

Efficient Static Compaction of Test Sequence Sets through the
Application of Set Covering Techniques

Michael Dimopoulos and Panagiotis Linardis
Department of Informatics - Aristotle University of Thessaloniki

Thessaloniki, Greece

Abstract

The test sequence compaction problem is modeled

here, first, as a set covering problem. This formulation
enables the straightforward application of set covering
methods for compaction. Because of the complexity
inherent in the first model, a second more efficient,
formulation is proposed where the test sequences are
modeled as matrix columns with variable costs (number of
vectors). Further, matrix reduction rules appropriate to
the new formulation, which do not affect the optimality of
the solution, are introduced. Finally, the reduced problem
is minimized with a Branch & Bound algorithm.
Experiments on a large number of test sets show
significant reductions to the original problem by simply
using the presented reduction rules. Experimental results
comparing our method with others from the literature and
also with the absolute minima of the examples, computed
separately with the MINCOV algorithm, support the
potential of the proposed approach.

1. Introduction

The cost of testing a digital system is greatly affected

by the length of the set of test sequences applied.
Automatic Test Pattern Generation (ATPG) methods for
sequential circuits try to find sequences of input vectors
(test sequences) that detect all single stuck-at faults [1] in
the circuit. Since ATPG is a highly complex task usually
very long test sequences are produced and therefore
shorter (compact) test sequences are always desirable.

Many compaction procedures, static or dynamic, have
been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 19]. Dynamic
compaction is applied during test generation. Static
compaction is applied after test generation, independently
of the particular test generator. Here we shall concentrate
on static compaction methods.

Static compaction methods may be divided into those
that iteratively fault simulate a single (produced usually

after concatenation) test sequence and into those that try to
exploit the existing redundancy in a given set of test
sequences (without fault simulation). The Vector
Omission [5] method operates on a single sequence and
achieves very good compaction ratios, at the expense of
long execution times (fault simulation is required at every
step). The Vector Restoration [8, 9] method also achieves
very high levels of compaction and operates on a single
sequence but relies heavily on fault simulation.

In this work we consider static compaction methods
that try to exploit the existing redundancy in a given set T
of test sequences (test set). This situation is usual in fault
oriented [1, 24] ATPG methods which produce each test
sequence by targeting a specific fault.

There exist many static compaction methods which
operate on a set of test sequences [2, 3, 4, 6, 7]. In [2] the
test sequences are statically compacted, without fault
simulation, by using a Genetic Algorithm (GA) to find and
remove redundant vectors from the sequences. In [5] a
procedure named Vector Selection is proposed in which
test subsequences for every fault are extracted from a
single test sequence. After collecting all subsequences, a
set covering method is applied with the purpose of
selecting a minimal subset of sequences to detect all
faults. The method, however, relies on fault simulation. In
[6] the test compaction problem is formulated as a
minimization problem and a static compaction method is
developed. However, results are presented only for
combinational circuits and no details are given for the
algorithm developed for sequential circuits. In [7] an exact
method based on a Branch & Bound algorithm is
presented.

In this paper we propose an algorithm for the static
compaction of test sets for sequential circuits, exploiting
the principles of a set-covering model [10, 22] without
employing fault simulation. Since, however, the
transformation of the compaction problem into a set-
covering formulation [10, 11, 22] with single costs results
in a matrix expansion, this formulation was modified here
to account for variable column costs, necessary for the
present problem (partial columns may be selected). A set

1530-1591/04 $20.00 (c) 2004 IEEE

of reduction rules is then applied aiming at simplifying the
initial covering matrix. Finally, a B&B procedure is
proposed to solve the remaining reduced problem.

The paper is organized as follows: In section 2 the
compaction problem is formulated as a set-covering
problem. In section 3 a modified formulation of the
problem and matrix reduction rules are proposed. In
section 4 the final compaction algorithm is presented. In
section 5 the experimental results concerning the
efficiency of the proposed method are presented.

