
Automatic Generation of Validation Stimuli for
Application-Specific Processors

O. Goloubeva, M. Sonza Reorda, M. Violante

Politecnico di Torino, Torino, Italy,
www.cad.polito.it

Abstract*

Microprocessor soft cores offer today an effective
solution to the problem of rapidly developing new system-
on-a-chips. However, all the features they offer are rarely
used in embedded applications, and thus designers are
often involved in the challenging task of soft-core
customization to obtain application-specific processors.
This paper proposes a novel approach to help designers
in the simulation-based validation of application-specific
processors. Suitable input stimuli are automatically
generated while reasoning only on the software
application the processor is intended to execute, while all
the details concerning the processor hardware are
neglected. Experimental results on a 8051 soft core show
the effectiveness of the proposed approach.

1. Introduction

Thanks to the availability of deep sub-micron
technologies, designers have now plenty of silicon area
for their designs, up to the point that it is now common to
find embedded systems integrated on a single chip that
feature memory modules, processor cores and even
embedded programmable logic modules.

To effectively support the design of such a kind of
systems, which are known as System-on-Chips (SOCs),
vendors started offering Intellectual Property- (IP-) cores
ready for implementing complex tasks: for example
microprocessor cores are now available ranging from
simple controllers (like those implementing the Intel 8051

* This work has been partially supported by the Italian Ministry for

University through the project Reconfigurable platforms for wideband
wireless communications (PRIMO).

instruction set) to more complex pipelined processors
(like those based on the SPARC v8 architecture). Being
such a kind of IP-cores available, most of the work in
SOC design consists in integrating different IP-cores:
designers can indeed implement a SOC by properly
customizing and connecting the needed IP-cores coming
from potentially very different sources. For fostering this
design approach, several attempts have been made to
provide IP-cores with standard interfaces. The idea behind
them is to simplify the communications among
heterogeneous IPs during both normal operations (like for
example the WISHBONE interface [1]) and test ones (like
the IEEE P1500 standard).

Although silicon area is available in quantity,
designers still face the need to minimize the size of their
designs. Large area occupation still has several
drawbacks: high manufacturing costs, low yield, high
power consumption, just to mention a few of them. In an
IP-core-based design flow, this implies the possibility of
customizing the adopted IPs to make them implement just
the needed features. IP customization is particularly
efficient when the SOC is intended for being deployed in
an embedded application. In this case all the IP-cores the
SOC employs perform a very specific task that does not
change during the SOC lifetime, and which is well
defined since the beginning of the SOC design. Moreover,
the customization is effective only when very complex IP-
cores are considered, as in the case of processors. For
example, if the designed SOC is using a processor IP
whose architecture embeds a 32x32 parallel multiplier,
but the embedded application it is aimed at does not
require multiplication operations, then designers can save
a huge amount of area by removing the multiplier from
the IP.

Processor-core customization must be demanded to
vendors when IPs come under the form of hard cores. In

1530-1591/04 $20.00 (c) 2004 IEEE

this case, designers cannot modify the IP architecture and
thus they have to fully rely on their suppliers. This may
have dramatic impact on the IP cost, but it also greatly
simplifies the task for the IP end users, which are freed
from the very complex task of guaranteeing IP
correctness. It is indeed up to IP suppliers to identify
possible bugs introduced in the core during the
customization process.

Conversely, when processor cores are available as soft
IPs, i.e., designers have fully access to the IP source code,
the process of core customization may be performed by
the end user, which becomes responsible also for
guaranteeing the correct operation of the IP, i.e., of the
validation of the resulting IP, after its un-used
components have been removed.

The problem of validating processor cores may be
tackled either by means of formal methods or by means of
simulation-based techniques. Formal methods have been
successfully applied even to very complex architectures
[2]-[4], but their limitations often make them suitable only
for validating single components. As a result, most of the
validation effort is demanded to simulation-based
techniques: the processor is extensively stimulated with a
wide range of workloads, whose aim is to cover all the
possible corner cases, possibly enlightening design errors.
For successfully achieving such a goal, the process of
generation of the workload is crucial, since from its
goodness it depends the possibility of effectively
discovering design bugs. Several approaches have been
proposed in literature to solve the complex problem of
generating suitable workloads for general-purpose
processors. They rely either on high-level behavioral
HDL descriptions of the processors, or on more detailed
register-transfer models to generate and evaluate the
goodness of the computed workloads versus pre-defined
metrics [5][6]. No matter which approach is adopted, the
produced workloads consist of test programs the
processor core should execute and suitable input stimuli
for the test programs.

