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Abstract: Static energy dissipation in cache 
memories will constitute an increasingly larger portion 
of total microprocessor energy dissipation due to 
nanoscale technology characteristics and the large size 
of on-chip caches. We propose to reduce the static 
energy dissipation of an on-chip data cache by taking 
advantage of the frequent values (FV) that widely exist in 
a data cache memory. The original FV-based low-power 
cache design aimed at only reducing dynamic power, at 
the cost of a 5% slowdown. We propose a better design 
that reduces both static and dynamic cache power, and 
that uses a circuit design that eliminates performance 
overhead. A designer can utilize our architecture by 
simulating an application and then synthesizing the FVs 
into an application-specific FV cache design when values 
will not change, or by simulating and then writing to an 
FV-cache with configuration registers when values could 
change. Furthermore, we describe hardware that can 
dynamically determine FVs and write to the 
configuration registers completely transparently. 
Experiments on 11 Spec 2000 benchmarks show that, in 
addition to the dynamic power savings, 33% static 
energy savings for data caches can be achieved.  

1. Introduction 
As the speed gap between processors and memories 
continues to increase, modern processors tend to include 
larger on-chip caches to reduce the number of accesses to 
long latency memories. For this reason, on-chip caches 
remain a major chip power consumer. For example, the 
Intel Pentium Pro dissipates 33% [5] and the 
StrongARM-110 dissipates 42% [12] of its total power in 
caches. Moreover, as the number of on-chip transistors 
continues to grow and the threshold voltage continues to 
decrease in nanoscale technologies, leakage power (i.e., 
static power) accounts for a larger portion of total power 
consumption.  

As a result, numerous techniques have been proposed 
to conserve cache memory power. To reduce dynamic 
energy dissipation, techniques including filtering 
mechanisms[10], on-demand reconfiguration [14][18], 
way selection and prediction [2][8], cache decomposition 
[6], and value based low cache activity [16] have been 
proposed. At the same time, many techniques have also 
appeared to reduce cache static power consumption 

[1][2][9][11][13]. Most of the proposed techniques are based 
on turning off portions of the cache at the cost of losing data 
and increasing miss rates. Even techniques that try to control 
this negative effect incur performance overhead to a certain 
extent [9]. In this paper, we propose a technique that can turn 
off cache portions with zero information loss and no 
performance degradation with proper design of cache cell 
circuitry. 

Recently, a frequent value low power data cache design 
was proposed based on the observation that a major portion 
of data cache accesses involves frequent values that can be 
dynamically captured [16]. Frequent values are stored in 
cache in an encoded form occupying only a few bits. For 
example, 32-bit frequent values, say “FFFFFFFF” and 
“FFFF0000” in hex, might be encoded using 5 bits as 
“00000” and “00001” respectively. The cache data array 
bank is separated into two sub-arrays such that all the 
frequent value encodings are located in a smaller sub-array. 
Non-frequent values occupy both the smaller and larger 
sub-arrays. On each frequent value access, only the smaller 
sub-array is activated, saving dynamic power by not driving 
the larger sub-array.  

In this paper, we propose to reduce static power by 
shutting off the unused bits in the larger sub-array for 
encoded frequent values. Since frequent values are stored in 
encoded form using only the few bits in the smaller 
sub-array, the remaining bits in the larger sub-array serve no 
purpose as long as the value stays frequent. Such shutoff may 
be very beneficial since FVs occupy many words in data 
caches [16].  

Furthermore, the original FV low power cache design 
suffers from an extra cycle when reading non-FVs [16], 
which account for 68% of all data cache accesses, resulting 
in a 5% increase in execution time. We were able to use 
circuit design to remove the extra cycle. 

Our low power FV cache can be designed in various 
ways. For application-specific processors, the FVs can be 
first identified offline through profiling, and then synthesized 
into the cache so that power consumption is optimized for the 
hard coded FVs. For processors that run multiple 
applications, the FVs can be located in a register file to 
which different applications can write a different set of FVs. 
To obtain maximum flexibility, a third approach is to embed 
the process of identifying and updating FVs into registers, so 
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that the design dynamically and transparently adapts to 
different workloads with different inputs automatically. 

