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Abstract* 

Microprocessor soft cores offer today an effective 
solution to the problem of rapidly developing new system-
on-a-chips. However, all the features they offer are rarely 
used in embedded applications, and thus designers are 
often involved in the challenging task of soft-core 
customization to obtain  application-specific processors. 
This paper proposes a novel approach to help designers 
in the simulation-based validation of application-specific 
processors. Suitable input stimuli are automatically 
generated while reasoning only on the software 
application the processor is intended to execute, while all 
the details concerning the processor hardware are 
neglected. Experimental results on a 8051 soft core show 
the effectiveness of the proposed approach. 

 

1. Introduction 

Thanks to the availability of deep sub-micron 
technologies, designers have now plenty of silicon area 
for their designs, up to the point that it is now common to 
find embedded systems integrated on a single chip that 
feature memory modules, processor cores and even 
embedded programmable logic modules.  

To effectively support the design of such a kind of 
systems, which are known as System-on-Chips (SOCs), 
vendors started offering Intellectual Property- (IP-) cores 
ready for implementing complex tasks: for example 
microprocessor cores are now available ranging from 
simple controllers (like those implementing the Intel 8051 
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instruction set) to more complex pipelined processors 
(like those based on the SPARC v8 architecture). Being 
such a kind of IP-cores available, most of the work in 
SOC design consists in integrating different IP-cores: 
designers can indeed implement a SOC by properly 
customizing and connecting the needed IP-cores coming 
from potentially very different sources. For fostering this 
design approach, several attempts have been made to 
provide IP-cores with standard interfaces. The idea behind 
them is to simplify the communications among 
heterogeneous IPs during both normal operations (like for 
example the WISHBONE interface [1]) and test ones (like 
the IEEE P1500 standard). 

Although silicon area is available in quantity, 
designers still face the need to minimize the size of their 
designs. Large area occupation still has several 
drawbacks: high manufacturing costs, low yield, high 
power consumption, just to mention a few of them. In an 
IP-core-based design flow, this implies the possibility of 
customizing the adopted IPs to make them implement just 
the needed features. IP customization is particularly 
efficient when the SOC is intended for being deployed in 
an embedded application. In this case all the IP-cores the 
SOC employs perform a very specific task that does not 
change during the SOC lifetime, and which is well 
defined since the beginning of the SOC design. Moreover, 
the customization is effective only when very complex IP-
cores are considered, as in the case of processors. For 
example, if the designed SOC is using a processor IP 
whose architecture embeds a 32x32 parallel multiplier, 
but the embedded application it is aimed at does not 
require multiplication operations, then designers can save 
a huge amount of area by removing the multiplier from 
the IP.  

Processor-core customization must be demanded to 
vendors when IPs come under the form of hard cores. In 
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this case, designers cannot modify the IP architecture and 
thus they have to fully rely on their suppliers. This may 
have dramatic impact on the IP cost, but it also greatly 
simplifies the task for the IP end users, which are freed 
from the very complex task of guaranteeing IP 
correctness. It is indeed up to IP suppliers to identify 
possible bugs introduced in the core during the 
customization process. 

Conversely, when processor cores are available as soft 
IPs, i.e., designers have fully access to the IP source code, 
the process of core customization may be performed by 
the end user, which becomes responsible also for 
guaranteeing the correct operation of the IP, i.e., of the 
validation of the resulting IP, after its un-used 
components have been removed. 

The problem of validating processor cores may be 
tackled either by means of formal methods or by means of 
simulation-based techniques. Formal methods have been 
successfully applied even to very complex architectures 
[2]-[4], but their limitations often make them suitable only 
for validating single components. As a result, most of the 
validation effort is demanded to simulation-based 
techniques: the processor is extensively stimulated with a 
wide range of workloads, whose aim is to cover all the 
possible corner cases, possibly enlightening design errors. 
For successfully achieving such a goal, the process of 
generation of the workload is crucial, since from its 
goodness it depends the possibility of effectively 
discovering design bugs. Several approaches have been 
proposed in literature to solve the complex problem of 
generating suitable workloads for general-purpose 
processors. They rely either on high-level behavioral 
HDL descriptions of the processors, or on more detailed 
register-transfer models to generate and evaluate the 
goodness of the computed workloads versus pre-defined 
metrics [5][6]. No matter which approach is adopted, the 
produced workloads consist of test programs the 
processor core should execute and suitable input stimuli 
for the test programs.  