The workload computation problem can be greatly
simplified when the processor cores to be validated are
intended for being deployed in embedded applications. In
this case the program a core should run is known in
advance, while for general-purpose processors the
executed program may change from time to time. The
processor is indeed intended for running just one
application, and therefore the test program coincides with
the embedded application. Designers should thus focus
their efforts in the development of the input stimuli for the
test program, only.

Based on this observation, this paper proposes a novel
approach to generate validation input stimuli for
processor cores that have been customized for embedded
applications. An automatic flow is proposed that, starting
from the source-level code of the embedded application

and a description of the processor core devoted to its
execution, performs the following operations:
• It automatically customizes the selected processor

by removing from its description all the un-used
instructions, so that the resulting core embeds only
those hardware components that are actually needed
by the embedded application.

• It automatically generates a set of input stimuli
suitable for being used during the validation of the
obtained processor core.

The main novelty of this paper lies in the approach we
adopted for generating the input stimuli to be used during
processor validation. Conversely from the already
available approach, input stimuli are generated while
analyzing only the source-level code of the application the
processor executes, while all the details about the
underlying hardware, i.e., the processor, are neglected.
Input stimuli generation is performed according to the
approach presented in [7], where high-level metrics
applied to behavioral descriptions of hardware/software
systems are used to drive the generation of input stimuli,
which is aimed at covering design errors and
manufacturing defects.

Experimental results are reported on a soft core
implementing the Intel 8051 instruction set, showing the
effectiveness of the approach we propose.

The paper is organized as follows. Section 2 describes
the proposed processor customization and validation flow.
Section 3 details the adopted input stimuli generation
process, whereas Section 4 reports some experimental
results. Finally, Section 5 draws some conclusions.

2. Design flow

In this Section we describe the approach we developed
for customizing a given processor core and generating
suitable validation inputs.

In developing our approach, we assumed that the
considered embedded application is composed of three
phases:
• An acquisition phase, during which the data the

application is intended to process are read from
input devices.

• A processing phase, during which the acquired data
are elaborate by the algorithms the embedded
application implements.

• A presentation phase, during which the obtained
results are send to output devices.

These phases can be intermingled; indeed, our
approach does not mandate that one phase is completed
before another one is started.

We also assumed that the targeted processor core is
available as synthesizable register-transfer model. The
processor source code is not encrypted and all its details

are accessible to designers. Finally, we assumed that a
simulation-based approach is exploited for performing the
validation of the considered processor.

The flow we developed under the aforementioned
assumptions is shown in Figure 1.

Three main phases compose our flow. The Instruction
Set Extraction flow is shown in the leftmost part of Figure
1. According to it, the embedded application source code
is first compiled and then linked with the needed libraries,
thus obtaining the binary code the processor core should
execute. Then, a binary code analyzer tool identifies the
sub-set of the processor instruction set that is needed for
executing the given embedded application. The result of
the Instruction Set Extraction flow is thus the list of
assembly instruction the processor should implement in
order to correctly execute the embedded application it is
devoted to.

Embedded Application
Source Code

Compiler &
Linker

Embedded Application
Binary Code

Binary Code
Analyzer

Instruction
Sub-set

Processor Core
Database

Processor
Configurator

Processor
VHDL model

Input Stimuli
Generator

Validation
Input Stimuli

Instruction Set
Extraction

Processor
Configuration

Input
Generation

Figure 1: The proposed processor customization

and validation flow

The obtained information is then forwarded to the
Processor Configuration flow (shown in the center of
Figure 1), which takes care of generating the proper
processor model implementing only the required sub-set
of the processor instruction set. A previously defined
processor core database is exploited during this step,
which contains for each instruction in the processor
instruction set, the list of VHDL statements needed for its
decoding, sequencing and execution. The database is
exploited by the processor configurator tool for
generating the VHDL source code of all the modules in
the processor that are devoted to instruction management,
namely: decoding unit, control unit, arithmetic/logic unit.
At the end of the Processor Configuration flow an
instance of the adopted processor core is available, which
has been customized for executing the given embedded
application.