The rest of the paper is organized as the following. In 
Section 2, we briefly summarize existing static power 
reduction techniques. In Section 3 and Section 4, we 
describe the low static power FV data cache techniques 
and its design choices. In Section 5, we present 
experimental results, and we conclude the paper in 
Section 6. 

2. Previous Work 
There have been a number of techniques proposed to 
reduce cache static power consumption. Gated-Vdd [13] 
inserts an extra transistor between the voltage source and 
the SRAM cells to shut off the unused on-chip cache 
lines, achieving 62% energy-delay product reductions. 
Gated-Vdd has been widely used by many researchers to 
shutoff part of the cache. The DRG [1] cache 
dynamically resizes itself by monitoring the miss rate of 
the cache and shutting off part of the sets according to 
the application’s dynamic behavior. Cache line decay 
[11] dynamically turns off cache lines that have not been 
visited for a designated period, reducing the L1 cache 
leakage energy dissipation by 4x in SPEC2000 
applications. Zhou [19] proposed to dynamically 
determine the time interval for deactivating cache lines, 
achieving an average of 73% instruction cache lines and 
54% of data cache lines being put into sleep mode, with 
an average IPC impact of 1.7%.  

In contrast to shutoff mechanisms that lose the 
information in the cache, a drowsy cache [9] keeps the 
unused cache line in a low power mode by lowering the 
SRAM source voltage while retaining the contents of the 
cache. 80% to 90% of the cache lines can be put into 
drowsy mode without affecting the performance by more 
than 1% for SPEC2000. 

Notice that all previous works increased the program 
execution time, mostly due to higher level-one cache 

misses. As a result, more power is consumed in the 
higher-level caches or memories. The significance of our 
proposed technique is that no additional cache misses are 
introduced, and neither the core nor the higher-level cache 
memories are affected. In other words, we reduced the cache 
energy consumption (dynamic + static) without slowing 
down the processor. Furthermore, our technique can be also 
applied jointly with other methods to achieve further power 
savings. 

3. FV Data Cache Design 
3.1 Overview of Original FV Cache Design 
In this section, we give a brief overview of the original FV 
data cache design. More details can be found in [16]. 

 The FV cache was proposed based on the observation 
that a small number of distinct frequently occurring data 
values often occupy a large portion of program memory data 
spaces and therefore account for a large portion of memory 
accesses [16]. This frequent value phenomenon was 
exploited in designing a data cache that trades off 
performance with energy efficiency. 

From the perspective of the frequent value cache, data 
values are divided into two categories: a small number of 
frequent values, in our case 32 FVs, and all remaining values 
that are referred to as non-frequent values. The frequent 
values are stored in encoded form and therefore can be 
represented in 5 bits; the non-frequent values are stored in 
unencoded form in 32 bit words. The set of frequent values 
remains fixed for a given program run. 

The cache data array is partitioned into two data arrays as 
shown in Figure 1. The low-bit array contains the lower 
order 5 bits of each word and the high-order array contains 
the remaining 27 bits. Frequent values are stored in encoded 
form in the low-bit array while non-frequent values are split 
into the lower order 5 bits and the higher order 27 bits using 
the space in both arrays. The 5-bit encoding is used to 
retrieve the full 32-bit value from the “Decoder Register 
File” in the figure for frequent values. To distinguish 
between a code for a frequent value and a trailing part for a 
non-frequent value in the low-bit array, an additional flag bit 
is needed corresponding to each word in a cache line. The 
extra bit was stored along with every word in the low-bit 
array so that the word width becomes 6 bits. 