2. The compaction problem

Let us consider a set of test sequences T={S1, S2,…,Sn}
detecting (covering) the set of faults F={f1, f2,…,fm} of a
sequential circuit. Every test sequence Si=(v1,…,vLi),
i=1…n, is an ordered set of the Li test vectors v1,…,vLi,
where Li is the length of Si. For example, the test set
T={S1, S2, S3, S4} of fig.1 detects the set of faults
F={f1,f2,f3,f4,f5,f6} and its sequences have lengths L1=7,
L2=6, L3=7 and L4=7. A fault fi within a sequence Sj has a
detection cost dij equal to the number of vectors from the
beginning of the sequence until fi becomes detected in Sj.
In fig. 1, for fault f1 it is d11=7, d12=2, and d14=3.

The compaction problem is to find a collection of
subsequences, i.e. subsets of vector sequences, so that all
faults in F are covered and the test length of the collection
is a minimum.

Figure 1. Set of Test Sequences

We may formulate the compaction problem as a set
covering problem, as follows: Every test sequence
Si=(v1,…,vLi) is expanded into all possible subsequences
Si1=(v1), Si2=(v1,v2), ... SiLi=(v1,...,vLi), i.e. every sequence
Si generates Li (i=1…n) subsequences with lengths Li1 ...
Lii. Then, matrix Cmp is built, with rows the m faults, and

∑=
i

iLp columns, a column for each subsequence. The

matrix element cij takes the value cij=1 when subsequence
(column) j detects fault (row) i and cij=0 otherwise.

It is noted that it is not necessary to expand a sequence
to all its possible subsequences. It is sufficient to regard
only the detection subsequences, i.e. those subsequences
the tails of which detect (cover) at least a fault.

The compaction problem now becomes a problem of

selecting from Cmp columns (subsequences) of length Lj,
covering (detecting) rows Fj (set of faults), so that:

minimum is and ∑=
j

j

j

j LFFU

Many methods have been proposed for solving set
covering problems and a long experience exists in that
field [10, 11, 23, 25]. For example, many problems in
logic synthesis may be formulated as set covering
problems, i.e. the minimization of logic functions [10, 11,
20, 21, 22, 23], the state minimization of finite state
machines [10, 22], etc.

The advantage of the above problem formulation is that
it enables the straightforward application of algorithms,
readily available from the field of logic synthesis, to solve
such problems, for example ESPRESSO [23].

Here, we have used the MINCOV algorithm from
ESPRESSO, which is available in source code, to solve
the compaction problem as formulated by Matrix Cmp. The
set covering problems, however, are inherently NP-
complete, and, with the expansion of the test sequences
into subsequences, the size of the covering matrix suffers
from exponential blow-up. This is shown in the
experiments we performed (section 5) to test the potential
of this model.

For the above reasons, we propose, in this work, a more
compact formulation of the (modified) covering matrix, as
well as certain matrix reduction rules, appropriate to the
nature of the present compaction problem (section 3).
Following the reductions, a B&B algorithm is applied to
solve the remaining, smaller, problem (section 4).

3. Modified formulation and reduction

We propose to model our compaction problem with a
modified Covering Matrix Dmn, the elements dij of which
are extended to deal with variable costs, as follows: The m
faults fi (i=1,..,m) form the rows of Dmn and the n
sequences Sj (j=1,..,n) form its columns. Matrix element
dij is a positive integer that represents the detection cost
for fault fi in sequence Sj. The convention dij=d∞ (a very
large integer value) denotes that fault fi is not detected by
sequence Sj. The Matrix Dmn for the example of fig. 1 is
given in fig. 2a. When the detection costs dij are not given
explicitly they may be computed separately by an initial
fault simulation of the given test sequences.

A matrix formulation called Detection Matrix, similar
to Matrix Dmn, is proposed in [2], though the compaction
approach followed in [2] is different.

The compaction problem now becomes a problem of
selecting from each column j of Dmn (sequence j) a subset
Fj of rows (subsequence detecting faults Fj) with cost wj
(wj=max(dij of Fj)) so that:

f1

v4

v1
v2
v3

v5
v6
v7

f6

f3
f2

f1

f2
f1

f4

f5

f3, f4, f5

S1 S2 S3

f5

S4

f2

U
j

j FF = and ∑
j

jw is minimum.

