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Abstract ated from the ADL specification of the architecture. Specific
properties are applied to the processor model using SMV

Functional verification is widely acknowledged as a ma- model checker. For example, to generate a testcase to stall

jor bottleneck in microprocessor design. While early work the decode unit, the property states ttat decode unit is

on specification driven fungtipna! test program generation not stalled The model checker produces a counter example
hag p_roposed_ several promising ideas, many challenges "that stalls the decode unit. The generated counterexample
main in applying them to realistic emb_edded ProOCEssars. WeIS converted into a test program consisting of processor in-
pres_ent a graph coverage pased functional test program 9€N5tructions. Since, the complete processor is modeled using
eration approach for p|pel|ped Processors. The pro.pose_dSMV' this approach is limited by the capacity restrictions of
methodqlogy makes three important contributions. _F|r§t, It the tool. As a result, it is not possible to model detailed de-
automatically generates the graph model of the pipelined

r from th ification using functional abstraction scription of the processor and generate test programs. Fur-
processoriro € specilication using functional abstractio “thermore, the test generation time is long.

f(?vcgrgd’elto??r?jraiteesli::amk:)g%g?/li(;[reﬁ:ﬁ] r§|?ratmh2 ?:Sstedesgr;he To make the ADL driven test generation applicable to re-
tion t'm?a o drast'2£| reduced d éto the y;se of modgle e eIalistic embedded processors, each of the above steps must
‘ontime'| ically redu u u W€ 1eVElLe automated using efficient techniques. First, the proces-

p:operty crr;ec(jk|rr1r?. r\mer ath;L']ed th'? EethOd?IO%y on rthe Ial‘xsor model generation from the specification needs to be au-
processor to demonstrate the usetuiness otourapproach. 1, ateq. Second, there is a need for a comprehensive func-

) tional coverage metric that can be used to automatically gen-
1 Introduction erate test programs. Finally, an efficient test generation tech-

. . . . nique is needed that can model complex designs and can en-
As embedded systems continue to face increasingly hlghe%me fast generation of functional test programs.

performance requirements, deeply pipelined processor ar-
chitectures are being employed to meet desired system pefy;q e for functional verification of pipelined processors. The

formance. Validation of such programmable processors iSqqnuintion of this paper is a methodology that solves the
one of the most complex and expensive tasks in the CUry e problems mentioned above. First, we present a tech-
rent Systems-on-Chip design methodology. Simulation is theyjq e for automatic generation of processor model from the
most widely used form of microprocessor verification: mil- Ap) gpecification using functional abstraction. Second, we
Ilon_s of cycles are spent during SImuIatlon_usmg a combi- yefine functional coverage of the pipeline behavior in terms
n_atlon of rando_m and_d|_rected test_cases in tr_admonal de-of pipeline graph coverage. The pipeline graph is generated
sign flow. Cer?aln heuristics and design abstractions are useqlrom the ADL specification of the processor. Each node in
to generate directed random testcases. However, due to thg . graph corresponds to a functional unit (module) or stor-

bottom-up nature and localized view of these heuristics theage component in the processor. The behavior of each node
generated testcases may not yield a good coverage. The prot?é described using SMV [8] language. An edge in the graph

lem is further aggravated due to the lack of a comprehensivegpresents instruction (or data) transfer between the nodes.
functional coverage metric. _ _ Finally, we present a test program generation algorithm that
Specification driven test generation has been introducedayerses the pipeline graph to generate test programs based
as a promising top-down validation technique for pipelined o the coverage metric. The algorithm breaks one processor
processors [12]. The processor is specified using an ArChiqgye| property into multiple module level properties and ap-
tecture Description Language (ADL). The SMV (Symbolic yjies them. Since, the SMV is applied only at the module
Model Verifier) [8] description of the processor is gener- |eye|, this approach can handle larger designs. It also drasti-

“This work was partially supported by NSF grants CCR-0203813 and Cally reduces the test geqeration Fime- _
CCR-0205712. The rest of the paper is organized as follows. Section 2

We propose a graph coverage based test generation tech-
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presents related work addressing verification of pipelined Architec/tur: Speci fication
. . . Ei j Do
processors. Section 3 describes our functional test program (Engl i sh Bocurent)

generation methodology followed by a case study in Sec- Y _
tion 4. Section 5 concludes the paper. [ADL Specification] [sm?/em(;;s ]

2 Related Work

Several approaches for formal or semi-formal verification Additional Properties
of pipelined processors have been developed in the past. The- '
orem proving techniques, for example, have been success-
fully adapted to verify pipelined processors [14]. Burch and
Dill presented a technique for formally verifying pipelined
processor control circuitry [2]. The technique has been ex-
tended to handle more complex pipelined architectures by
several researchers [16]. Ho et al. [7] extract controlled token
nets from a logic design to perform efficient model checking.
Jhala et al. [10] used compositional model checking to verify
a modern microprocessor.