The workload computation problem can be greatly 
simplified when the processor cores to be validated are 
intended for being deployed in embedded applications. In 
this case the program a core should run is known in 
advance, while for general-purpose processors the 
executed program may change from time to time. The 
processor is indeed intended for running just one 
application, and therefore the test program coincides with 
the embedded application. Designers should thus focus 
their efforts in the development of the input stimuli for the 
test program, only.  

Based on this observation, this paper proposes a novel 
approach to generate validation input stimuli for 
processor cores that have been customized for embedded 
applications. An automatic flow is proposed that, starting 
from the source-level code of the embedded application 

and a description of the processor core devoted to its 
execution, performs the following operations: 
• It automatically customizes the selected processor 

by removing from its description all the un-used 
instructions, so that the resulting core embeds only 
those hardware components that are actually needed 
by the embedded application. 

• It automatically generates a set of input stimuli 
suitable for being used during the validation of the 
obtained processor core. 

The main novelty of this paper lies in the approach we 
adopted for generating the input stimuli to be used during 
processor validation. Conversely from the already 
available approach, input stimuli are generated while 
analyzing only the source-level code of the application the 
processor executes, while all the details about the 
underlying hardware, i.e., the processor, are neglected. 
Input stimuli generation is performed according to the 
approach presented in [7], where high-level metrics 
applied to behavioral descriptions of hardware/software 
systems are used to drive the generation of input stimuli, 
which is aimed at covering design errors and 
manufacturing defects. 

Experimental results are reported on a soft core 
implementing the Intel 8051 instruction set, showing the 
effectiveness of the approach we propose. 

The paper is organized as follows. Section 2 describes 
the proposed processor customization and validation flow. 
Section 3 details the adopted input stimuli generation 
process, whereas Section 4 reports some experimental 
results. Finally, Section 5 draws some conclusions. 

2. Design flow 

In this Section we describe the approach we developed 
for customizing a given processor core and generating 
suitable validation inputs.  

In developing our approach, we assumed that the 
considered embedded application is composed of three 
phases:  
• An acquisition phase, during which the data the 

application is intended to process are read from 
input devices. 

• A processing phase, during which the acquired data 
are elaborate by the algorithms the embedded 
application implements. 

• A presentation phase, during which the obtained 
results are send to output devices. 

These phases can be intermingled; indeed, our 
approach does not mandate that one phase is completed 
before another one is started.  

We also assumed that the targeted processor core is 
available as synthesizable register-transfer model. The 
processor source code is not encrypted and all its details 



are accessible to designers. Finally, we assumed that a 
simulation-based approach is exploited for performing the 
validation of the considered processor. 

The flow we developed under the aforementioned 
assumptions is shown in Figure 1. 

Three main phases compose our flow. The Instruction 
Set Extraction flow is shown in the leftmost part of Figure 
1. According to it, the embedded application source code 
is first compiled and then linked with the needed libraries, 
thus obtaining the binary code the processor core should 
execute. Then, a binary code analyzer tool identifies the 
sub-set of the processor instruction set that is needed for 
executing the given embedded application. The result of 
the Instruction Set Extraction flow is thus the list of 
assembly instruction the processor should implement in 
order to correctly execute the embedded application it is 
devoted to. 
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Figure 1: The proposed processor customization 

and validation flow 

The obtained information is then forwarded to the 
Processor Configuration flow (shown in the center of 
Figure 1), which takes care of generating the proper 
processor model implementing only the required sub-set 
of the processor instruction set. A previously defined 
processor core database is exploited during this step, 
which contains for each instruction in the processor 
instruction set, the list of VHDL statements needed for its 
decoding, sequencing and execution. The database is 
exploited by the processor configurator tool for 
generating the VHDL source code of all the modules in 
the processor that are devoted to instruction management, 
namely: decoding unit, control unit, arithmetic/logic unit. 
At the end of the Processor Configuration flow an 
instance of the adopted processor core is available, which 
has been customized for executing the given embedded 
application.  