When reading a word from the cache, initially we simply 
read from the low-bit array. Since every word read out 
contains a flag bit, the flag is examined to determine what 
comes next. The flag being 1 means the desired word is in 
un-encoded form, so the remaining bits should be read out 
from the high-bit array to form the original value. On the 
other hand, the flag being 0 means that the desired word is a 
frequent value and stored in encoded form. In this case, the 
access proceeds to decode the value. Since the access to the 
high-bit array is avoided, cache activity is reduced. 

A write to the FV cache is performed as follows. Before a 
value is written, it is first encoded through an encoder. If 

 
Figure 1: Original frequent value data cache architecture 
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encoding is successful, it means that the value is a 
frequent value and thus a 5-bit code is stored in the 
low-bit array and the flag bit is cleared. In this case, 
accessing the high-bit array is avoided. If the encoding 
fails, the value to be written is a non-frequent value and 
thus both low-bit and high-bit data arrays are accessed as 
well as the flag bit being set. Note that writing non-FVs 
does not need to take two cycles as does reading 
non-FVs, because the value is encoded early in the 
pipeline and thus the decision of driving one array or two 
is clear before the access. 

In a traditional cache implementation, the entire line 
is first read out from the data array, and then the desired 
word within the line is selected at the time it reaches the 
output multiplexor. If the same scheme is used in the FV 
cache design, the decoding of frequent values cannot 
begin until the required word is selected out, which is the 
very end of a cache access. Consequently, decoding will 
increase the cache access time, which is not desirable. 
Therefore, the subbanking scheme proposed by [4] was 
adopted, in which the subbank containing the target word 
can be read independently. The width of each subbank is 
the physical word width and each subbank can be 
activated independently. This design facilitates the FV 
cache implementation in that the decoding for frequent 
values can begin immediately after accessing the low-bit 
array since only the word at the desired location is read 
out instead of the whole line. 

3.2 Shutting Off Unused Bits of FV 
The FVs are not only accessed frequently, but also 
distributed widely in caches [17]. This phenomenon 
provides a good opportunity for reducing static power. 
Our approach is the following. Since the 32-bit FVs are 
encoded in 5 bits, the remaining 27 bits do not store any 
useful information. Therefore, they can be shut down to 
save static power. This shutdown is performed as soon as 
a coded FV is written into the cache through write or 
refill operations. The unused bits will stay off until the 
word is turned into a non-FV. At that time, all the off bits 
are awakened to function as in a normal cache. Thus, as 
long as a value stays frequent, static power is saved. The 
overall savings depend on the occupancy of FVs in the 
cache. Our studies show that on average nearly half of 
the cache content contains FVs (Section 4), which 
indicates the benefit of reducing static power through 
finding FVs. 
    We used a “Gated-Vdd” technique [13] to control the 
open and close of a cell. Either a gated pMOS or nMOS 
transistor can be used to gate the voltage, with different 
tradeoffs among delay, area, and static power savings. 
An nMOS gated-Vdd can eliminate 97% of static power 
with 5% area increase and 8% access time increase. A 
pMOS gated-Vdd has almost no area overhead and no 
delay increase, but the tradeoff is that the static power 
savings is reduced to 86% [13]. Our goal is to minimize 

static power for frequent values without impacting the 
performance. Thus, a pMOS gated-Vdd transistor is more 
suitable for us. The nMOS cell can still be used in our FV 
cache when maximum static power saving is desired and 
when the 8% increase time is acceptable, especially when the 
8% does not extend the system’s critical path.  
 Figure 2 shows the cell shutdown logic. An extra pMOS 
transistor is integrated into the original SRAM cell. When the 
“Gated-Vdd Control” goes high, the SRAM cell’s voltage is 
floated, turning off the entire cell.  