The last phase is the Input Generation flow, which is
depicted in the rightmost part of Figure 1. According to

this flow, the embedded application source code is
processed by the input stimuli generator tool, which is in
charge of computing a set of input stimuli, test vectors,
able to maximize given metrics. While performing the
simulations needed for validating the processor, the
generated test vectors are provided to the embedded
application as inputs for its acquisition phase. Further
details about the input stimuli generator are reported in
Section 3. At the end of this flow, a set of validation input
stimuli is available that designers may use to prove the
correctness of the obtained customized processor core
while running the given embedded application.

3. Test vector generation

The goal of the test vector generation process is to
identify a set of stimuli that, when used as inputs for the
considered application, is able to identify any error that
modifies the expected application behavior. In our case,
possible error locations are the application source code
(due to bugs introduced during the coding process) and
the processor model (due to bugs already present in the
IP-core or bugs introduced during the processor
customization process).

We performed the test vector generation process by
addressing a purely behavioral description of the
considered application, i.e., the embedded application
source code of Figure 1. We indeed tackle only the
application that the processor run, while all the low-level
details about the processor hardware are neglected.

The test generation process is guided by high-level
fault models that abstract the effects of errors in both the
application and the processor model. For this purpose we
considered the high-level fault models described in [8],
which provide an accurate estimation of the test
capabilities of input vectors while working on behavioral
descriptions. The considered fault models are:
• Bit coverage: each bit in every variable in the

application can be stuck-at zero or one. The bit
coverage measures the percentage of stuck-at bits
that are propagated on the application outputs by a
given test sequence.

• Condition coverage: each condition in the
application can be stuck-at true or stuck-at false.
Then, the condition coverage is defined as the
percentage of stuck-at conditions that is propagated
to the application outputs by a given test sequence.

In order to fruitfully exploit the aforementioned high-
level fault models within a test generation tool, we
developed a high-level fault simulation environment,
which implements the Saboter [9] approach through a
two-step process:

1. The application source code is first instrumented by
adding suitable statements that fulfill two purposes:

a. They alter the behavior of the application
according to the supported fault models.

b. They allow observing the behavior of the
application to gather meaningful statistics (in
particular, they provide access to the contents
of all the variables in the application).

During this phase, the list of faults to be considered
during fault simulation is computed and stored.

2. A given set of input vectors is applied to the inputs
of the application resorting to the adopted simulation
environment. During the execution of the
application, a preliminary run is performed without
injecting faults, and the output trace of the
application is recorded. Then, each fault in the
previously computed fault list is injected and faulty
output trace is recorded. By comparing the faulty
trace with the fault-free one, we then compute the
high-level coverage figure the vectors attain.

Simulation is performed by compiling the C code of
the instrumented embedded application and then by
running it on a workstation.

The test generation algorithm we developed is
intended for refining an already existing set of test
vectors, which can be either randomly generated or hand-
produced by designers.

For this purpose, our high-level test generator (HLTG)
implements a Random Mutation Hill Climber (RMHC)
algorithm, whose pseudo-code is reported in the figure 2.

A RMHC is a Hill Climber that, given a current
solution, evaluates neighbor solutions in a completely
random order until an improvement is found. When an
improvement is found, the process is iterated over the new
solution. The process is repeated until a given termination
condition is met.

In our algorithm a solution is a sequence S of test
vectors; each test vector is applied over the model inputs
according to the assumptions stated in section 2.

Starting from an initial solution S, a new solution S’ is
computed by applying a random mutation operator. This
operator supports three types of mutations: it
complements one randomly selected bit within a
randomly selected vector of S, it increases the number of
vectors in S by adding a randomly generated vector in a
randomly selected position in the test sequence, or it
decrease the number of vectors in S by removing a
randomly selected vector in the sequence. The new
solution S’ is accepted if and only if it increases the
goodness of the previous solution S.

In the HLTG algorithm, the goodness of a solution is
defined as follows:

Fitness(S) = K1·Coverage(S) + K2·NS(S)

where:

• Coverage(S) is the average of the bit coverage and
condition coverage as measured by the high-level
fault simulator previously described.

• NS(S) is the number of different states the
application traverses during the evaluation of a set of
vectors. The state is defined as the content of every
variable in the application at the end of the
evaluation of one input vector. This figure is
computed by exploiting the information provided by
the high-level fault simulator.

These two figures are linearly combined through two
constants K1 and K2, whose values are selected to let the
first term to prevail over the second one. This assumption
guarantees that a new solution is accepted only if it does
not reduce the number of faults the previous solution
detects.