The last phase is the Input Generation flow, which is 
depicted in the rightmost part of Figure 1. According to 

this flow, the embedded application source code is 
processed by the input stimuli generator tool, which is in 
charge of computing a set of input stimuli, test vectors, 
able to maximize given metrics. While performing the 
simulations needed for validating the processor, the 
generated test vectors are provided to the embedded 
application as inputs for its acquisition phase. Further 
details about the input stimuli generator are reported in 
Section 3. At the end of this flow, a set of validation input 
stimuli is available that designers may use to prove the 
correctness of the obtained customized processor core 
while running the given embedded application.  

3. Test vector generation 

The goal of the test vector generation process is to 
identify a set of stimuli that, when used as inputs for the 
considered application, is able to identify any error that 
modifies the expected application behavior. In our case, 
possible error locations are the application source code 
(due to bugs introduced during the coding process) and 
the processor model (due to bugs already present in the 
IP-core or bugs introduced during the processor 
customization process). 

We performed the test vector generation process by 
addressing a purely behavioral description of the 
considered application, i.e., the embedded application 
source code of Figure 1. We indeed tackle only the 
application that the processor run, while all the low-level 
details about the processor hardware are neglected. 

The test generation process is guided by high-level 
fault models that abstract the effects of errors in both the 
application and the processor model. For this purpose we 
considered the high-level fault models described in [8], 
which provide an accurate estimation of the test 
capabilities of input vectors while working on behavioral 
descriptions. The considered fault models are: 
• Bit coverage: each bit in every variable in the 

application can be stuck-at zero or one. The bit 
coverage measures the percentage of stuck-at bits 
that are propagated on the application outputs by a 
given test sequence.  

• Condition coverage: each condition in the 
application can be stuck-at true or stuck-at false. 
Then, the condition coverage is defined as the 
percentage of stuck-at conditions that is propagated 
to the application outputs by a given test sequence.  

In order to fruitfully exploit the aforementioned high-
level fault models within a test generation tool, we 
developed a high-level fault simulation environment, 
which implements the Saboter [9] approach through a 
two-step process: 

1. The application source code is first instrumented by 
adding suitable statements that fulfill two purposes: 



a. They alter the behavior of the application 
according to the supported fault models. 

b. They allow observing the behavior of the 
application to gather meaningful statistics (in 
particular, they provide access to the contents 
of all the variables in the application). 

During this phase, the list of faults to be considered 
during fault simulation is computed and stored. 

2. A given set of input vectors is applied to the inputs 
of the application resorting to the adopted simulation 
environment. During the execution of the 
application, a preliminary run is performed without 
injecting faults, and the output trace of the 
application is recorded. Then, each fault in the 
previously computed fault list is injected and faulty 
output trace is recorded. By comparing the faulty 
trace with the fault-free one, we then compute the 
high-level coverage figure the vectors attain. 

Simulation is performed by compiling the C code of 
the instrumented embedded application and then by 
running it on a workstation. 

The test generation algorithm we developed is 
intended for refining an already existing set of test 
vectors, which can be either randomly generated or hand-
produced by designers. 

For this purpose, our high-level test generator (HLTG) 
implements a Random Mutation Hill Climber (RMHC) 
algorithm, whose pseudo-code is reported in the figure 2. 

A RMHC is a Hill Climber that, given a current 
solution, evaluates neighbor solutions in a completely 
random order until an improvement is found. When an 
improvement is found, the process is iterated over the new 
solution. The process is repeated until a given termination 
condition is met. 

In our algorithm a solution is a sequence S of test 
vectors; each test vector is applied over the model inputs 
according to the assumptions stated in section 2. 

