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Abstract 

 
The test sequence compaction problem is modeled 

here, first, as a set covering problem. This formulation 
enables the straightforward application of set covering 
methods for compaction. Because of the complexity 
inherent in the first model, a second more efficient, 
formulation is proposed where the test sequences are 
modeled as matrix columns with variable costs (number of 
vectors). Further, matrix reduction rules appropriate to 
the new formulation, which do not affect the optimality of 
the solution, are introduced. Finally, the reduced problem 
is minimized with a Branch & Bound algorithm. 
Experiments on a large number of test sets show 
significant reductions to the original problem by simply 
using the presented reduction rules. Experimental results 
comparing our method with others from the literature and 
also with the absolute minima of the examples, computed 
separately with the MINCOV algorithm, support the 
potential of the proposed approach. 
 

 

1.  Introduction 
 
The cost of testing a digital system is greatly affected 

by the length of the set of test sequences applied. 
Automatic Test Pattern Generation (ATPG) methods for 
sequential circuits try to find sequences of input vectors 
(test sequences) that detect all single stuck-at faults [1] in 
the circuit. Since ATPG is a highly complex task usually 
very long test sequences are produced and therefore 
shorter (compact) test sequences are always desirable. 

Many compaction procedures, static or dynamic, have 
been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 19]. Dynamic 
compaction is applied during test generation. Static 
compaction is applied after test generation, independently 
of the particular test generator. Here we shall concentrate 
on static compaction methods. 

Static compaction methods may be divided into those 
that iteratively fault simulate a single (produced usually 

after concatenation) test sequence and into those that try to 
exploit the existing redundancy in a given set of test 
sequences (without fault simulation). The Vector 
Omission [5] method operates on a single sequence and 
achieves very good compaction ratios, at the expense of 
long execution times (fault simulation is required at every 
step). The Vector Restoration [8, 9] method also achieves 
very high levels of compaction and operates on a single 
sequence but relies heavily on fault simulation. 

In this work we consider static compaction methods 
that try to exploit the existing redundancy in a given set T 
of test sequences (test set). This situation is usual in fault 
oriented [1, 24] ATPG methods which produce each test 
sequence by targeting a specific fault. 

There exist many static compaction methods which 
operate on a set of test sequences [2, 3, 4, 6, 7]. In [2] the 
test sequences are statically compacted, without fault 
simulation, by using a Genetic Algorithm (GA) to find and 
remove redundant vectors from the sequences. In [5] a 
procedure named Vector Selection is proposed in which 
test subsequences for every fault are extracted from a 
single test sequence. After collecting all subsequences, a 
set covering method is applied with the purpose of 
selecting a minimal subset of sequences to detect all 
faults. The method, however, relies on fault simulation. In 
[6] the test compaction problem is formulated as a 
minimization problem and a static compaction method is 
developed. However, results are presented only for 
combinational circuits and no details are given for the 
algorithm developed for sequential circuits. In [7] an exact 
method based on a Branch & Bound algorithm is 
presented. 

In this paper we propose an algorithm for the static 
compaction of test sets for sequential circuits, exploiting 
the principles of a set-covering model [10, 22] without 
employing fault simulation. Since, however, the 
transformation of the compaction problem into a set-
covering formulation [10, 11, 22] with single costs results 
in a matrix expansion, this formulation was modified here 
to account for variable column costs, necessary for the 
present problem (partial columns may be selected). A set 
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of reduction rules is then applied aiming at simplifying the 
initial covering matrix. Finally, a B&B procedure is 
proposed to solve the remaining reduced problem. 

The paper is organized as follows: In section 2 the 
compaction problem is formulated as a set-covering 
problem. In section 3 a modified formulation of the 
problem and matrix reduction rules are proposed. In 
section 4 the final compaction algorithm is presented. In 
section 5 the experimental results concerning the 
efficiency of the proposed method are presented. 
 