HLTG(S)
{
 while(termination condition not met)
 {
 S’ = apply_random_mutation(S)
 if(Fitness(S’) > Fitness(S))
 {
 S = S’
 if(new faults are detected)
 save_solution(S)
 }
 }
}

Figure 2: HLTG algorithm

4. Experimental results

In this Section we report the results coming from
several experiments we performed to analyze the
capabilities of the design flow described in Section 2.
Sub-section 4.1 reports results concerning our processor
customization approach, which show that an instruction
set may be significantly pruned when a given embedded
application is concerned. Sub-section 4.2 reports results
about the test vectors generation approach we developed.
These results confirm the soundness of the proposed
approach, and they show that the adopted high-level
metrics, which are applied only to the application running
on the processor and that we used to drive the test
generation algorithm, are in very good agreement with
lower level metrics measured on the processor hardware
description.

4.1. Results of the processor customization

The processor we selected for developing some
benchmark applications is a soft core that implements the
Intel 8051 instruction set. The soft core is coded in about

7,200 lines of synthesizable VHDL language, and its
instruction set implements 106 instructions.

As a preliminary step for the application of our design
flow, we manually inspected the VHDL code of the
processor, and we identified all the information needed by
the binary code analyzer tool and for building the
processor core database depicted in Figure 1. This step
lasted for about 3 days and was performed by a skilled
VHDL designer. It is worthwhile to underline that,
although expensive, this step needs to be performed only
once, whenever a new processor core is introduced in the
design flow. The obtained information can then be re-
used for any new embedded application exploiting the
already analyzed core.

Table 1. The considered applications

Application
Name

Lines of
C code

[#]

Instruction
Set
[#]

Validation
Input Stimuli

[#]

CPU
time
[s]

BARCODE 198 27 4,731 955
ELLIPF 113 19 130 439
LRU 107 36 6,810 1,213

After this preliminary step, we considered the three

applications summarized in Table 1, taken from the high-
level synthesis’92 suite. For each of them, we applied the
design flow in Figure 1, thus generating a customized
processor core, and the corresponding validation input
stimuli. The binary code of each application was obtained
through the KEIL C compiler [10].

Table 1 reports for each application the number of C
lines in its source-level code. Moreover, it reports the
number of instructions within the Intel 8051 instruction
sets that are needed for running it and that are
implemented by the obtained customized version of the
processor. Finally, it reports the number of test vectors in
the validation input stimuli set HLTG computed, as well
as the CPU time for processor customization and HLTG
execution. The figures in Table 1 shows the relevancy of
the processor customization approach we adopted: for the
considered applications just a relatively low number of
instructions is needed among the whole Intel 8051
instruction set. By pruning the initial instruction set of the
un-used instructions we can thus significantly reduce the
area occupation of the synthesized processor core.

4.2. Results of the test vector generation

We adopted as measure of the goodness of a given set
of validation input stimuli S the number of processor
instructions that have been fully tested by S, obtaining the
figure we called instruction coverage. An instruction is
considered tested when simulating S all the statements
and the branches belonging to the VHDL implementation
of the instruction are executed.

Table 2. Coverage results for HLTG and
randomly generated validation input stimuli

Application
Name

Instruction
Set
[#]

Instructions
Tested by

HLTG vectors
[%]

Instructions Tested
by random vectors

[%]

BARCODE 27 100.0 96.2
ELLIPF 19 100.0 100.0
LRU 36 100.0 97.2

To measure the instruction coverage we applied a

given set of input stimuli to the application, by
simulating1 the execution of its binary code on the VHDL
model of the customized processor. In order to implement
the input/output communications needed by the
acquisition and presentation phases described in Section
2, we resorted to the four input/output ports the Intel 8051
offers. They are 8 bit-wide bi-directional ports, which are
memory mapped in the Intel 8051 addressing space. From
the application developer point of view, the input/output
ports correspond to C variables (P0, P1, P2 and P3) that
can be either read or written. Read operations on one of
these variables correspond to data transfers from input
devices to the processor, while write operations
correspond to data transfers from the processor to output
devices.

Two sets of input stimuli have been used. The first set
is composed of the vectors computed by HLTG, while the
second set is composed of randomly generated vectors. In
both the experiments the same number of test vectors
have been simulated.

