with other methods to achieve further power
savings.

3. FV Data Cache Design
3.1 Overview of Original FV Cache Design
In this section, we give a brief overview of the original FV
data cache design. More details can be found in [16].

 The FV cache was proposed based on the observation
that a small number of distinct frequently occurring data
values often occupy a large portion of program memory data
spaces and therefore account for a large portion of memory
accesses [16]. This frequent value phenomenon was
exploited in designing a data cache that trades off
performance with energy efficiency.

From the perspective of the frequent value cache, data
values are divided into two categories: a small number of
frequent values, in our case 32 FVs, and all remaining values
that are referred to as non-frequent values. The frequent
values are stored in encoded form and therefore can be
represented in 5 bits; the non-frequent values are stored in
unencoded form in 32 bit words. The set of frequent values
remains fixed for a given program run.

The cache data array is partitioned into two data arrays as
shown in Figure 1. The low-bit array contains the lower
order 5 bits of each word and the high-order array contains
the remaining 27 bits. Frequent values are stored in encoded
form in the low-bit array while non-frequent values are split
into the lower order 5 bits and the higher order 27 bits using
the space in both arrays. The 5-bit encoding is used to
retrieve the full 32-bit value from the “Decoder Register
File” in the figure for frequent values. To distinguish
between a code for a frequent value and a trailing part for a
non-frequent value in the low-bit array, an additional flag bit
is needed corresponding to each word in a cache line. The
extra bit was stored along with every word in the low-bit
array so that the word width becomes 6 bits.

When reading a word from the cache, initially we simply
read from the low-bit array. Since every word read out
contains a flag bit, the flag is examined to determine what
comes next. The flag being 1 means the desired word is in
un-encoded form, so the remaining bits should be read out
from the high-bit array to form the original value. On the
other hand, the flag being 0 means that the desired word is a
frequent value and stored in encoded form. In this case, the
access proceeds to decode the value. Since the access to the
high-bit array is avoided, cache activity is reduced.

A write to the FV cache is performed as follows. Before a
value is written, it is first encoded through an encoder. If

Figure 1: Original frequent value data cache architecture

[16].

1

0

encoding is successful, it means that the value is a
frequent value and thus a 5-bit code is stored in the
low-bit array and the flag bit is cleared. In this case,
accessing the high-bit array is avoided. If the encoding
fails, the value to be written is a non-frequent value and
thus both low-bit and high-bit data arrays are accessed as
well as the flag bit being set. Note that writing non-FVs
does not need to take two cycles as does reading
non-FVs, because the value is encoded early in the
pipeline and thus the decision of driving one array or two
is clear before the access.

In a traditional cache implementation, the entire line
is first read out from the data array, and then the desired
word within the line is selected at the time it reaches the
output multiplexor. If the same scheme is used in the FV
cache design, the decoding of frequent values cannot
begin until the required word is selected out, which is the
very end of a cache access. Consequently, decoding will
increase the cache access time, which is not desirable.
Therefore, the subbanking scheme proposed by [4] was
adopted, in which the subbank containing the target word
can be read independently. The width of each subbank is
the physical word width and each subbank can be
activated independently. This design facilitates the FV
cache implementation in that the decoding for frequent
values can begin immediately after accessing the low-bit
array since only the word at the desired location is read
out instead of the whole line.

3.2 Shutting Off Unused Bits of FV
The FVs are not only accessed frequently, but also
distributed widely in caches [17]. This phenomenon
provides a good opportunity for reducing static power.
Our approach is the following. Since the 32-bit FVs are
encoded in 5 bits, the remaining 27 bits do not store any
useful information. Therefore, they can be shut down to
save static power. This shutdown is performed as soon as
a coded FV is written into the cache through write or
refill operations. The unused bits will stay off until the
word is turned into a non-FV. At that time, all the off bits
are awakened to function as in a normal cache. Thus, as
long as a value stays frequent, static power is saved. The
overall savings depend on the occupancy of FVs in the
cache. Our studies show that on average nearly half of
the cache content contains FVs (Section 4), which
indicates the benefit of reducing static power through
finding FVs.
 We used a “Gated-Vdd” technique [13] to control the
open and close of a cell. Either a gated pMOS or nMOS
transistor can be used to gate the voltage, with different
tradeoffs among delay, area, and static power savings.
An nMOS gated-Vdd can eliminate 97% of static power
with 5% area increase and 8% access time increase. A
pMOS gated-Vdd has almost no area overhead and no
delay increase, but the tradeoff is that the static power
savings is reduced to 86% [13]. Our goal is to minimize