2.  The compaction problem 
 

Let us consider a set of test sequences T={S1, S2,…,Sn} 
detecting (covering) the set of faults F={f1, f2,…,fm} of a 
sequential circuit. Every test sequence Si=(v1,…,vLi), 
i=1…n, is an ordered set of the Li test vectors v1,…,vLi, 
where Li is the length of Si. For example, the test set 
T={S1, S2, S3, S4} of fig.1 detects the set of faults 
F={f1,f2,f3,f4,f5,f6} and its sequences have lengths L1=7, 
L2=6, L3=7 and L4=7. A fault fi within a sequence Sj has a 
detection cost dij equal to the number of vectors from the 
beginning of the sequence until fi becomes detected in Sj. 
In fig. 1, for fault f1 it is d11=7, d12=2, and d14=3. 

The compaction problem is to find a collection of 
subsequences, i.e. subsets of vector sequences, so that all 
faults in F are covered and the test length of the collection 
is a minimum. 

Figure 1. Set of Test Sequences 
 

We may formulate the compaction problem as a set 
covering problem, as follows: Every test sequence 
Si=(v1,…,vLi) is expanded into all possible subsequences 
Si1=(v1), Si2=(v1,v2), ... SiLi=(v1,...,vLi), i.e. every sequence 
Si generates Li (i=1…n) subsequences with lengths Li1 ... 
Lii. Then, matrix Cmp is built, with rows the m faults, and 

∑=
i

iLp  columns, a column for each subsequence. The 

matrix element cij takes the value cij=1 when subsequence 
(column) j detects fault (row) i and cij=0 otherwise.  

It is noted that it is not necessary to expand a sequence 
to all its possible subsequences. It is sufficient to regard 
only the detection subsequences, i.e. those subsequences 
the tails of which detect (cover) at least a fault. 

The compaction problem now becomes a problem of 

selecting from Cmp columns (subsequences) of length Lj, 
covering (detecting) rows Fj (set of faults), so that: 

minimum is          and       ∑=
j

j

j

j LFFU  

Many methods have been proposed for solving set 
covering problems and a long experience exists in that 
field [10, 11, 23, 25]. For example, many problems in 
logic synthesis may be formulated as set covering 
problems, i.e. the minimization of logic functions [10, 11, 
20, 21, 22, 23], the state minimization of finite state 
machines [10, 22], etc. 

The advantage of the above problem formulation is that 
it enables the straightforward application of algorithms, 
readily available from the field of logic synthesis, to solve 
such problems, for example ESPRESSO [23]. 

Here, we have used the MINCOV algorithm from 
ESPRESSO, which is available in source code, to solve 
the compaction problem as formulated by Matrix Cmp. The 
set covering problems, however, are inherently NP-
complete, and, with the expansion of the test sequences 
into subsequences, the size of the covering matrix suffers 
from exponential blow-up. This is shown in the 
experiments we performed (section 5) to test the potential 
of this model. 

For the above reasons, we propose, in this work, a more 
compact formulation of the (modified) covering matrix, as 
well as certain matrix reduction rules, appropriate to the 
nature of the present compaction problem (section 3). 
Following the reductions, a B&B algorithm is applied to 
solve the remaining, smaller, problem (section 4). 
 

3.  Modified formulation and reduction 
 

We propose to model our compaction problem with a 
modified Covering Matrix Dmn, the elements dij of which 
are extended to deal with variable costs, as follows: The m 
faults fi (i=1,..,m) form the rows of Dmn and the n 
sequences Sj (j=1,..,n) form its columns. Matrix element 
dij is a positive integer that represents the detection cost 
for fault fi in sequence Sj. The convention dij=d∞ (a very 
large integer value) denotes that fault fi is not detected by 
sequence Sj. The Matrix Dmn for the example of fig. 1 is 
given in fig. 2a. When the detection costs dij are not given 
explicitly they may be computed separately by an initial 
fault simulation of the given test sequences. 

A matrix formulation called Detection Matrix, similar 
to Matrix Dmn, is proposed in [2], though the compaction 
approach followed in [2] is different. 