From the results reported in Table 2, we can observe
that HLTG vectors are able to successfully test all the
instructions in the considered processor cores, while
random vectors fail short in achieving such a goal for two
of the three considered applications. In these cases,
random vectors were not able to cover part of the VHDL
statements implementing the JNZ instruction (for the LRU
application) and JNE instruction (for the BARCODE
application).

These results suggest the importance of cleverly
selecting the test vectors to be used during simulation-
based validation. Although simple, the adopted test vector
generation approach is able to rapidly provide useful test
vectors that overcome the limitations of purely randomly
generated vectors.

To better investigate the capabilities of the high-level
metrics described in Section 3 to accurately model low-
level errors, we compared in Table 3 the coverage figures
measured on the source-level code of the considered

1 Simulations have been performed through the ModelSim VHDL

simulator on a Sun Enterprise/250 machine running at 400 MHz and
equipped with 2 Gbytes or RAM.

applications with those reported in Table 2, which have
been measured by simulating the VHDL model of the
processor.

Table 3. Comparing high-level with low-level
metrics

Application
Name

High-level
Coverage
of HLTG
vectors

[%]

High-level
Coverage
of random

vectors
[%]

Instructions
Coverage of

HLTG
vectors

[%]

Instructions
Coverage of

random
vectors

[%]
BARCODE 97.2 75.6 100.0 96.2
ELLIPF 99.9 99.9 100.0 100.0
LRU 98.8 98.2 100.0 97.2

As the reader can observe from Table 3, the high-level

coverage has the same trend of the instruction coverage.
For both BARCODE and LRU, HLTG vectors perform
better than random ones when coverage figures are
measured both at the high level (on the application source
code) and at the low level (on the processor VHDL
model). Similarly, random vectors and HLTG ones
provide the same figures for ELLIPF when evaluated
either on the application source code or on the processor
model. These results indicate that accurate testability
estimation can be performed starting from purely
behavioral descriptions (such in the case of the source-
level code of an application) while all the details of the
underlying hardware (the processor devoted to executing
the application) are neglected.

5. Conclusions

This paper proposed a novel approach to help
designers in the simulation-based validation of
application-specific processors. Suitable input stimuli are
automatically generated while reasoning only on the
software application the processor is intended to execute,
while all the details concerning the processor hardware
are neglected. Experimental results on a Intel 8051 soft
core showed the effectiveness of the proposed approach,

both in terms of area saving due to processor
customization and validation capabilities due to clever
selection of the test vectors used during simulation-based
validation.

6. References

[1] OPENCORES, “WISHBONE System-On-Chip (SoC)
Interconnection Architecture for Portable IP Cores”,
Revision B.3, September 2002

[2] N. A. Harman, “Verifying a Simple Pipelined
Microprocessor Using Maude”, Lecture Notes in
Computer Science, 2001, Vol. 2267, pp. 128-142

[3] D. Van Campenhout, T. N. Mudge, J. P. Hayes, “High-
Level Test Generation for Design Verification of Pipelined
Microprocessors”, Design Automation Conference, 1999,
pp. 185-188

[4] M. N. Velev, R. E. Bryant, “Formal Verification of
Superscalar Microprocessors with Multicycle Functional
Units, Exception, And Branch Prediction”, Design
Automation Conference, 2000, 112-117

[5] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante,
“On the Test of Microprocessor IP Cores”, IEEE Design,
Automation & Test in Europe, 2001, pp. 209-213

[6] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,
“Fully Automatic Test Program Generation for
Microprocessor Cores”, IEEE Design, Automation & Test
in Europe, 2003, pp. 1006-1011

[7] O. Goloubeva, M. Sonza Reorda, M. Violante, “High-level
test generation for hardware testing and software
validation”, Proc. 8th IEEE International Workshop on
High Level Design Validation and Test, 2003, pp. 143 -
148

[8] F. Ferrandi, F. Fummi, D. Sciuto, “Test Generation and
Testability Alternatives Exploration of Critical Algorithms
for Embedded Applications”, IEEE Trans. on Computers,
Vol. 51, No. 2, February 2002, pp. 200-215

[9] J. Boué, P. Pétillon, Y. Crouzet, “MEFISTO-L: A VHDL-
Based Fault Injection Tool for the Experimental
Assessment of Fault Tolerance”, Proc. Int. Symp. on Fault
Tolerant Computing, FTCS-28, 1998, pp. 168-173

[10] www.keil.com

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