Starting from an initial solution S, a new solution S’ is 
computed by applying a random mutation operator. This 
operator supports three types of mutations: it 
complements one randomly selected bit within a 
randomly selected vector of S, it increases the number of 
vectors in S by adding a randomly generated vector in a 
randomly selected position in the test sequence, or it 
decrease the number of vectors in S by removing a 
randomly selected vector in the sequence. The new 
solution S’ is accepted if and only if it increases the 
goodness of the previous solution S. 

In the HLTG algorithm, the goodness of a solution is 
defined as follows: 

 
Fitness(S) = K1·Coverage(S) + K2·NS(S) 

 
where: 

• Coverage(S) is the average of the bit coverage and 
condition coverage as measured by the high-level 
fault simulator previously described. 

• NS(S) is the number of different states the 
application traverses during the evaluation of a set of 
vectors. The state is defined as the content of every 
variable in the application at the end of the 
evaluation of one input vector. This figure is 
computed by exploiting the information provided by 
the high-level fault simulator. 

These two figures are linearly combined through two 
constants K1 and K2, whose values are selected to let the 
first term to prevail over the second one. This assumption 
guarantees that a new solution is accepted only if it does 
not reduce the number of faults the previous solution 
detects. 

 
HLTG(S)  
{ 
  while( termination condition not met ) 
  { 
      S’ = apply_random_mutation(S) 
      if(Fitness(S’) > Fitness(S)) 
      { 
        S = S’ 
        if( new faults are detected ) 
          save_solution(S) 
      } 
  } 
} 

Figure 2: HLTG algorithm 

4. Experimental results 

In this Section we report the results coming from 
several experiments we performed to analyze the 
capabilities of the design flow described in Section 2. 
Sub-section 4.1 reports results concerning our processor 
customization approach, which show that an instruction 
set may be significantly pruned when a given embedded 
application is concerned. Sub-section 4.2 reports results 
about the test vectors generation approach we developed. 
These results confirm the soundness of the proposed 
approach, and they show that the adopted high-level 
metrics, which are applied only to the application running 
on the processor and that we used to drive the test 
generation algorithm, are in very good agreement with 
lower level metrics measured on the processor hardware 
description. 

4.1. Results of the processor customization 

The processor we selected for developing some 
benchmark applications is a soft core that implements the 
Intel 8051 instruction set. The soft core is coded in about 



7,200 lines of synthesizable VHDL language, and its 
instruction set implements 106 instructions. 

As a preliminary step for the application of our design 
flow, we manually inspected the VHDL code of the 
processor, and we identified all the information needed by 
the binary code analyzer tool and for building the 
processor core database depicted in Figure 1. This step 
lasted for about 3 days and was performed by a skilled 
VHDL designer. It is worthwhile to underline that, 
although expensive, this step needs to be performed only 
once, whenever a new processor core is introduced in the 
design flow. The obtained information can then be re-
used for any new embedded application exploiting the 
already analyzed core. 

Table 1. The considered applications 

Application 
Name 

Lines of 
C code 

[#] 

Instruction 
Set 
[#] 

Validation 
Input Stimuli 

[#] 

CPU  
time 
[s] 

BARCODE 198 27 4,731 955
ELLIPF 113 19 130 439
LRU 107 36 6,810 1,213

 
After this preliminary step, we considered the three 

applications summarized in Table 1, taken from the high-
level synthesis’92 suite. For each of them, we applied the 
design flow in Figure 1, thus generating a customized 
processor core, and the corresponding validation input 
stimuli. The binary code of each application was obtained 
through the KEIL C compiler [10]. 

Table 1 reports for each application the number of C 
lines in its source-level code. Moreover, it reports the 
number of instructions within the Intel 8051 instruction 
sets that are needed for running it and that are 
implemented by the obtained customized version of the 
processor. Finally, it reports the number of test vectors in 
the validation input stimuli set HLTG computed, as well 
as the CPU time for processor customization and HLTG 
execution. The figures in Table 1 shows the relevancy of 
the processor customization approach we adopted: for the 
considered applications just a relatively low number of 
instructions is needed among the whole Intel 8051 
instruction set. By pruning the initial instruction set of the 
un-used instructions we can thus significantly reduce the 
area occupation of the synthesized processor core.  