 S1 S2 S3 S4 S1 S2 S3 S4

f1 7 2 - 3 7 2 - -
f2 4 6 - 7 4 6 - -
f3 3 - 7 - 3 - 3 -
f4 3 - 2 - - - - -
f5 3 5 - 6 - - - -
f6 - - 4 - - - - -

 (a) Initial Matrix (b) Intermediate Matrix
Figure 2. Modified Covering Matrix Dmn

Since the size of matrix Dmn is large, though much

smaller than that of Cmp, we borrow techniques from logic
synthesis (essentiality [20], row and column dominance
[10, 21], partitioning [10, 11] or Gimpel’s reduction [10]
method) to first try to simplify the problem and afterwards
solve the reduced problem. However, in our case, the
elements of matrix Dmn are free to take any positive
integer value, so, it is necessary to extend the definitions
and the techniques of essentiality and dominance before
they can be applied to our problem.

Next, we propose certain rules which, iteratively
applied, try to reduce the size of Dmn while preserving the
optimality of the solution.

Rule 1 (essentiality)
A column j is an essential column, if it is the only

column that covers a row i (row i is called essential). If
column j is an essential column, then a part of it
(subsequence of Sj) must be selected in every solution of
the problem, with a cost wj at least equal to the cost dij of
that essential fault i.e. wj>dij. If more essential faults are
covered by column j then wj > Zj where Zj=max(dij, row i
is essential). The rule operates as follows:

For every column j that is identified as essential, we
remove every row i with dij ≤ Zj and change the cost of the
remaining rows p (dpj>Zj) to dpj=dpj- Zj.

Rule 2 (row elimination)
Given rows i and p, row p may be removed, without

affecting the optimality of the solution, if and only if:
• For all columns j it is: dij ≥ dpj ,
• For at least one column k it is: dik < d∞.

Rule 3 (column set dominance)
Let column j is covering the set of faults Fj={f0, f1,

f2,...,fn}, having costs: jn,j2,j1,j0, d...ddd ≤≤≤ .

Let the set of columns C={k0, k1,..., kq} (j∉C) is
covering at least Fj and let ci be the minimum detection
cost for fault fi within C.

Then we say that set C dominates j if and only if:

• ∑
=

≥
r

0i
ijr, ,c d for r=0, 1,...,n

In this rule, if column set C dominates column j then
column j may be removed without affecting the optimality
of the solution.
Proof: From the above relations, we have that every fault
and every subset of faults covered by column j may be
also covered by a proper combination of subsequences
from C with an equal or smaller collective cost. Therefore,
by removing column j solution optimality is retained.

Rule 3 is applied as follows:
For j=1 to n

1) Let C consist of the q=n-1 columns (j∉C): k1,
k2,…,kn-1

2) The q=n-1 columns are replaced with a
temporary column c with elements ci such that
for every fault i covered by the column set C it
is ci = min {di,1, di,2,…,di,n-1}.

3) Column j is checked against c for possible
dominance.

The cost of applying the three Rules 1, 2, and 3 on Dmn
is O(m2n) and becomes smaller as the matrix is reduced.

The order by which the three rules may be applied on
the matrix is not important, provided they are cycled until
no further reduction is made. The systematic application
of the reduction rules will not only reduce the size of the
problem but sometimes may lead directly to the optimum
solution.

4. The compaction algorithm

Our test compaction algorithm, hereafter referred to as

DSeqComp (fig. 3), consists of a reduction phase,
followed by an exact B&B algorithm applied to the
reduced problem (Reduced Matrix Dmn).

Figure 3. Compaction algorithm

In the reduction phase of the algorithm (fig. 3) the rules

of section 3 are repeatedly applied on the Covering Matrix
Dmn, until the cyclic core is reached. If the reduced matrix
becomes empty, then the solution obtained thus far

Input: A matrix Dmn /* Covering Matrix */
 Do { /** Do Reductions **/

Find essential columns and add the essential subseq.
to the solution with all the covered faults; /* Rule 1 */

 Apply row elimination; /*Rule 2 */
 Apply column set dominance; /* Rule 3 */
 If (no reductions are applicable)
 For (all columns ≠ j) Apply Rule 3 with q=1;
 } While (reductions are applicable);
 If (Dmn = ∅) return solution;
 Else enter Branch&Bound algorithm;

(reduction rules do not affect solution optimality) is the
optimal one.