The compaction problem now becomes a problem of 
selecting from each column j of Dmn (sequence j) a subset 
Fj of rows (subsequence detecting faults Fj) with cost wj 
(wj=max(dij of Fj)) so that: 

f1 
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 S1 S2 S3 S4  S1 S2 S3 S4 

f1 7 2 - 3  7 2 - - 
f2 4 6 - 7  4 6 - - 
f3 3 - 7 -  3 - 3 - 
f4 3 - 2 -  - - - - 
f5 3 5 - 6  - - - - 
f6 - - 4 -  - - - - 

           (a) Initial Matrix       (b) Intermediate Matrix  
Figure 2. Modified Covering Matrix Dmn 

 
Since the size of matrix Dmn is large, though much 

smaller than that of Cmp, we borrow techniques from logic 
synthesis (essentiality [20], row and column dominance 
[10, 21], partitioning [10, 11] or Gimpel’s reduction [10] 
method) to first try to simplify the problem and afterwards 
solve the reduced problem. However, in our case, the 
elements of matrix Dmn are free to take any positive 
integer value, so, it is necessary to extend the definitions 
and the techniques of essentiality and dominance before 
they can be applied to our problem. 

Next, we propose certain rules which, iteratively 
applied, try to reduce the size of Dmn while preserving the 
optimality of the solution. 
 

Rule 1 (essentiality) 
A column j is an essential column, if it is the only 

column that covers a row i (row i is called essential). If 
column j is an essential column, then a part of it 
(subsequence of Sj) must be selected in every solution of 
the problem, with a cost wj at least equal to the cost dij of 
that essential fault i.e. wj>dij. If more essential faults are 
covered by column j then wj > Zj where Zj=max(dij, row i 
is essential). The rule operates as follows: 

For every column j that is identified as essential, we 
remove every row i with dij ≤ Zj and change the cost of the 
remaining rows p (dpj>Zj) to dpj=dpj- Zj. 
 

Rule 2 (row elimination) 
Given rows i and p, row p may be removed, without 

affecting the optimality of the solution, if and only if: 
• For all columns j it is:   dij ≥ dpj , 
• For at least one column k it is:  dik < d∞. 

 

Rule 3 (column set dominance) 
Let column j is covering the set of faults Fj={f0, f1, 

f2,...,fn}, having costs: jn,j2,j1,j0, d...ddd ≤≤≤ . 

Let the set of columns C={k0, k1,..., kq} (j∉C) is 
covering at least Fj and let ci be the minimum detection 
cost for fault fi within C. 

Then we say that set C dominates j if and only if:  

•     ∑
=

≥
r

0i
ijr, ,c  d   for r=0, 1,...,n 

In this rule, if column set C dominates column j then 
column j may be removed without affecting the optimality 
of the solution. 
Proof: From the above relations, we have that every fault 
and every subset of faults covered by column j may be 
also covered by a proper combination of subsequences 
from C with an equal or smaller collective cost. Therefore, 
by removing column j solution optimality is retained. 

Rule 3 is applied as follows: 
For j=1 to n 

1) Let C consist of the q=n-1 columns (j∉C): k1, 
k2,…,kn-1 

2) The q=n-1 columns are replaced with a 
temporary column c with elements ci such that 
for every fault i covered by the column set C it 
is ci = min {di,1, di,2,…,di,n-1}. 

3) Column j is checked against c for possible 
dominance. 

The cost of applying the three Rules 1, 2, and 3 on Dmn 
is O(m2n) and becomes smaller as the matrix is reduced. 

The order by which the three rules may be applied on 
the matrix is not important, provided they are cycled until 
no further reduction is made. The systematic application 
of the reduction rules will not only reduce the size of the 
problem but sometimes may lead directly to the optimum 
solution. 

 

4.  The compaction algorithm 
 
Our test compaction algorithm, hereafter referred to as 

DSeqComp (fig. 3), consists of a reduction phase, 
followed by an exact B&B algorithm applied to the 
reduced problem (Reduced Matrix Dmn). 