static power for frequent values without impacting the
performance. Thus, a pMOS gated-Vdd transistor is more
suitable for us. The nMOS cell can still be used in our FV
cache when maximum static power saving is desired and
when the 8% increase time is acceptable, especially when the
8% does not extend the system’s critical path.
 Figure 2 shows the cell shutdown logic. An extra pMOS
transistor is integrated into the original SRAM cell. When the
“Gated-Vdd Control” goes high, the SRAM cell’s voltage is
floated, turning off the entire cell.

The impact of the extra pMOS transistor on area is tiny.
Since the 5-bit array will never be shut off, we only need to
consider the 27-bit array. Further, we only need to add one
extra pMOS transistor for an entire block of 27 bits for each
cache word. We measured the extra area for a 32 Kbyte,
four-way 32-byte line size cache. The total area overhead
obtained from the layout [18] of our cache is less than 1% of
the total data cache area.
 The gated-Vdd control signal of the pMOS transistor,
“Gated_Vdd Control” as shown in Figure 3, is the inversion
of the flag bit’s output that indicates whether or not the cache
word is an FV. The flag bits are initially set to 1, which
means initially all words are non-FVs. Any data to the data
cache is checked with the FV encoder. If the word is an FV,
the corresponding flag bit is set to 0 and this cache word is
encoded and stored in the 5-bit array. At the same time, the
flag bit turns off the 27-bit portion of the word. Similarly, on
reading FVs, only the 5-bit portion is read and the 27-bit
portion is gated off. On a non-FV read or write, the flag bit is
set to one and the original 32 bits are written into the cache
as usual. Our new circuit design improves the original FV
cache design in that there is no extra delay in determining

Figure 2: SRAM cell with a pMOS gated Vdd control.

Figure 3: Flag bit SRAM cell

Gated-Vdd
Control Vdd

BitlineBitline

Gnd

Gnd

Vdd BitlineBitline

Gated_Vdd
Control

Flag bit
output

accesses of the 27-bit portion. This is explained in more
detail next.

3.3 Non-Delayed FV Cache Design
Reading non-FVs in the initial FV cache design incurs
extra cycles since the flag bits are clustered as an array,
and reading out its corresponding flag bit precedes
reading the 27-bit portion. This feature increases the
average L1 data cache access latency and slows down the
program execution time. To gain true energy savings,
cache accesses due to FVs should well exceed non-FVs.
However, not all applications we analyzed held this
property favorably. As shown in [16], some benchmarks
consume more energy than the base case (e.g. 107.mgrid
in Spec95 [16]), mitigating the general applicability of
the initial FV cache design.
3.3.1 Design of the flag bit
While it is not obvious how to increase FV access
locality, revising the circuit design to eliminate the
necessity of extra cycles for non-FV is feasible. We
observed that the management of the flag bit is the
critical point in the design. Note that the flag bit is stored
in a single SRAM cell, as shown in Figure 3. After the
bit value is written into the SRAM cell, its content is
stable as long as power is supplied. Therefore, the
operation of reading out the SRAM cell bit is
unnecessary since this bit can be a stand-alone cell
attached to each word. Since every word is split into 5
bits and 27 bits, the flag bit can be used to gate the
open/close of the 27 bits’ drivers. The design of the flag
bit plays an important role in both word portion shut-off
and non-delayed access.