The B&B algorithm tries to solve the reduced matrix
by exploiting certain bounds to prune the search space.

Although, for the examples presented in section 5,
DSeqComp found optimal solutions, in some cases the
produced results may not be optimal, due to user imposed
constraints (e.g. CPU time, memory).

5. Experimental results

The proposed compaction algorithm DSeqComp has
been implemented in C. The efficiency of the algorithm
was measured by running the ISCAS'89 (and
Addendum’93), ITC’99 benchmark circuits [13, 17] on a
Pentium III/933 MHz machine with 256 MB. We
experimented with the test sequences from [2]. For
comparison we have used the results obtained by the
compaction method of [2] which is a GA-based method.
Also, we have computed, whenever possible, the
minimum solution of the given example circuits, using the
B&B algorithm MINCOV of ESPRESSO [10, 23].
Therefore, we have, for most circuits an independent base
for comparison on how close the results of our compaction
method are to the optimal solution.

The results in Table 1 refer to the GATTO [15] test
sequences. Under the heading ‘Original problem’ columns
#faults and #seq determine the initial size of the covering
matrix and #vec is the collective length of the #seq
sequences. Next, under ‘MINCOV’ (wherever feasible) the
minimum results (column ‘Compacted Set’) obtained by
applying the MINCOV algorithm to the expanded set of
subsequences (column ‘Initial Size’) are presented. Under
‘method [2]’ are presented the compaction results
obtained [16] from [2] and under ‘DSeqComp’ are our
compaction results where ‘Reduced Problem’ is the
problem resulting after the iterative application of the
reduction rules (section 3).

From Table 1 it is seen that:
a) Significant reductions are obtained on all circuits, by

only applying our reduction rules. For most of the
circuits (e.g. s641 etc.) the reduced matrix is empty,
giving directly the optimal solution. For the few
remaining circuits, the reduced covering matrix is very
small. DSeqComp, compared with method [2], obtains
comparable or better results.

b) The sizes of the expanded Covering Matrices (column
‘Initial Size’), that MINCOV has to deal with, are very
large and contain 9 to 31 times more columns than the
original problem. This size increase results in higher
memory demands and may cause MINCOV to fail to
build the expanded Covering Matrix, as in the case of
examples s35932 and s38584 where the memory

demands were higher than 560MB.
Table 2 refers to test sequences produced by HITEC

[14]. For 17 circuits out of 22 the reduced matrix is
empty, the optimal solution being obtained with the
reduction rules only. For four of the remaining circuits the
results of DSeqComp are optimal. Here also, MINCOV
failed in building the Covering Matrix for s35932.

Results for the application of DSeqComp on larger
circuits from the ITC’99 benchmark suite [17] (ARTIST
[17] examples b15, b17, b21) and RAGE [18] examples
b14, b20) are presented in Table 3. From Table 3 we see
that by simply applying the reduction rules the Covering
Matrix either becomes empty (column ‘Reduced
Problem’) or is very simplified. The actual running time
of DSeqComp (column ‘net Time’) is very small.
MINCOV succeeded in solving only two of the examples.

As we see from Tables 1, 2 and 3, DSeqComp reduces
the initial test sets about 50% on the average.

The speed of DSeqComp is compared in Table 4 with
that of the GA compaction algorithm of [2] and with
MINCOV, for the examples where MINCOV succeeded
in solving the Covering Matrix. Since method [2] was run
on a different machine (SUN SPARCstation 5/110) the
results from [2] are multiplied by the factor 110/933 (row
‘Norm. CPU (sec)’). From Table 4 we see that DSeqComp
is orders of magnitude faster (including disk I/O time) as
compared to [2] and MINCOV, while it attains
comparable or better compaction results.