Figure 3. Compaction algorithm 
 
In the reduction phase of the algorithm (fig. 3) the rules 

of section 3 are repeatedly applied on the Covering Matrix 
Dmn, until the cyclic core is reached. If the reduced matrix 
becomes empty, then the solution obtained thus far 

Input: A matrix Dmn /* Covering Matrix */ 
   Do {      /**  Do Reductions  **/ 

Find essential columns and add the essential subseq. 
to the solution with all the covered faults; /* Rule 1 */ 

          Apply row elimination;                           /*Rule 2 */ 
          Apply column set dominance;           /* Rule 3 */ 
          If (no reductions are applicable)  
              For (all columns ≠ j) Apply Rule 3 with q=1; 
    } While (reductions are applicable); 
    If (Dmn = ∅) return solution; 
    Else enter Branch&Bound algorithm; 



(reduction rules do not affect solution optimality) is the 
optimal one. 

The B&B algorithm tries to solve the reduced matrix 
by exploiting certain bounds to prune the search space. 

Although, for the examples presented in section 5, 
DSeqComp found optimal solutions, in some cases the 
produced results may not be optimal, due to user imposed 
constraints (e.g. CPU time, memory). 
 

5.  Experimental results 
 

The proposed compaction algorithm DSeqComp has 
been implemented in C. The efficiency of the algorithm 
was measured by running the ISCAS'89 (and 
Addendum’93), ITC’99 benchmark circuits [13, 17] on a 
Pentium III/933 MHz machine with 256 MB. We 
experimented with the test sequences from [2]. For 
comparison we have used the results obtained by the 
compaction method of [2] which is a GA-based method. 
Also, we have computed, whenever possible, the 
minimum solution of the given example circuits, using the 
B&B algorithm MINCOV of ESPRESSO [10, 23]. 
Therefore, we have, for most circuits an independent base 
for comparison on how close the results of our compaction 
method are to the optimal solution. 

The results in Table 1 refer to the GATTO [15] test 
sequences. Under the heading ‘Original problem’ columns 
#faults and #seq determine the initial size of the covering 
matrix and #vec is the collective length of the #seq 
sequences. Next, under ‘MINCOV’ (wherever feasible) the 
minimum results (column ‘Compacted Set’) obtained by 
applying the MINCOV algorithm to the expanded set of 
subsequences (column ‘Initial Size’) are presented. Under 
‘method [2]’ are presented the compaction results 
obtained [16] from [2] and under ‘DSeqComp’ are our 
compaction results where ‘Reduced Problem’ is the 
problem resulting after the iterative application of the 
reduction rules (section 3). 

From Table 1 it is seen that: 
a) Significant reductions are obtained on all circuits, by 

only applying our reduction rules. For most of the 
circuits (e.g. s641 etc.) the reduced matrix is empty, 
giving directly the optimal solution. For the few 
remaining circuits, the reduced covering matrix is very 
small. DSeqComp, compared with method [2], obtains 
comparable or better results. 

b) The sizes of the expanded Covering Matrices (column 
‘Initial Size’), that MINCOV has to deal with, are very 
large and contain 9 to 31 times more columns than the 
original problem. This size increase results in higher 
memory demands and may cause MINCOV to fail to 
build the expanded Covering Matrix, as in the case of 
examples s35932 and s38584 where the memory 

demands were higher than 560MB. 
Table 2 refers to test sequences produced by HITEC 

[14]. For 17 circuits out of 22 the reduced matrix is 
empty, the optimal solution being obtained with the 
reduction rules only. For four of the remaining circuits the 
results of DSeqComp are optimal. Here also, MINCOV 
failed in building the Covering Matrix for s35932. 

Results for the application of DSeqComp on larger 
circuits from the ITC’99 benchmark suite [17] (ARTIST 
[17] examples b15, b17, b21) and RAGE [18] examples 
b14, b20) are presented in Table 3. From Table 3 we see 
that by simply applying the reduction rules the Covering 
Matrix either becomes empty (column ‘Reduced 
Problem’) or is very simplified. The actual running time 
of DSeqComp (column ‘net Time’) is very small. 
MINCOV succeeded in solving only two of the examples. 