The impact of the extra pMOS transistor on area is tiny. 
Since the 5-bit array will never be shut off, we only need to 
consider the 27-bit array. Further, we only need to add one 
extra pMOS transistor for an entire block of 27 bits for each 
cache word. We measured the extra area for a 32 Kbyte, 
four-way 32-byte line size cache. The total area overhead 
obtained from the layout [18] of our cache is less than 1% of 
the total data cache area.  
 The gated-Vdd control signal of the pMOS transistor, 
“Gated_Vdd Control” as shown in Figure 3, is the inversion 
of the flag bit’s output that indicates whether or not the cache 
word is an FV. The flag bits are initially set to 1, which 
means initially all words are non-FVs. Any data to the data 
cache is checked with the FV encoder. If the word is an FV, 
the corresponding flag bit is set to 0 and this cache word is 
encoded and stored in the 5-bit array. At the same time, the 
flag bit turns off the 27-bit portion of the word. Similarly, on 
reading FVs, only the 5-bit portion is read and the 27-bit 
portion is gated off. On a non-FV read or write, the flag bit is 
set to one and the original 32 bits are written into the cache 
as usual. Our new circuit design improves the original FV 
cache design in that there is no extra delay in determining 

 
 
 
 
 
 
 
 
 
 

Figure 2: SRAM cell with a pMOS gated Vdd control. 
 
 
 
 
 
 
 
 
 

Figure 3: Flag bit SRAM cell 
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accesses of the 27-bit portion. This is explained in more 
detail next.  

3.3 Non-Delayed FV Cache Design 
Reading non-FVs in the initial FV cache design incurs 
extra cycles since the flag bits are clustered as an array, 
and reading out its corresponding flag bit precedes 
reading the 27-bit portion. This feature increases the 
average L1 data cache access latency and slows down the 
program execution time. To gain true energy savings, 
cache accesses due to FVs should well exceed non-FVs. 
However, not all applications we analyzed held this 
property favorably. As shown in [16], some benchmarks 
consume more energy than the base case (e.g. 107.mgrid 
in Spec95 [16]), mitigating the general applicability of 
the initial FV cache design. 
3.3.1 Design of the flag bit 
While it is not obvious how to increase FV access 
locality, revising the circuit design to eliminate the 
necessity of extra cycles for non-FV is feasible. We 
observed that the management of the flag bit is the 
critical point in the design. Note that the flag bit is stored 
in a single SRAM cell, as shown in Figure 3. After the 
bit value is written into the SRAM cell, its content is 
stable as long as power is supplied. Therefore, the 
operation of reading out the SRAM cell bit is 
unnecessary since this bit can be a stand-alone cell 
attached to each word. Since every word is split into 5 
bits and 27 bits, the flag bit can be used to gate the 
open/close of the 27 bits’ drivers. The design of the flag 
bit plays an important role in both word portion shut-off 
and non-delayed access. 

To see the feasibility of our flag bit design, we laid 
out the flag cell together with the new driver, and we also 
extracted the circuits. Since the reading of the flag bit is 
not performed, we care only about its write operation. 
Our SPICE simulation verified that writing to the flag bit 
would work properly without modifying the transistors’ 
parameters of the flag bit. The dimension of our flag bit 
is 2.8um×4.8um in 0.18um technology. 
3.3.2 Cache Line Structure and Timing 
Analysis 
The conventional cache line architecture is shown in 
Figure 4. The output of the index decoder is strengthened 
by a word line driver that is composed of two inverters as 
illustrated in Figure 5(a)[15]. The new cache line 
architecture is shown in Figure 6 (only four cache words 
are drawn). Here we employed the new word line driver 
shown in Figure 5(b). A NAND gate replaces the original 

inverter. The content of the flag bit and the output of the 
index driver are the two inputs of the NAND gate, as shown 
in Figure 6.  A flag bit of ‘0’ indicates an FV, and ‘1’ a 
non-FV. Note that the decoder will still drive all the sub-data 
array banks. The partial words with ‘0’ flag bits are 
automatically gated off and those with ‘1’ flag bits will be 
turned on or off based on the index decoder output. 