In our examples we observed, experimentally, that not
only the complexity of applying the reduction rules is
O(m2n) but also the execution time of our combined
method (reductions + Branch&Bound) shows polynomial
behavior.

6. Conclusions

The test set compaction problem without fault
simulation is formulated here, first, as a Set Covering
Problem. However, because of its complexity, a Modified
Covering Matrix is proposed, where the matrix elements
indicate the variable costs (number of vectors) of selecting
partial columns (subsequences) to cover specific rows
(faults). Further, three simplification rules are proposed,
which iteratively applied, lead to a new matrix of smaller
size, without sacrificing the optimality of the solution of
the original problem. To the smaller problem a B&B
minimization algorithm is applied.

Experimental results indicate that the reduction rules
alone effect significant reductions on the size of the
problem and in many cases they produce directly the
optimum solution. The results of our method are
compared with results (a) from the literature and (b) with
the absolute minima of these test sets as computed by

ESPRESSO, whenever possible, to get a better measure
of efficiency. The obtained compaction results achieve,
for most examples for which the minima are known, the

optimal solution. Considerable is also the speed of the
algorithm.

Table 1. Problem size and results for GATTO Test Sets

Reduced
Problem

#faults #seq #vec. #seq. #vec. #seq #vec. #seq #vec. #faultsx#seq #seq #vec.
s510 551 37 989 926 18042 7 239 7 239 5 x 6 7 239
s641 407 48 395 432 2567 24 223 24 223 0 x 0 24 223
s713 481 55 557 594 4051 23 252 23 252 0 x 0 23 252
s820 435 38 669 492 7730 14 349 14 349 0 x 0 14 349
s838 389 37 1323 502 9315 11 475 11 475 3 x 4 11 475
s938 389 37 1323 502 9315 11 475 11 475 3 x 4 11 475
s953 1044 75 1099 1153 10720 32 541 32 541 0 x 0 32 541
s967 1019 72 1223 1217 13474 31 671 31 671 5 x 6 31 671
s991 857 20 448 334 5214 9 367 9 367 0 x 0 9 367
s1196 1200 133 1805 1747 19340 74 1126 73 1133 0 x 0 74 1126
s1238 1227 133 1554 1513 15671 74 1006 72 1009 0 x 0 74 1006
s1269 1306 52 450 500 2868 29 247 29 247 11 x 11 29 247
s1423 1418 107 2691 1892 39653 28 1281 28 1286 0 x 0 28 1281
s1488 1422 65 1824 1575 38500 19 948 19 948 0 x 0 19 948
s1494 1412 62 1244 1060 16816 19 654 19 654 0 x 0 19 654
s1512 774 52 772 718 6659 14 291 14 291 3 x 4 14 291
s3271 3188 132 2529 2210 23891 50 1180 50 1534 8 x 11 50 1180
s3330 2336 108 2028 1916 28824 43 1069 44 1069 4 x 5 43 1069
s3384 3096 58 888 872 11503 22 412 22 412 5 x 6 22 412
s4863 4482 112 1533 1475 16252 41 747 42 748 5 x 7 41 747
s5378 3271 71 919 920 8789 42 495 41 495 0 x 0 42 495
s6669 6507 64 592 656 3840 36 303 36 305 6 x 7 36 303
s13207 1994 34 544 518 5035 9 189 9 189 0 x 0 9 189
s35932 34302 59 903 880 12733 - - 8 310 0 x 0 8 310
s38417 6516 95 1617 1614 20376 30 686 31 699 7 x 9 30 686
s38584 18390 271 8065 8334 178918 - - 108 3891 7 x 9 105 3808