As we see from Tables 1, 2 and 3, DSeqComp reduces 
the initial test sets about 50% on the average. 

The speed of DSeqComp is compared in Table 4 with 
that of the GA compaction algorithm of [2] and with 
MINCOV, for the examples where MINCOV succeeded 
in solving the Covering Matrix. Since method [2] was run 
on a different machine (SUN SPARCstation 5/110) the 
results from [2] are multiplied by the factor 110/933 (row 
‘Norm. CPU (sec)’). From Table 4 we see that DSeqComp 
is orders of magnitude faster (including disk I/O time) as 
compared to [2] and MINCOV, while it attains 
comparable or better compaction results. 

In our examples we observed, experimentally, that not 
only the complexity of applying the reduction rules is 
O(m2n) but also the execution time of our combined 
method (reductions + Branch&Bound) shows polynomial 
behavior. 
 

6.  Conclusions 
 

The test set compaction problem without fault 
simulation is formulated here, first, as a Set Covering 
Problem. However, because of its complexity, a Modified 
Covering Matrix is proposed, where the matrix elements 
indicate the variable costs (number of vectors) of selecting 
partial columns (subsequences) to cover specific rows 
(faults). Further, three simplification rules are proposed, 
which iteratively applied, lead to a new matrix of smaller 
size, without sacrificing the optimality of the solution of 
the original problem. To the smaller problem a B&B 
minimization algorithm is applied. 

Experimental results indicate that the reduction rules 
alone effect significant reductions on the size of the 
problem and in many cases they produce directly the 
optimum solution. The results of our method are 
compared with results (a) from the literature and (b) with 
the absolute minima of these test sets as computed by 



ESPRESSO, whenever possible, to get a  better  measure 
of efficiency. The obtained compaction results achieve, 
for most examples for which the minima are known, the 

optimal solution. Considerable is also the speed of the 
algorithm. 

 
 

Table 1. Problem size and results for GATTO Test Sets 

Reduced  
Problem

#faults #seq #vec. #seq. #vec. #seq #vec. #seq #vec. #faultsx#seq #seq #vec.
s510 551 37 989 926 18042 7 239 7 239 5 x 6 7 239
s641 407 48 395 432 2567 24 223 24 223 0 x 0 24 223
s713 481 55 557 594 4051 23 252 23 252 0 x 0 23 252
s820 435 38 669 492 7730 14 349 14 349 0 x 0 14 349
s838 389 37 1323 502 9315 11 475 11 475 3 x 4 11 475
s938 389 37 1323 502 9315 11 475 11 475 3 x 4 11 475
s953 1044 75 1099 1153 10720 32 541 32 541 0 x 0 32 541
s967 1019 72 1223 1217 13474 31 671 31 671 5 x 6 31 671
s991 857 20 448 334 5214 9 367 9 367 0 x 0 9 367
s1196 1200 133 1805 1747 19340 74 1126 73 1133 0 x 0 74 1126
s1238 1227 133 1554 1513 15671 74 1006 72 1009 0 x 0 74 1006
s1269 1306 52 450 500 2868 29 247 29 247 11 x 11 29 247
s1423 1418 107 2691 1892 39653 28 1281 28 1286 0 x 0 28 1281
s1488 1422 65 1824 1575 38500 19 948 19 948 0 x 0 19 948
s1494 1412 62 1244 1060 16816 19 654 19 654 0 x 0 19 654
s1512 774 52 772 718 6659 14 291 14 291 3 x 4 14 291
s3271 3188 132 2529 2210 23891 50 1180 50 1534 8 x 11 50 1180
s3330 2336 108 2028 1916 28824 43 1069 44 1069 4 x 5 43 1069
s3384 3096 58 888 872 11503 22 412 22 412 5 x 6 22 412
s4863 4482 112 1533 1475 16252 41 747 42 748 5 x 7 41 747
s5378 3271 71 919 920 8789 42 495 41 495 0 x 0 42 495
s6669 6507 64 592 656 3840 36 303 36 305 6 x 7 36 303
s13207 1994 34 544 518 5035 9 189 9 189 0 x 0 9 189
s35932 34302 59 903 880 12733 - - 8 310 0 x 0 8 310
s38417 6516 95 1617 1614 20376 30 686 31 699 7 x 9 30 686
s38584 18390 271 8065 8334 178918 - - 108 3891 7 x 9 105 3808

circuit Original Problem
DSeqComp

Initial Size

MINCOV
method [2] Compacted 

Set
Compacted 

Set

 
 