4.2. Results of the test vector generation 

We adopted as measure of the goodness of a given set 
of validation input stimuli S the number of processor 
instructions that have been fully tested by S, obtaining the 
figure we called instruction coverage. An instruction is 
considered tested when simulating S all the statements 
and the branches belonging to the VHDL implementation 
of the instruction are executed.  

Table 2. Coverage results for HLTG and 
randomly generated validation input stimuli 

Application 
Name 

Instruction 
Set 
[#] 

Instructions 
Tested by  

HLTG vectors 
[%] 

Instructions Tested 
by random vectors 

[%] 

BARCODE 27 100.0 96.2
ELLIPF 19 100.0 100.0
LRU 36 100.0 97.2
 
To measure the instruction coverage we applied a 

given set of input stimuli to the application, by 
simulating1 the execution of its binary code on the VHDL 
model of the customized processor. In order to implement 
the input/output communications needed by the 
acquisition and presentation phases described in Section 
2, we resorted to the four input/output ports the Intel 8051 
offers. They are 8 bit-wide bi-directional ports, which are 
memory mapped in the Intel 8051 addressing space. From 
the application developer point of view, the input/output 
ports correspond to C variables (P0, P1, P2 and P3) that 
can be either read or written. Read operations on one of 
these variables correspond to data transfers from input 
devices to the processor, while write operations 
correspond to data transfers from the processor to output 
devices. 

Two sets of input stimuli have been used. The first set 
is composed of the vectors computed by HLTG, while the 
second set is composed of randomly generated vectors. In 
both the experiments the same number of test vectors 
have been simulated. 

From the results reported in Table 2, we can observe 
that HLTG vectors are able to successfully test all the 
instructions in the considered processor cores, while 
random vectors fail short in achieving such a goal for two 
of the three considered applications. In these cases, 
random vectors were not able to cover part of the VHDL 
statements implementing the JNZ instruction (for the LRU 
application) and JNE instruction (for the BARCODE 
application). 

These results suggest the importance of cleverly 
selecting the test vectors to be used during simulation-
based validation. Although simple, the adopted test vector 
generation approach is able to rapidly provide useful test 
vectors that overcome the limitations of purely randomly 
generated vectors.  

To better investigate the capabilities of the high-level 
metrics described in Section 3 to accurately model low-
level errors, we compared in Table 3 the coverage figures 
measured on the source-level code of the considered 
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applications with those reported in Table 2, which have 
been measured by simulating the VHDL model of the 
processor. 

Table 3. Comparing high-level with low-level 
metrics 

Application 
Name 

High-level 
Coverage 
of HLTG 
vectors 

[%] 

High-level 
Coverage 
of random 

vectors 
[%] 

Instructions 
Coverage of 

HLTG 
vectors 

[%] 

Instructions 
Coverage of 

random 
vectors 

[%] 
BARCODE 97.2 75.6 100.0 96.2
ELLIPF 99.9 99.9 100.0 100.0
LRU 98.8 98.2 100.0 97.2

 
As the reader can observe from Table 3, the high-level 

coverage has the same trend of the instruction coverage. 
For both BARCODE and LRU, HLTG vectors perform 
better than random ones when coverage figures are 
measured both at the high level (on the application source 
code) and at the low level (on the processor VHDL 
model). Similarly, random vectors and HLTG ones 
provide the same figures for ELLIPF when evaluated 
either on the application source code or on the processor 
model. These results indicate that accurate testability 
estimation can be performed starting from purely 
behavioral descriptions (such in the case of the source-
level code of an application) while all the details of the 
underlying hardware (the processor devoted to executing 
the application) are neglected. 

5. Conclusions 

This paper proposed a novel approach to help 
designers in the simulation-based validation of 
application-specific processors. Suitable input stimuli are 
automatically generated while reasoning only on the 
software application the processor is intended to execute, 
while all the details concerning the processor hardware 
are neglected. Experimental results on a Intel 8051 soft 
core showed the effectiveness of the proposed approach, 

both in terms of area saving due to processor 
customization and validation capabilities due to clever 
selection of the test vectors used during simulation-based 
validation. 
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