Traditionally, validation of a microprocessor has been per-
formed by applying a combination of random and directed
test programs using simulation techniques. Many techniques
have been proposed for generation of directed test programs.
Aharon et al. [1] have proposed a test program generation
methodology for functional verification of PowerPC proces-
sors in IBM. Shen et al. [15] have used the processor to Testcases
generate tests at run-time by self-modifying code, and per- Figure 1. Test Program Generation Methodology
formed signature comparison with the one obtained from em-
ulation. These techniques does not consider pipeline behav- The graph model of the processor is generated from the
ior for generating test programs. ADL specification. The properties are generated based on

Ur and Yadin [18] presented a method for generation of the graph coverage metric discussed in Section 3.4. The
assembler test programs that systematically probe the microproperties are applied at the module level using SMV model
architecture of a PowerPC processor. Iwashita et al. [9] US€hecker. The counter examples are analyzed to generate test
a FSM based processor modeling to automatically generateyograms at the processor level. We apply these test pro-
test programs. Campenhout et al. [3] have proposed a teSjrams to the simulator of the processor to ensure that the

generation algorithm that integrates high-level treatment Ofcoverage criteria is met. If necessary, additional properties
the datapath with low-level treatment of the controller. These can pe added manually.

techniques does not provide a comprehensive metric to mea- . . .
ST . Our technique drastically reduces the time and space re-
sure the coverage of the pipeline interactions.

Many researchers have proposed techniques for generatioﬁu”e‘j for generating the test programs by applying proper-

of functional test programs for manufacturing testing of mi- fes at the module level and composing the responses in se-
croprocessors ([4], [11], [17]). These techniques use Stuck_quence.by traversing the p|peI|ne_g_rap.h. .
at fault coverage to demonstrate the quality of the generated Al9orithm 1 presents our specification driven test gener-

tests. The applicability of these test programs are not showrfion procedure. A propertprop is applied to a module

for functional validation of microprocessors. corresponding to noda in the graph model. The frame-
work actually generates the negation of the properties that

. . we want to verify. For example, to generate a testcase for as-
3 Functional Test Program Generation signing a valué to a registeR7, the property states thaR7
Figure 1 shows our graph based functional test program!=5". The SMV model checker produces a counterexample
generation methodology. In our specification-driven test pro-for the propertyprop. The counter example is analyzed to
gram generation scenario, the designer starts by specifyfind the input requirements for the node If these inputs
ing the processor architecture in an Architecture Descriptionare not primary inputs of the processor, the output require-
Language (ADL). We use EXPRESSION ADL [5] in our ments for the parent node afis computed. The property
framework. Our methodology is independent of the ADL. is modified based on the output requirements and applied to
As a result, we can use any ADL that captures both the structhe parent node. This iteration continues until primary input
ture and the behavior of the processor. assignments are obtained. These primary input assignments
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are converted into test programs (instruction sequences) bye used in different functional unit, or may have new ar-
putting random values in the un-assigned inputs. chitectural features. The first difference can be eliminated
In the remainder of this section we describe each of theby defining generic functions with appropriate parameters.
steps in detail. First, we describe the EXPRESSION ADL The second difference can be eliminated by defining generic
followed by a brief description of the functional abstraction sub-functions, which can be used by different architectures
technigue. Next, we present the graph model generatiorat different points. The last one is difficult to alleviate since
technique using functional abstraction. Finally, we define theit is new, unless this new functionality can be composed of

graph coverage metric that is used for test generation.