Table 2. Problem size and results for HITEC Test Sets 

Reduced  
Problem

#faults #seq #vec. #seq. #vec. #seq #vec. #seq #vec. #faultsx#seq #seq #vec.
s832 750 112 1057 1170 8123 60 619 60 620 0 x 0 60 619
s838 382 52 675 335 4365 12 312 12 312 6 x 6 12 312
s938 382 52 675 335 4365 12 312 12 312 6 x 6 12 312
s953 974 111 825 935 5661 38 406 38 406 0 x 0 38 406
s967 939 120 831 950 5681 38 409 38 409 0 x 0 38 409
s991 825 50 83 133 312 25 48 25 48 0 x 0 25 48
s1196 1200 189 509 698 2259 110 339 109 341 0 x 0 110 339
s1238 1241 191 513 704 2291 109 334 108 334 0 x 0 109 334
s1269 1148 67 254 322 1192 26 138 25 157 0 x 0 26 138
s1423 987 50 282 304 2119 17 189 16 189 0 x 0 17 189
s1488 740 24 69 93 288 16 58 16 58 0 x 0 16 58
s1494 1217 60 523 573 3866 43 420 43 426 0 x 0 43 420
s3271 3054 61 984 889 10142 19 489 22 491 3 x 4 19 489
s3330 2274 133 763 890 4148 86 550 85 550 0 x 0 86 550
s3384 3042 18 211 212 2795 9 166 8 166 0 x 0 9 166
s4863 4404 106 375 463 1733 58 258 57 258 0 x 0 58 258
s5378 3061 95 250 345 993 49 154 49 154 0 x 0 49 154
s6669 6493 68 466 534 3379 23 261 22 261 0 x 0 23 261
s13207 1712 15 96 112 621 6 59 6 59 0 x 0 6 59
s35932 34136 376 1712 2084 13835 - - 13 246 0 x 0 11 244
s38417 4210 281 805 1087 3782 15 133 14 133 0 x 0 15 133
s38584 11448 48 509 557 6059 30 437 30 437 0 x 0 30 437

circuit Original Problem
DSeqComp

Initial Size

MINCOV
method [2] Compacted 

Set
Compacted 

Set

 



Table 3. Problem size and results for ARTIST-RAGE Test Sets 

Reduced   
Problem

#faults #seq #vec. #seq #vec. #vec. Time (s)/net Time(s) #faultsx#seq #seq #vec. Time (s)/net Time(s)
b14 10503 105 7715 5752 269174 - - 0 x 0 39 2996 1.20 / 0.03
b15 7146 59 2733 1323 26111 1359 24.5 / 4.4 0 x 0 36 1359 1.25 / 0.05
b17 9591 69 1197 980 14829 694 52.9 / 7.24 0 x 0 24 694 4.06 / 0
b20 20421 142 10932 9754 415166 - - 3 x 4 78 5517 3.46 / 0.06
b21 22010 81 7015 5569 406820 - - 0 x 0 40 5265 2.08 / 0

circuit
MINCOV

Initial Size Compacted Set

DSeqComp

Compacted Set
Original Problem

 
 

Table 4. CPU time results 

method [2] DSeqComp method [2] DSeqComp MINCOV DSeqComp MINCOV DSeqComp

Total Time  (CPU sec) 8495 12 11325 19.4 409 3.25 102.75 3.6

Norm. CPU (sec) 1002 12 1335 19.4 409 3.25 102.75 3.6

Norm. to DSeqComp 83 1 69 1 126 1 29 1

HITEC Test SetGATTO Test Set HITEC Test Set GATTO Test Set
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