To see the feasibility of our flag bit design, we laid
out the flag cell together with the new driver, and we also
extracted the circuits. Since the reading of the flag bit is
not performed, we care only about its write operation.
Our SPICE simulation verified that writing to the flag bit
would work properly without modifying the transistors’
parameters of the flag bit. The dimension of our flag bit
is 2.8um×4.8um in 0.18um technology.
3.3.2 Cache Line Structure and Timing
Analysis
The conventional cache line architecture is shown in
Figure 4. The output of the index decoder is strengthened
by a word line driver that is composed of two inverters as
illustrated in Figure 5(a)[15]. The new cache line
architecture is shown in Figure 6 (only four cache words
are drawn). Here we employed the new word line driver
shown in Figure 5(b). A NAND gate replaces the original

inverter. The content of the flag bit and the output of the
index driver are the two inputs of the NAND gate, as shown
in Figure 6. A flag bit of ‘0’ indicates an FV, and ‘1’ a
non-FV. Note that the decoder will still drive all the sub-data
array banks. The partial words with ‘0’ flag bits are
automatically gated off and those with ‘1’ flag bits will be
turned on or off based on the index decoder output.

Changing the inverter into a NAND gate could increase
the wordline’s driving delay since a NAND gate contains
more transistors than an inverter. However, tuning the
transistor size can reduce the NAND delay to that of the
original inverter. We performed SPICE simulations to
compare the delay before and after resizing. Our results show
that if transistor sizes are maintained the same, the total
increase to the cache critical path is 2%. Fortunately, this
increase can be avoided if the NAND gate transistor size is
tripled, which does not represent a significant overall area
increase since those transistors didn’t occupy much area to
begin with. Thus, we can maintain the same cache access
delay with the new cache line driver.

4. Designers’ Choices of Using the FV Cache
We have described a low static power FV cache. When
utilized into a processor system, the FV cache can be
designed with different degrees of complexity and flexibility.
In this section, we provide three approaches that are suitable
for a variety of processors targeting different types of
applications. Essentially, the complexity comes from how
FVs are identified and if they are allowed to vary for
different applications. As always, the more flexibility the
processor provides, the more complex the FV cache is.

The first approach is appropriate to application specific
processors. Since only a single type of application runs on
the processor, its FVs tend to be stable over time. In such
cases, the FVs can be first obtained from a profiling run
through simulations, and then synthesized into the cache as
part of the cache data storage. The advantage of this
approach is that once the FVs are hard coded on-chip, the

Figure 4: The conventional cache line architecture, four
words per cache line are drawn.

Figure 5: Design of the original and new word line driver

Figure 6: FV cache line architecture. Flag bit equals ‘0’ means the corresponding cache word is an FV. The leftmost five bits
are used to encode the FVs.

(a) (b)

flag bits

new driver

20 bits

decoder
output

32 bits

5 bits decoder
output

driver

cache does not perform operations other than reads.
Thus, the logic of this component is simple and can be
designed to consume minimum power.

The second approach extends the first one with the
ability of changing the FVs according to different
applications. This approach is suitable for a multi-task
environment in which the processor runs multiple
programs instead of single program. Since different
program exhibits different behavior, and thus generates
different FVs, it is necessary to let FVs change when a
different program is activated. Each program’s FVs are
still obtained off-line. Instead of synthesizing the FVs
on-chip, a register file may be used to store FVs so that
they can be rewritten on each activation of a different
program. The size of the register file depends on the
number of FVs of interest to the designer, which is
heavily dependent on each program’s behavior. A study
showed that for SPEC95 benchmark suite, 32 FVs are
generally satisfactory across different programs [17].
This will account for 3.9% of area overhead (obtained
from CACTI3.0 [15]) if a 32 Kbyte L1 D-cache is used
(as in Section 5).

The third approach provides the maximum flexibility
in maintaining FVs. According to a previous study [17],
some programs’ FVs are sensitive to different inputs.
This suggests that another dimension of varying FVs
might be added into the design. Since it is infeasible to
profile every program on all possible inputs to catch FVs,
detecting FVs on-line would be useful. Thus, on top of
the second approach, the register file could be extended
to dynamically capture FVs using extra logic. In the
scheme proposed in [16], an inexpensive hardware FV
finder was developed that monitored cache accesses. The
FV finder was turned on for only the first 5% of memory
accesses assuming that the total memory access numbers
are known a priori. After that, the FVs were captured in
the finder and transmitted to the cache so that the cache
starts operating as an FV cache. The energy overhead of
the finder was estimated to be 0.3%-6.1% of the L1
D-cache (8 Kbyte to 64 Kbyte caches were tested). The
area overhead is similar to our second approach, and thus
modest. One potential issue is that the FV finder
described detects frequently accessed values, which may
or may not correspond to frequently distributed values in
memory, though they usually are the same. We leave an
FV finder for frequently distributed values for future
work.