circuit Original Problem
DSeqComp

Initial Size

MINCOV
method [2] Compacted

Set
Compacted

Set

Table 2. Problem size and results for HITEC Test Sets

Reduced
Problem

#faults #seq #vec. #seq. #vec. #seq #vec. #seq #vec. #faultsx#seq #seq #vec.
s832 750 112 1057 1170 8123 60 619 60 620 0 x 0 60 619
s838 382 52 675 335 4365 12 312 12 312 6 x 6 12 312
s938 382 52 675 335 4365 12 312 12 312 6 x 6 12 312
s953 974 111 825 935 5661 38 406 38 406 0 x 0 38 406
s967 939 120 831 950 5681 38 409 38 409 0 x 0 38 409
s991 825 50 83 133 312 25 48 25 48 0 x 0 25 48
s1196 1200 189 509 698 2259 110 339 109 341 0 x 0 110 339
s1238 1241 191 513 704 2291 109 334 108 334 0 x 0 109 334
s1269 1148 67 254 322 1192 26 138 25 157 0 x 0 26 138
s1423 987 50 282 304 2119 17 189 16 189 0 x 0 17 189
s1488 740 24 69 93 288 16 58 16 58 0 x 0 16 58
s1494 1217 60 523 573 3866 43 420 43 426 0 x 0 43 420
s3271 3054 61 984 889 10142 19 489 22 491 3 x 4 19 489
s3330 2274 133 763 890 4148 86 550 85 550 0 x 0 86 550
s3384 3042 18 211 212 2795 9 166 8 166 0 x 0 9 166
s4863 4404 106 375 463 1733 58 258 57 258 0 x 0 58 258
s5378 3061 95 250 345 993 49 154 49 154 0 x 0 49 154
s6669 6493 68 466 534 3379 23 261 22 261 0 x 0 23 261
s13207 1712 15 96 112 621 6 59 6 59 0 x 0 6 59
s35932 34136 376 1712 2084 13835 - - 13 246 0 x 0 11 244
s38417 4210 281 805 1087 3782 15 133 14 133 0 x 0 15 133
s38584 11448 48 509 557 6059 30 437 30 437 0 x 0 30 437

circuit Original Problem
DSeqComp

Initial Size

MINCOV
method [2] Compacted

Set
Compacted

Set

Table 3. Problem size and results for ARTIST-RAGE Test Sets

Reduced
Problem

#faults #seq #vec. #seq #vec. #vec. Time (s)/net Time(s) #faultsx#seq #seq #vec. Time (s)/net Time(s)
b14 10503 105 7715 5752 269174 - - 0 x 0 39 2996 1.20 / 0.03
b15 7146 59 2733 1323 26111 1359 24.5 / 4.4 0 x 0 36 1359 1.25 / 0.05
b17 9591 69 1197 980 14829 694 52.9 / 7.24 0 x 0 24 694 4.06 / 0
b20 20421 142 10932 9754 415166 - - 3 x 4 78 5517 3.46 / 0.06
b21 22010 81 7015 5569 406820 - - 0 x 0 40 5265 2.08 / 0

circuit
MINCOV

Initial Size Compacted Set

DSeqComp

Compacted Set
Original Problem

Table 4. CPU time results

method [2] DSeqComp method [2] DSeqComp MINCOV DSeqComp MINCOV DSeqComp

Total Time (CPU sec) 8495 12 11325 19.4 409 3.25 102.75 3.6

Norm. CPU (sec) 1002 12 1335 19.4 409 3.25 102.75 3.6

Norm. to DSeqComp 83 1 69 1 126 1 29 1

HITEC Test SetGATTO Test Set HITEC Test Set GATTO Test Set

References

[1] M. Abramovici, M. Breuer, A. Friedman, "Digital Systems

Testing and Testable Design", IEEE Press, 1990.
[2] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda,

"New Static Compaction Techniques of Test Sequences for
Synchronous Sequential Circuits", ED&TC, 1997, pp. 37-
43 (Test matrices from: http://www.cad.polito.it/tools/.).

[3] T. M. Niermann, R. K. Roy, J. H. Patel, J. A. Abraham,
"Test Compaction for Sequential Circuits", IEEE Trans.
Computer-Aided Design, Feb. 1992, pp. 260-267.

[4] B. So, "Time-Efficient Automatic Test Pattern Generation
Systems", Ph.D. Thesis, EE Dept., Univ. of Wisconsin at
Madison, 1994.

[5] I. Pomeranz and S. M. Reddy, "On Static Compaction of
Test Sequences for Synchronous Sequential Circuits",
Design Automation Conference, June 1996, pp. 215-220.