Algorithm 1: Test Program Generation
Inputs: ADL specification of the pipelined processor
Outputs: Test programs to verify the pipeline behavior.
Begin
Generate graph model of the architecture.
Generate properties based on the graph coverage
for each propertyrop for graph noden
inputs= @
while (inputs!= primary_inputs)
Apply prop on noden using SMV model checker
inputs= Find i/p requirements fan from counterexample
if inputsare not primaryinputs
Extract output requirements for parent of ngde
prop = modify prop with new output requirements
n = parent of node
endif

existing sub-functions (e.gmultiply-accumulateoperation

by combiningmultiply and add operations). They defined
the necessary generic functions, sub-functions and computa-
tional environment to capture a wide variety of processor and
memory features.

The structure of each functional unit is captured using pa-
rameterized functions. For example, a fetch unit function-
ality contains several parameters, such as number of opera-
tions read per cycle, reservation station size, branch predic-
tion scheme etc. Figure 2 shows a specific example of a fetch
unit described using sub-functions. Each sub-function is de-
fined using appropriate parameters. For examRkeadin-
stMemoryreadsn operations from instruction cache using
current PC address (returned RgadPQ and writes them to
the reservation station. The notion of generic sub-function

endwhile
Convert primary input assignments to a test program
Generate the expected output using a simulator.
endfor
return the test programs
End

allows the flexibility of specifying the system in finer detail.
It also allows reuse of the components.

FetchUnit ( # of read/cycle, res-station size, ....)

address = ReadPC();

instructions = ReadInstMemory(address, n);

WriteToReservationStation(instructions, n);
outinst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outinst);

3.1 The ADL Specification

The EXPRESSION ADL [5] contains information regard-
ing the structure, behavior and mapping (between structure
and behavior) of the processor. The structure contains the
description of each component and the connectivity between
the components. There are four types of componamgs
(e.g., ALUs)storagege.g., register filesports, andconnec-
tions (e.g., buses). Each component has a list of attributes. | /
For example, a functional unit will have information regard-
ing latches, ports, connections, supported opcodes, execution
timing, and capacity. The connectivity is established using The behavior of a generic processor is captured through
pipeline and data-transfer paths. The behavior contains théhe definition of opcodes. Each opcode is defined as a func-
description of operations in terms of its opcode, operands tion with a generic set of parameters, which performs the
behavior and instruction format. Finally, the mapping func- intended functionality. Similarly, they defined generic func-
tions map operations in the behavior to components in thetions and sub-functions for memory modules, controller, in-

structure. For example, an operatiadd is mapped tALU terrupts, exceptions, DMA, and co-processor. The detailed
unit in a typical processor. description of generic abstractions for all of the microarchi-

tectural components can be found in [13].

pred = QueryPredictor(address);
if pred {
nextPC = QueryBTB(address);
SetPC(nextPC);
}else
IncrementPC(x);

Figure 2. A Fetch Unit Example

3.2 The Functional Abstraction

. . . o 3.3 Graph Model Generation
The functional abstraction technique was first introduced

by Mishra et al. [13] for generating simulation models from  The structure of a processor pipeline is modeled as a graph
the ADL specification. The notion of functional abstraction G = (V,E). V denotes two types of components in the pro-
comes from a simple observation: different architectures maycessorfunctional unitsandstoragesE consists of two types
use the same functional unit (e.g., fetch) with different pa- of edgespipeline edgeanddata-transfer edgesA pipeline
rameters, the same functionality (e.g., operand read) mayedge transfers an instruction from a parent unit to a child unit.



A data-transfer edge is used to transfer data between compo- We define graph coverage as graph node coverage and
nents. Figure 3 shows the graph model of the DLX proces-graph edge coverage. A node in the graph is called covered if
sor. The oval (unit) and rectangular (storage) boxes represernit has been in all of the four states: active, stalled, exception
nodes. The solid (pipeline) and dotted (data-transfer) linesand flushed. A node ctivewhen it is executing an instruc-
represent edges. tion. A node can bstalleddue to structural or data hazards.

A node can be iexceptiorstate if it generates an exception
while executing an instruction. Itis possible to have multiple
exception scenarios and stall conditions for a node. However,
our current node coverage requires only one scenario in each
case. A node is iflushedstate if an instruction in the node

is flushed due to the occurrence of an exception in any of its
children nodes.