5. Experiments
To determine the benefits of our FV cache architecture in
reducing static energy, we ran 11 SPEC2000 [7]
benchmarks, art, ammp, parser, mcf, equake, gcc, gzip,
bzip, mesa, votex, and vpr, through the SimpleScalar tool
set [3]. We used a 4-issue out-of-order processor
simulator with a 32 Kbyte L1 instruction and data cache.
The benchmarks were fast-forwarded for 1 billion

instructions and executed for 500 million instructions
afterwards, using reference inputs. The configuration of the
simulated microprocessor is shown in Table 1.

5.1 Static Energy Savings
Our main goal is to reduce the static energy consumed by the
data cache without losing performance. As mentioned earlier,
the overall static energy saving depends on the average
coverage of FVs inside data cache. Through experiments, we
found that there are abundant FVs in the L1 data cache at any
time for Spec 2000 benchmarks, as shown in Figure 7. The
percentage shown is the average for the 500 million
instructions execution time. On average, 49.2% of the total
words are FVs, with the highest being 77.0% for benchmark
mcf and the lowest 9.4% for benchmark ammp. The static
energy savings are proportional to the number of FVs in the
data cache. Thus, the corresponding static energy savings on
average are 35% (49.2%×27/33×86%) considering that 27
bits out of 33 bits (we need a flag bit per 32-bit word) are
shut off and 86% of static power can be saved using a pMOS
Gated-Vdd. When compared with the conventional 32-bit per
word cache, the static energy savings can be calculated as
100%- (100%-35%)*33/32 = 33%.

5.2 Performance Improvement
Our second achievement is the performance improvement
over the original FV data cache design. Recall that the
original FV cache performance overhead was due to the
prolonged non-FV accesses. The more non-FV accesses, the
slower the execution and the less the overall power savings
(less energy savings), since the system would consume more
energy when the program runs longer. We measured the

Table 1: Configuration of the simulated processor.

Instruction Window 80-RUU,40-LSQ
Issue width 4 instructions per cycle

L1 Dcache 32KB, four way, 32B line size, WB
L1 Icache 32KB, four way, 32B line size, WB

L2 unified cache 128KB,four way, 64B line size, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty.

Processor Core

Memory Hierarchy

0%
10%
20%
30%
40%
50%
60%
70%
80%

ar
t

m
cf

pa
rs

er vp
r

bz
ip

am
m

p

m
es

a

vo
te

x

eq
ua

ke gc
c

gz
ip

A
ve

Figure 7: Percentage of data cache words that are FVs.

average percentage of cache hits that are FVs, as shown
in Figure 8. On average, the hit rate on data FVs is 32%
with the highest being 62.7% for votex and the lowest
11.4% for mcf. Therefore, we can see that on average,
68% of cache accesses are non-FVs.

With our improved circuitry (1-cycle latency for
non-FVs as well as for FVs), we are able to maintain the
same execution speed as the base case. To see how much
performance we have gained over the original FV cache,
we measured the IPCs for a normal cache and a 2-cycle
FV cache and plot them in Figure 9. The IPC for our
improved design is the same as the normal cache. Figure
9 shows the slowdowns of the original FV cache design,
which is the same value as our performance
improvement. We can see that there is a 5.2% difference
in the averaged IPCs between the original FV cache and
our improved version. This also means that in addition to
the static energy we saved by shutting off partial FV
words, we also saved more dynamic energy than the
original FV cache design.

Another feature in our new design is that it is safe in
the sense that it does not increase power consumption
significantly even when FVs are not abundant. Thus, our
improved FV cache design is an appealing approach in
reducing both static and dynamic energy of caches.