[6] K. O. Boateng, H. Konishi, T. Nakata, "A Method of Static
Compaction of Test Stimuli", Proc. of the 10th Asian Test
Symposium, 2001.

[7] J.Raik, A.Jutman, R.Ubar, "Exact Static Compaction of
Sequential Circuit Tests using branch-and-bound and
Search State Registration", IEEE European Test
Workshop, 2002.

[8] I. Pomeranz, S. Reddy, "Vector Replacement to Improve
Static-Test Compaction for Synchronous Sequential
Circuits", IEEE Trans. on CAD, Feb. 2001, pp. 336-342.

[9] I. Pomeranz, S. Reddy, "Reverse-Order-Restoration-Based
Static Test Compaction for Synchronous Sequential
Circuits", IEEE Trans. Computer-Aided Design, vol. 22,
no. 3, March 2003, pp. 293-304.

[10] T. Villa, "Encoding Problems in Logic Synthesis", Ph.D.
Thesis, EECS, Univ. of California at Berkeley, 1995.

[11] O. Coudert, "Two-level logic minimization: An overview",
Integration, VLSI journal, Oct. 1994, pp. 97-140.

[12] S. K. Bommu, S. T. Chakradhar and K. B. Doreswamy,
"Static Compaction Using Overlapped Restoration and
Segment Pruning", Int. Conf. on Computer-Aided Design,
Nov. 1998, pp. 140-146.

[13] F. Brglez, D. Bryan and K. Kozminski, "Combinational
profiles of sequential benchmark circuits", Int. Symposium
on Circuits and Systems, 1989, pp. 1929-1934.

[14] T. M. Niermann and J. H. Patel, "HITEC: A test generation
package for sequential circuits", Proc. of the European
Conf. on Design Autom., 1991, pp. 214-218.

[15] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda,
"GATTO: A Genetic Algorithm for Automatic Test Pattern
Generation for Large Synchronous Sequential Circuits",
IEEE Trans. on CAD, Vol. 15, No 8, Aug. 1996, pp. 991-
1000.

[16] Priv. communication with Prof. F. Corno, co-author of [2].
[17] F. Corno, M. Sonza Reorda, G. Squillero, "RT-level

ITC’99 Benchmarks and First ATPG Results", IEEE
Design & Test of Computers, vol. 17, July-Sept. 2000, pp.
44-53. [Online]. Available: http://www.cad.polito.it/tools/.

[18] F. Corno, M. Sonza Reorda, P. Prinetto, "Testability
analysis and ATPG on behavioral RT-level VHDL", IEEE
International Test Conference, 1997. [Online]. Available:
http://www.cad.polito.it/tools/.)

[19] M. S. Hsiao, E. M. Rudnick and J. H. Patel, "Fast
Algorithms for Static Compaction of Sequential Circuits
Test Vectors", Proc. VLSI Test Symp., April 1997, pp. 188-
195.

[20] W. Quine, "A Way to Simplify Truth Functions",
American Math. Monthly, Vol. 62, 1955, pp. 627-631.

[21] E. McCluskey, "Minimization of Boolean Functions", Bell
System Technical Journal, Vol. 35, 1959, pp. 1417-1444.

[22] G. Hachtel, F. Somenzi, “Logic Synthesis and Verification
Algorithms”, Kluwer Academic Publishers,1996.

[23] R. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-
Vincentelli, “Logic Minimization Algorithms for VLSI
Synthesis”, Kluwer Academic Publishers,1992.

[24] M. Dimopoulos, P. Linardis, "Improving a GA-based
ATPG for Sequential Circuits by Exploiting Dynamically
Generated Essential Sequences", in ‘Advances in Scientific
Computing, Computational Intelligence and Applications’,
WSEAS Press, 2001, pp 373-377.

[25] Fallah F., Liao S., Devadas S., "Solving covering problems
using LPR-based lower bounds", IEEE Trans. on VLSI
Systems, Vol. 8, no. 1, Feb. 2000, pp. 9-17.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