Changing the inverter into a NAND gate could increase 
the wordline’s driving delay since a NAND gate contains 
more transistors than an inverter. However, tuning the 
transistor size can reduce the NAND delay to that of the 
original inverter. We performed SPICE simulations to 
compare the delay before and after resizing. Our results show 
that if transistor sizes are maintained the same, the total 
increase to the cache critical path is 2%. Fortunately, this 
increase can be avoided if the NAND gate transistor size is 
tripled, which does not represent a significant overall area 
increase since those transistors didn’t occupy much area to 
begin with. Thus, we can maintain the same cache access 
delay with the new cache line driver. 

4. Designers’ Choices of Using the FV Cache 
We have described a low static power FV cache. When 
utilized into a processor system, the FV cache can be 
designed with different degrees of complexity and flexibility. 
In this section, we provide three approaches that are suitable 
for a variety of processors targeting different types of 
applications. Essentially, the complexity comes from how 
FVs are identified and if they are allowed to vary for 
different applications. As always, the more flexibility the 
processor provides, the more complex the FV cache is. 

The first approach is appropriate to application specific 
processors. Since only a single type of application runs on 
the processor, its FVs tend to be stable over time. In such 
cases, the FVs can be first obtained from a profiling run 
through simulations, and then synthesized into the cache as 
part of the cache data storage. The advantage of this 
approach is that once the FVs are hard coded on-chip, the 

 

 

Figure 4: The conventional cache line architecture, four 
words per cache line are drawn.  

                  
 
 

Figure 5: Design of the original and new word line driver 

 
 
 
 

Figure 6: FV cache line architecture. Flag bit equals ‘0’ means the corresponding cache word is an FV. The leftmost five bits 
are used to encode the FVs. 
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cache does not perform operations other than reads. 
Thus, the logic of this component is simple and can be 
designed to consume minimum power. 

The second approach extends the first one with the 
ability of changing the FVs according to different 
applications. This approach is suitable for a multi-task 
environment in which the processor runs multiple 
programs instead of single program. Since different 
program exhibits different behavior, and thus generates 
different FVs, it is necessary to let FVs change when a 
different program is activated. Each program’s FVs are 
still obtained off-line. Instead of synthesizing the FVs 
on-chip, a register file may be used to store FVs so that 
they can be rewritten on each activation of a different 
program. The size of the register file depends on the 
number of FVs of interest to the designer, which is 
heavily dependent on each program’s behavior. A study 
showed that for SPEC95 benchmark suite, 32 FVs are 
generally satisfactory across different programs [17]. 
This will account for 3.9% of area overhead (obtained 
from CACTI3.0 [15]) if a 32 Kbyte L1 D-cache is used 
(as in Section 5). 

The third approach provides the maximum flexibility 
in maintaining FVs. According to a previous study [17], 
some programs’ FVs are sensitive to different inputs. 
This suggests that another dimension of varying FVs 
might be added into the design. Since it is infeasible to 
profile every program on all possible inputs to catch FVs, 
detecting FVs on-line would be useful. Thus, on top of 
the second approach, the register file could be extended 
to dynamically capture FVs using extra logic. In the 
scheme proposed in [16], an inexpensive hardware FV 
finder was developed that monitored cache accesses. The 
FV finder was turned on for only the first 5% of memory 
accesses assuming that the total memory access numbers 
are known a priori. After that, the FVs were captured in 
the finder and transmitted to the cache so that the cache 
starts operating as an FV cache. The energy overhead of 
the finder was estimated to be 0.3%-6.1% of the L1 
D-cache (8 Kbyte to 64 Kbyte caches were tested). The 
area overhead is similar to our second approach, and thus 
modest. One potential issue is that the FV finder 
described detects frequently accessed values, which may 
or may not correspond to frequently distributed values in 
memory, though they usually are the same. We leave an 
FV finder for frequently distributed values for future 
work. 