Similarly, an edge in the graph is called covered if it has
been in all of the three states: active, stalled and flushed. An
edge isactivewhen it is used to transfer an operation in a
clock cycle. An edge istalledif it does not transfer an op-
eration in a clock cycle from parent node to children node.
An edge ifflushedf the parent node is flushed due to the ex-
ception in the children node. The edge coverage conditions
i are redundant if a node has only one children. However, if a
= Sumetional uit node has multiple children (or parent), edge coverage condi-

Figure 3. The Graph Model of the DLX Architecture tions are necessary.
Our test generation algorithm traverses the pipeline graph

EaCh nOde Of the graph Contains information regarding in-and generates properties based on the graph Coverage de_
put/output edges, list of supported operations and their tim-scribed above. Consider the test generation for a feedback
ing. Each node also contains the SMV description of its path (edge) fronMUL7 to IALU in Figure 3. To generate a
behavior. We have implemented all the geneI’iC fUnCtionStest for making the feedback pmnve two properties are
and sub-functions described in Section 3.2 using SMV Ian'generated: |) make the nod@UL7 active in clock Cyc'd,
guage. Our framework generates SMV description of eachand ii) make the nodeALU active in clock cyclet+1). This
node (functional unit/storage) by composing functional ab- would lead to a test program that has a multiply operation
straction primitives. For example, a simplified version of the g||owed by six NOPs (no operation), and finally an add op-

SMV description of the fetch unifetch is shown below: eration.
module Fetch (PC, InstMemory, operation)
{ 4 A Case Study
input PC : integer;
input InstMemory : memory; In a case study we successfully applied the proposed
output operation : 0pType; methodology to the DLX processor [6]. We have chosen
init(operation.opcode) := NOP: DLX processor since it has been well studied in academia
next(operation) := InstMemory[PC]; and contains many interesting features such as, fragmented
} pipelines and multicycle units that are representative of many
commercial pipelined processor architectures such as TI
3.4 Coverage Directed Test Generation C6x, PowerPC and MIPS R10K. Figure 3 shows the graph

model of the DLX processor. The DLX architecture has five

Measuring progress is an important task that enables thepipeline stages: fetch (IF), decode (ID), execute, memory
designer to decide when to end the verification effort. Several(MEM), and writeback (WB). First, we present the test pro-
coverage measures are commonly used, such as code covagram generation results for the DLX processor. Next, we de-
age, toggle coverage and fault coverage. Unfortunately, thesagcribe a test generation scenario using an illustrative example
measures do not have any direct relation to the functional-to demonstrate the efficiency of our technique.
ity of the device. For example, none of these determine if
all possible interactions of hazards, stalls and exceptions arg, 1 Test Generation Results
tested in a processor pipeline. We propose a coverage met-
ric based on functional coverage of the pipeline. We define This section describes the number of test cases generated
all possible interactions between opcodes (instructions) andor the DLX processor using the functional coverage de-
pipeline stages (paths) through graph coverage. scribed in Section 3.4. The DLX processor shown in Figure 3



has 20 nodes and 24 edges (except feedback paths). We ha¥g, = divinstsrcl andBj, = divinstsrc2; Coyt returns the
described 91 instructions of the DLX processor [6]. result of the division i.e Cout = Ain + Bin; finally the output
is fed fromCyy i.€., result = Cqyt.
Table 1. Number of Test Programs in Different Categories

Node Coverage Edge Coverage o
| Active | Stalled [ Flushed | Exception | Active | Stalled | Flushed operation
[ 91 ] 20 [ 20 | 20 [ 24 | 24 | 24 |

Table 1 shows the number of test programs generated for
node and edge coverage of the DLX processor. Although,
20 testcases would suffice for thetivenode coverage, we
cover all the instructions. Also, there are many ways of mak-
ing a node stalled, flushed or in exception condition. We
chose one such scenario. If we consider all possible scenar- The following property generates the instruction sequence
ios, the number of test programs will increase. In this case,to initialize A, and B, with values 2 and 3 respectively at
our algorithm generated 223 test programs in 91 seconds oglock cycle 9. The property is written using SMV language
a 333 MHz Sun UltraSPARC-Il with 128M RAM. [8]. Informally speaking, it implies that if current clock cycle
is 8, in the next cycleDIV.Ain should not be 2 oDIV.Bin
should not be 3.