6. Conclusions
We proposed an efficient static power saving scheme
based on the widely existing frequent values in data
caches. The scheme reduces data cache static energy by
over 33% on average. Our cache cell shut-off based
scheme does not increase cache miss rates as other
similar techniques do. We also successfully removed the
performance overhead that was present in the original FV

cache. Our scheme can be combined with other low-power
cache methods for further power and energy savings.

7. References
[1] A. Agarwal, H. Li, and K. Roy, “DRG-Cache: A Data

Retention Gated-Ground Cache for Low Power,” Design
Automation Conf., June 2002.

[2] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation,” Journal of Instruction Level Parallelism,
May 2000.

[3] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Univ. of Wisconsin-Madison Computer Sciences
Dept. Technical Report #1342, June 1997.

[4] K. Ghose and M. B. Kamble, “Reducing Power in Superscalar
Processor Caches using Subbanking, Multiple Line Buffers,
and Bit Line Segmentation,” IEEE/ACM Int. Symp. on Low
Power Electronics and Design, 1999.

[5] S. Gunther and S. Rajgopal, Personal communication.
[6] M. Huang, J. Renau, S.M. Yoo, and J. Torrellas, “L1 Data

Cache ecomposition for Energy Efficiency,” Int. Symp. on
Low Power Electronics and Design, 2001.

[7] http://www.specbench.org/osg/cpu2000/
[8] K. Inoue, T. Ishihara, and K. Murakami, “Way-Predictive

Set-Associative Cache for High Performance and Low Energy
Consumption,” Int. Symp. On Low Power Electronics and
Design, 1999.

[9] N. S. Kim, K. Flautner, D. Blaauw, T. Mudge, “Drowsy
Instruction Caches, Leakage Power Reduction using Dynamic
Voltage Scaling and Cache Sub-bank Prediction,” Int. Symp.
on Microarchitecture, Nov. 2002.

[10] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter Cache:
An Energy Efficient Memory Structure,” Int. Symp. on
Microarchitecture, pp. 184-193, Dec. 1997.

[11] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay:
Exploiting General Behavior to Reduce Cache Leakage
Power,” Int. Symp. on Computer Architecture, 2001.

[12] J. Montenaro. et al., “A 160MHz 32b 0.5W CMOS RISC
Microprocessor,” Int. Solid-State Circuits Conf., 1996.

[13] M. Powell, S.H. Yang, B. Falsafi, K. Roy, and T.N.
Vijaykumar. Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories. Int. Symp. on
Low Power Electronics and Design, 2000.

[14] P. Ranganathan, S. Adve, and N.P. Jouppi, “Reconfigurable
Caches and their Application to Media Processing,” Int. Symp.
on Computer Architecture, 2000.

[15] P. Shivakumar, N. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model”, COMPAQ Western
Research Lab, 2001.

[16] J. Yang and R. Gupta, “Energy Efficient Frequent Value Data
Cache Design,” Int. Symp. on Microarchitecture, Nov. 2002.

[17] J. Yang, and R. Gupta, “Frequent Value Locality and its
Applications,” ACM Transactions on Embedded Computing
Systems (inaugural issue), Vol. 1, No. 1, pages 79-105,
November 2000.

[18] C. Zhang, F. Vahid, and W. Najjar “A Highly Configurable
Cache Architecture for Embedded Systems,” Int. Symp. on
Computer Architecture, June 2003

[19] H. Zhou, M.C. Toburen, E. Rotenberg, T. M. Cont. Adaptive
mode-control: A static-power-efficient cache design. In the
10th Intl. Conf. on Parallel Architectures and Compilation
Techniques, 2000.

0%

25%

50%

75%

ar
t

m
cf

pa
rs

er vp
r

bz
ip

am
m

p

m
es

a

vo
te

x

eq
ua

ke gc
c

gz
ip

A
ve

Figure 8: Hit rate of FVs in data cache.

0.0

0.5

1.0

1.5

2.0

ar
t

m
cf

pa
rs

er vp
r

gz
ip

am
m

p

m
es

a

vo
rte

x

eq
ua

ke gc
c

bz
ip

2

A
ve

IP
C

Normal Cache
 2-cycle FVC

Figure 9:Performance (IPC) degradation of two-cycle FV cache.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