5. Experiments  
To determine the benefits of our FV cache architecture in 
reducing static energy, we ran 11 SPEC2000 [7] 
benchmarks, art, ammp, parser, mcf, equake, gcc, gzip, 
bzip, mesa, votex, and vpr, through the SimpleScalar tool 
set [3]. We used a 4-issue out-of-order processor 
simulator with a 32 Kbyte L1 instruction and data cache. 
The benchmarks were fast-forwarded for 1 billion 

instructions and executed for 500 million instructions 
afterwards, using reference inputs. The configuration of the 
simulated microprocessor is shown in Table 1. 

5.1 Static Energy Savings 
Our main goal is to reduce the static energy consumed by the 
data cache without losing performance. As mentioned earlier, 
the overall static energy saving depends on the average 
coverage of FVs inside data cache. Through experiments, we 
found that there are abundant FVs in the L1 data cache at any 
time for Spec 2000 benchmarks, as shown in Figure 7. The 
percentage shown is the average for the 500 million 
instructions execution time. On average, 49.2% of the total 
words are FVs, with the highest being 77.0% for benchmark 
mcf and the lowest 9.4% for benchmark ammp. The static 
energy savings are proportional to the number of FVs in the 
data cache. Thus, the corresponding static energy savings on 
average are 35% (49.2%×27/33×86%) considering that 27 
bits out of 33 bits (we need a flag bit per 32-bit word) are 
shut off and 86% of static power can be saved using a pMOS 
Gated-Vdd. When compared with the conventional 32-bit per 
word cache, the static energy savings can be calculated as 
100%- (100%-35%)*33/32 = 33%.     

5.2 Performance Improvement 
Our second achievement is the performance improvement 
over the original FV data cache design. Recall that the 
original FV cache performance overhead was due to the 
prolonged non-FV accesses. The more non-FV accesses, the 
slower the execution and the less the overall power savings 
(less energy savings), since the system would consume more 
energy when the program runs longer. We measured the 

Table 1: Configuration of the simulated processor. 

Instruction Window 80-RUU,40-LSQ
Issue width 4 instructions per cycle

L1 Dcache 32KB, four way, 32B line size, WB
L1 Icache 32KB, four way, 32B line size, WB

L2 unified cache 128KB,four way, 64B line size, WB 
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty.

Processor Core

Memory Hierarchy
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Figure 7: Percentage of data cache words that are FVs. 



average percentage of cache hits that are FVs, as shown 
in Figure 8. On average, the hit rate on data FVs is 32% 
with the highest being 62.7% for votex and the lowest 
11.4% for mcf. Therefore, we can see that on average, 
68% of cache accesses are non-FVs.  

With our improved circuitry (1-cycle latency for 
non-FVs as well as for FVs), we are able to maintain the 
same execution speed as the base case. To see how much 
performance we have gained over the original FV cache, 
we measured the IPCs for a normal cache and a 2-cycle 
FV cache and plot them in Figure 9. The IPC for our 
improved design is the same as the normal cache. Figure 
9 shows the slowdowns of the original FV cache design, 
which is the same value as our performance 
improvement. We can see that there is a 5.2% difference 
in the averaged IPCs between the original FV cache and 
our improved version. This also means that in addition to 
the static energy we saved by shutting off partial FV 
words, we also saved more dynamic energy than the 
original FV cache design.  

Another feature in our new design is that it is safe in 
the sense that it does not increase power consumption 
significantly even when FVs are not abundant. Thus, our 
improved FV cache design is an appealing approach in 
reducing both static and dynamic energy of caches. 

6. Conclusions 
We proposed an efficient static power saving scheme 
based on the widely existing frequent values in data 
caches. The scheme reduces data cache static energy by 
over 33% on average. Our cache cell shut-off based 
scheme does not increase cache miss rates as other 
similar techniques do. We also successfully removed the 
performance overhead that was present in the original FV 

cache. Our scheme can be combined with other low-power 
cache methods for further power and energy savings. 
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Figure 8: Hit rate of FVs in data cache. 
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Figure 9:Performance (IPC) degradation of two-cycle FV cache. 
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