Bin

DIV

result

Figure 4. A fragment of the DLX architecture

Table 2. Reduced Number of Test Programs

Node Coverage Edge Coverage
Active | Stalled | Flushed | Exception | Active [ Stalled | Flushed assert G((cycle = 8) -> X((DIV.Ain "= 2) |
[(4 [ 14 ] 2 [ 20 [ 4 Ji14+3] 27 | (DIV.Bin "= 3)));

As mentioned earlier, some of the test programs are re- Mishraetal. [12] applied this property on the complete de-
dundant. For example, since there are four pipeline pathsscription of the DLX processor to generate the required test
we need only four test programs that exercises the four pathsprogram. They used a 359 MHz Sun UltraSPARC-II with
These four test programs will make all the nodetive Sim- 2048M RAM and the test generation time was 75.4 seconds.
ilarly, if we assume VLIW DLX, the decode node will be We do not have access to such a machine. We applied this
stalled if any one of its four children is stalled. Furthermore, property using a 333 MHz Sun UltraSPARC-II with 128M
if MEM node is stalled, all of its four parents will also be RAM and it took 375.98 seconds to generate the test pro-
stalled. This implies that we need only 14 testcases for nodegram. One of the reason for this difference is the lower RAM
stalling. Likewise, if the MEM node is in exception, the in- size of our machine. The number of allocated BDD nodes is
structions in all the previous nodes will be flushed. Hence, 1928568.

we need only 2 testcases for flushing. Finally, some of the We modify this global property to make it applicable at
node coverage testcases also satisfies the edge coverage. Wwdule level (as shown below) and apply to the division unit
need a total of 43 test programs in this case. Table 2 showgDIV) using SMV.

the number of reduced test programs in different categories.

4.2 Test Program Generation: An Example

In this section we describe our test generation approach

using the following example. We use this example to com-
pare the performance of our test generation algorithm with
previously published results [12].

Example 1:Consider a fragment of the DLX pipeline con-
taining three internal registers of the division unit (DIV) as
shown in Figure 4. Our goal is to initialize two registerg A
and B, with values 2 and 3 respectively at clock cycle 9

The two internal input registers for DIV unit afg, and
Bin. The internal output register for DIV unit Syy. The
input instruction isdivinstand the output isesult In this
particular scenariddy, andBj, receive data from the first and
second source operands of the input instructéinlis) i.e.,

T Same testcases as in the node coverage.

assert G((cycle=8) -> X((Ain "= 2) | (Bin "= 3)));

The next step is to analyze the counterexample produced
by SMV to extract the input requirements for the division
unit. For example, in this case the input requirements are
simple: divinst.srcl = 2anddivinst.src2 = 3 These input
requirements are used to generate the expected output as-
signments for the decode unit (parent of the division unit).
Also, the cycle count requirement is modified for the decode
unit. The modified property (shown below) is applied to the
decode unit.

assert G((cycle = 7) -> X((divinst.srcl "= 2) |

(divinst.src2 "= 3)));

The counterexample is analyzed to extract the input re-
quirements for the decode unit. The decode has two inputs:
operationand RegFile For example, in this case the input
requirements areoperation.opcode = DIV, operation.srcl =
1, operation.src2 = 2, RegFile[1] = 2and RegFile[2]=3.



This indicates that theperationshould be a division opera- defined the functional coverage of the pipeline behavior in
tion with srclas R1 andsrc2as R2. It also implies that the terms of the graph coverage. We have presented a test pro-
register file should have the values 2 and 3 at locations 1 andyram generation algorithm that traverses the pipeline graph
2 respectively. There are two tasks to be done here. First, ini4o generate test programs based on the coverage metric. The
tialize a register file location with a specific value at a given algorithm breaks one processor level property into multiple
a clock cyclé. Itis done using anove-immediatstruction module level properties and applies them. Our technique re-
fetched aft-5). In this case, thenove-immediateperations  duced the test generation time and the required BDD size by
should be done at clock cycle 2 and 3 to make the data avail-an order of magnitude.

able at cycle 8. The second task is to convert the remaining Currently, we apply these tests on the cycle-accurate struc-
input requirements as the expected outputs for the fetch unitural simulator of the architecture. Our future work includes
(parent of the decode). The modified property (shown below)application of these test programs on the RTL description for

is applied to the fetch unifetch. functional validation of pipelined processors.
assert G((cycle=6) -> X((operation.opcode "= DIV) |

(operation.srcl "= 1) | (operation.src2 "= 2))); References
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